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Oscillations of Certain
Delay Integro-Differential Equations

Y. H. Wang and B. G. Zhang

Abstract. In this paper, the oscillation of solutions of certain delay integro-differential systems
are considered. Sufficient conditions for the non-existence of non-oscillatory solutions for these
systems are obtained. Comparison results are obtained also.
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1. Introduction

Recently the oscillation in systems of functional-differential equations has received at-
tention in the literature [1 - 6]. In this paper we consider the delay integro-differential
system

a:;(t)+Z/Di,j(t—s)a¢j(s—7)d3:0 (i=1,2,...,n) (1)
and

zy(t) + Z/Di,j(t —s)zj(s —7)ds = fi(t) (1=1,2,...,n) (2)

with initial condition
z(s) =¢(s)  (s€[-7,0]) (3)

where 7 > 0, D; ; € C(R;,R}) and ¢ € C([—7,0]). System (1) with n = 1 has been
considered in [7].

By a solution of (1) - (3) we mean a vector x = (x1,...,%,)T, which is continuous
on [—7,00) and continuously differentiable and satisfies (1) for ¢ > 0 and such that (3)
holds. By a solution of (1) on [T, 00) we mean a vector z € R™ which is continuous on
[—7,00) and continuously differentiable and satisfies (1) for t > T. A vector z € R is
said to be non-oscillatory, if z;(t) # 0 on [—7,00) (i =1,2,...,n), and to be positive
if every component of x is positive on [—7, 00).
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We will reduce the non-existence of non-oscillatory solutions of (1) to the same for
the scalar integro-differential inequality

y'(t) + /D(t —8)y(s—71)ds <0 (4)

where

D(t) = D (1) forn=1
T\ minigi<alDyi(t) = D2imy iz 1D ()] forn>1

By a solution of (4) on [T, 00) we mean a function y € C([—7,00),R) N C}([T, ), R)
which satisfies (4) on [T, c0) where T' > 0. A solution y of (4) is called positive, if y > 0
on [—T,+00).

(t>0).

2. Main results

Let us start with the following theorem.

Theorem 1. If (4) has no positive solutions, then (1) has no non-oscillatory solu-
tions.

Proof. Suppose the contrary, let z be a non-oscillatory solution of (1) with z;(t) #

0 (¢t > —7;i = 1,2,...,n) and set §; = % Then w = (wy,ws,...,w,)T =

(0121, ..., 0px,)T satisfies w;(t) >0 (t > —7) and
n ¢
, _
w;(t) + Z/Di,j(t —s)wj(s—71)ds =0 (t>0) (5)
Jj=1 0
where Di,j = g_;Dz,] Clearly, Diﬂ' = Di,i and |Di,j| = |Di,j| (Z 75 j) Define y(t) =

Yor  wi(t) >0 (t> —7). Summing (5), we have

t

0= Zw;(t) + Z Z/Di,j(t —s)w;(s —1)ds
=1 1=1 5=1 0
=y'(t) + /Dj,j(t —s)w;(s —7)ds+ Z D; j(t — s)wj(s —T)ds
Jj=1 0 1,j=1,i#j 0
n t n
>/ 0+ [ (Dut== X D=9 Juys - )
j=1y i,j=1,i#j

>y (0)+ [ Dit=s)y(s =) ds

which is a contradiction il
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Theorem 2. Assume that Dy (t) Z0 on [0,7]. If

+Z/Dw $)zi(s—1)ds<0  (i=1,2,...,n) (6)

has a positive solution z(t) on [—T, ) then (1) has a positive solution x(t) with 0 <
z(t) < z(t) (t>0) and limy_, o z(t) =

Proof. Define the set
X = {a: € O([—7,00),R")| 0 < z(t) < 2(t) (¢t > —7), (t) >0 on [T, O]}

and an operator S on X by

(Szi)(t) =
[ [ Dij(u—s)z;(s—7)dsdu ift>0
7=1 t 0 (7)
( [ | Dij(u—s)z;(s— T)deU) (1 - @) :((é)) + zi(t)@ if —7<t<0
5100

for i = 1,2,...,n. Clearly, (Sx;)(t) < z;(t) (t > —7) and (Sz;)(t) > 0 on [—7,0], i.e.
SX C X. Define the sequences {y,(t)}, ym € R™ by

Yo = %2
Ym = SYm—1 (m €N).

Then

Yo > Y1 > ... > Ym(t) > ... (t>-1)
and hence lim,,, o ym(t) = y(t) (¢t > —7) exists. It is easy to see that y(t) is a solution
of (1) for t > 0 and y(t) < z(t). We claim that y(¢) > 0 (¢ > 0). From (7) and the
condition D; ;(t) # 0 on [0, 7] we have y(t) > 0 on [—7,0]. If £ is the first zero of y; on
[0,00), i.e. y;(t) >0 (0<t<&)and y;(§) =0, then

0= i(¢)

u

X”:/OO/ D; j(u— 8)y;(s — 7) dsdu
£ 0

=1

<.

v
m\8

/ Dys(u — 8)yi(s — 7) dsdu

which implies that [’ D; ;(u—s)y;(s—) ds = 0, which contradicts the fact that D;; # 0
on [0, 7] and y;(s) > 0 (s € [-7,0]). This contradiction proves the Theorem H
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From Theorem 2 we can derive a comparison theorem.

Corollary 1. If D; ;(t) < E; j(t) (t >0) and

yi(t +Z/EZJ s)yj(s —7)ds =0 (1=1,2,...,n)

has a positive solution y(t), then (1) has a positive solution x(t) with x(t) < y(t).
Proof. In fact, we have

n ¢

yi(t) + Z/ng s)y;(t — 7)ds < y;(t) + Z/Ei,j(t —s)y;j(t —T1)ds = 0.
Jj=1 0
By Theorem 2, (1) has a positive solution il
Corollary 2. Let d(t) = maxi<i<n Y_;—; Di,j(t). If there exists A > 0 such that

oo

-2+ e)‘T/d(s)e)‘Sds <0,
0

then system (1) has a positive solution x with

0<z;(t) <e™  (t>0;i=1,2,...,n). (8)
Proof. In fact, let z;(t) = e (i =1,2,...,n). Then

n ¢

+Z/ng s)zj(s — 1) ds

1o

—zz(t)-l—Z/D” (s)zj(t —s—1)ds

Jlo

— n t
=e M| A+ Z e /Di,j (5)e*® ds]

L j:1 0
- t

<e M| A4 e /d(s)eksds]
- 0

By Theorem 2, (1) has a solution x, which satisfies (8) il
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Now we want to show a sufficient condition for the non-existence of positive solutions

of (4). Let
t u
D, (t) = / /D(u — s)dsdu
t—7 0
t u
Dy (t) = / / D(u— $)Dy_1(s) dsdu (n > 2)
t—7 0
and .
po = mmin Dy (t)
= i D,(t) (kE>1).
Pr knTStI;l%IIcl-l-l)nT ( ) ( - )
Lemma 1. Assume that .
Let y(t) be a positive solution of (4). Then
y(t — T) 2n
=~ < 4e . 10
y(®)  ~ (10
Proof. Integrating (4), we have
t u
yt) —yt—7)+ / /D(u —8)y(s —7)dsdu < 0. (11)
t—7 0
Thus
t u
y(t—71) > / /D(u —8)y(s — 7) dsdu
t—7 0
t u (12)
>y(t—1) / /D(u — s)dsdu
t—7 0

= D1 (t)y(t — 7).

Substituting (12) into (11) we obtain y(t — 7) > Dy(¢)y(t — 7). In general, we have
y(t —7) >yt —7)Dn(2). (13)
Assumption (9) implies that there exists t* € [t — 7, ¢] such that

t* w t u
1 1
/ /D(u — 8)Dyp_1(8) dsdu > on and //D(u — 8)Dyp_1(s) dsdu > 5on”
t* 0

t—1 0
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Integrating (4), we have

y(t*) —y(t — 1)+ / /D(u —8)y(s — 1) dsdu < 0. (14)

t—7 0

In view of (13) and (14), we obtain

y(t—7) > //Du—s (s — 1) dsdu

t—7
t*
/ /D u—8)Dp_1(8)y(s — 7) dsdu
t—7 0
y(t* —7)
2em

Vv

Si(mila)rly, we have y(t*) > y(;e,f). Combining the above two inequalities we have
y(t* —1

) < (2¢™)? and the proof is complete B

Lemma 2. Assume that (9) holds. Let y(t) be a positive solution of (4) and define

M = min yt—r) and N = min y(t =) .
n(m—1)7<t<mnrt y(t) mnt<t<(m+1)nt y(t)

Then M > 1 and
M
N > exp(e" ' Mp,,) > exp (—) > M. (15)
e

Proof. M > 1 is obvious. Dividing (4) by y(¢) and integrating it we have

y(t jﬁ/ (s — u)y(u — 7) duds. (16)

Let
L - TP L L0
Ne = (mn+k— 1)I7¥l<l£,l<(mn+k:)7' y(z/(t)T)
M, = min M

((m—=1)n+l)r<t<(mn+l)T y(t)

for k,l =1,2,...,n. By definition, p,, < dp (k=1,2,...,n) and N = minj<p<n Ng.
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For t € [mnt, (mn + 1)7], from (16) and the inequality e® > ez for z > 0, we have

y(t—7) y(u—r1)
0 >exp//D(sl—u y(u) duds,

t—1 0
t
>eXp//D(sl—u exp//D 89 — 1) ( ))dUIdSQdudS]_
t—1 0 u—T1 O “
t
> exp e//Dsl—u //D32—u1 )du1d32dud31
y( 1)
t—1 0 u—1 0
>
u S92
>exp("1//Dsl—u //D(s2—u2)...
t—7 0 u—T 0

/ /D(sn — un_l)M dup_1dsy, ... duds,
y(un 1)

Unp—2—T 0

>exp("1//Dsl—u //DS2—U2

t—1 0 u—T1 O
Up—2
Y(sn
=2 | D(sp — tup—1)dup_1dsy, . ..duds;
Sn
Unp—2—T

where s, € [(m — 1)nT, (mn + 1)7]. In view of the inequality exp(Z) > z for z # e we

have
N1 > exp (e" ' min(M, Ny)d1)

> exp ("~ min(M, N1)pm)

> exp (min(M, Nl))
e

> min(M, Ny).
Hence min(M, N;) = M. Therefore

M
Ny > exp(e"_lMpm) > exp (—) >M
e
and M7 > min(M, N;) > M. Similar to the above, we can prove that

M
Ny > exp(e™ *Mpy,) > exp (—) > M (k=1,2,...,n).
e
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Therefore

M
= mi > n—1 > (—) >
N 1131}91;1n Ni > exp(e™™"Mp,,) > exp o) 2 M
and the proof is complete l

Theorem 3. Assume that (9) holds and

> (pz- - ein) = 0. (17)

Then (4) has no positive solutions.

Proof. Suppose the contrary, let y(t) be a positive solution of (4). Define the
sequence {N;} by

N; = min yt=1) (i 5).
(k+i—1)nr<t<(k+i)nr  Y(t)

By Lemma 2, we have N; > 1 and

Nit1 > exp(e™ ' Nipiti)

N; _ 1
> exp (—Z) exp (Ni (e"‘lpk+i — —))
€ €

N;
e (¥)

e
> N;.

(18)

Therefore {N;} is increasing. On the other hand, by Lemma 1, {N;} is bounded. Hence
lim;_,0o N; = N exists. From the last inequality, we have N > exp(¥) > N if N # e
which implies that N = e. From (18),

Nit1> N;(1+ e" ' Ni(Prti — e ™).

Hence

Niy1 — N; > " "N} (ppyi —e ™)

and
N G 15 - 1752 -
Niyz = Nig1 > "IN (ryin — €77) > € THNE (Drgir — e77).

Summing up the above inequality, we get
oo
e— N; >e" 1N} Z(pkﬂ- —e ")
j=i

for some k, which contradicts (17)
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Corollary 3. If there exists a positive integer n such that

1
lim inf D, (2) > —, (19)

t—o0 e

then (4) has no positive solutions.

In fact, (19) implies (17). Combining Theorem 1 and Corollary 3 we have the
following result.

Corollary 4. If (19) holds, then (1) has no non-oscillatory solutions.
Now we consider the forced system (2).

Theorem 4. Let F(t) = >, 0;fi(t) with §; = £1 and F(t) = h'(t), hy(t) =
max(h(t),0) Z 0, h_(t) = max(—h(t),0) Z 0, and

[ tDt—s Vhi(s — 7) dsdt = oo (20)
[]»

Then (2) has no non-oscillatory solutions.

Proof. Suppose the contrary, let {z;(t)} (i = 1,2,...,n) be a non-oscillatory
solution of (2). Then we have

t
(Sziﬁ;(t) + /Di,j(t — s)5imj(s — ’7') ds = (5zfz(t)
0

wg(t) + /Di,j(t - s)éiéj_le(s — 7') ds = (57,f1(t)
0

That is,
n t
wl(t) + Z/Di,j(t — s)w;(s — ) ds = 5 fi(t).
0

Summing the above equation, we obtain

ng(t) + Z / Di,ij’j(t —s)wj(s —7)ds

" Z ,/Di,j(t—S)wj(S—T) ds = _0ifi(t)

=1

y,(t)+2/(1‘)j,j(t—s)— Z |Di,j(t—s)\>wj(s—r)ds§Z(Sifi(t)

1,J=1,i#£]
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and hence

¢
—I—/Dt—s (s—7)ds < F(t).
0

Thus,

(y(t) '+/Dt—s)ys—7')ds<0 (21)

If y(t) > 0 eventually, then y(t) — h(t) is non-increasing. There are two possible cases:

(i) y(t) — h(t) < 0 eventually
and
(i) y(t) — h(t) > 0 eventually.

For the case (i), y(t) < h(t) eventually, which contradicts the positivity of y. Therefore,
the case (ii) holds. Hence y(t) > h(t) eventually. From this and (21), we obtain

(y(t) — '+/Dt—sh+s—7')ds<0 (22)

This together with condition (20) lead to a contradiction and the proof is completed l
Remark 1. (2) has no positive solution, if (20) holds, where F(t) = >"" | fi(t).
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