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On a Class of
Parabolic Integro-Differential Equations

W. Kohl

Abstract. Existence and uniqueness results for the integro-differential equation

1
we(w,t) — o (z,8) = c(z, t)u(, t) + / k(s,2)h(s,t,u(s,0) ds + f(z,8) (1) € Q)
0
subject to the boundary condition

u(z,t) = p(z,t) ((z,t) € R)

and, especially, for the linear case h(s,t,u) = u are given. To this end, this equation is written
as operator equation in a suitable Holder space. The main tools are the calculation of the
spectral radius in the linear case, and fixed point principles in the nonlinear case.
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1. Introduction

In this paper we study existence and uniqueness results for the parabolic integro-
differential equation

g (5,1) — Qg (. ) = ez, ) +/k (s, ) ds+ f(z.1) () €Q) (1)

subject to the boundary condition

wz,t) = p(x,t)  ((z,1) € R). (2)

Here c: Q - R, k:(0,1) x (0,1) — R, f: Q@ — R, and ¢ : R — R are given functions,
where Q@ = (0,1) x (0,7] and R = @ \ Q is its parabolic boundary; the parameter
a is a real constant. Equations of this type occur in the mathematical modelling of
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various transport problems, e.g., describing the propagation of radiation through the
atmospheres of planets and stars [4, 5], or the transfer of neutrons through thin plates
and membranes in nuclear reactors [6]. In the case a = 0 this boundary value problem
has been studied in the recent survey paper [1]. By means of a simple scaling argument,
we may suppose that a = 1.

If we introduce the differential operator
Lu(z,t) = ug(x, t) — uge(x, 1), (3)
the multiplication operator
Cu(z,t) = c(z, t)u(x,t), (4)

and the partial integral operator

1

Ku(z,t) =/k(s,x)u(s,t) ds, (5)

0

we may write (1) as operator equation
Lu=(C+ K)u+ f. (6)

Our strategy for proving existence (and sometimes also uniqueness) of solutions
to the operator equation (6) with boundary condition (2) is standard: First we give
conditions under which the classical parabolic boundary value problem

Lu=f in Q )
U= on R

has a unique solution for each f and ¢ in some suitable Banach space; this allows us to

define the operator L=! on this Banach space. Afterwards we pass from the operator

equation (6) to the equivalent equation

u— LY C+Ku=L"1f (8)

and try to find conditions under which the spectral radius of the operator L=1(C + K)
is less than 1, in order to apply the classical Neumann series. In fact it turns out that
the spectral radius of the linear operator L™1(C + K) is 0, if we take a Holder space as
underlying Banach space of the operator equation (8).

Apart from the linear equation (1), we will also be interested in the nonlinear
equation

ug(z,t) — augs (z,1)

= c(z, t)u(z,t) +

/k s,x)h(s,t,u(s,t))ds+ f(z,t) ((@.8) € Q) ®)
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where h : Q x R — R is some Carathéodory function. Introducing the nonlinear
Nemytskij operator
Hu(z,t) = h(x,t,u(z,t)) (10)

generated by the function h, we may write (9) again as operator equation
Lu=(C+ KH)u+ f. (11)

If we suppose again that the parabolic operator L be invertible in some Banach space,
we end up, analogously to (8), with the nonlinear operator equation

u— LY C+ KH)u=L"f, (12)

which may be studied by several (classical and non-classical) fixed point principles.

The plan of this paper is as follows. First we introduce some special spaces of
continuous functions in which the operator (3) and its inverse have particularly “nice”
properties. In Lemma 1 and Lemma 2 we describe some features of the inverse operator
by estimations which are not only useful for later functional analytic considerations.
These estimations fill also a gap in the literature of the heat equation. So we aimed
at thoroughness in proving them. Afterwards we give sufficient conditions under which
the operators (4) and (5) are bounded in these spaces. It turns out that analogous
results for the nonlinear operator (10) are much more involved. Finally, we show how
our results give existence and uniqueness results for solutions of the linear boundary
value problem (1)/(2) and the nonlinear boundary value problem (9)/(2).

2. The heat potential

Following the theory of the heat equation in the book of J. R. Cannon [2: Chapter
19] we know that the inhomogeneous heat equation (7) is invertible, if the data f is
bounded and uniformly Holder continuous on each compact subset of the domain under
consideration. A detailed discussion of the inverse operator L~! in the case of the
infinite set (—oo, 4+00) x (0,7 is given in this book. Because we could not find similiar
investigations for the finite set () in the literature, we turn now our attention to this
case. The inverse L~! corresponding to the rectangular set () can be represented as a
linear Volterra operator

/t/lF (x,t; &, 1) f (&, T)dédr, (13)

which is generated by the Green’s function I" for the Dirichlet problem [3: p. 195]. This
function can be expressed with the help of the #-function

+o0
O er) = Y exp @S Z exp Z @+ E) — ¢

t—T1 t—1
n=—00 n=-—00
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and the heat kernel

in the form

L(z,t;¢,7) =

{’y(x—&,t—T)H(a:,t;g,T) ifz,f€eRand 7 <t (14)

ifr, £ €Rand 72>t

Thus the function I' is infinitely often continuously differentiable for all z,£ € R and
T < t. For fixed (¢£,7) € R? it solves the heat equation for all z € R and ¢ > 7, while
for fixed (z,t) € R? it is a solution of the adjoint heat equation for all £ € R and 7 < t.
Moreover, we have the boundary properties

0,t¢,7)=T(1,t¢7)=0 ((€R,T <) (15)
Luz(0,86,7) =Tee(L,1;6,7) =0 ((€R, T <1). (16)

In order to investigate the operator L~! we introduce for fixed € > 0 the family of
functions uy with

t—h1l

//rmg, r)dédr ((@t) eRx[6,T,0<h<E).  (I7)

00

Now the singularity (z, t) of the Green’s function lies not in the domain of integration. So
we conclude assuming f € L*°(Q) that each function wy, is infinitely often continuously
differentiable with respect to x and differentiating under the integral sign is permitted

t—h

1
oFT
" (z,1) (z,t;¢,7)f(&,7)dédr (k €N).
Bxk 0/0/ oxk

In the case f € C°(Q) we may differentiate (17) with respect to ¢ to yield identity (18)
for all (z,t) e Rx [,T],0<h < §

Buh 82uh

1) = 5 2 (11 +/0 Dz, t:€,t — h) (€.t — B) dE. (18)

The properties of functions L71f with f € L>(Q) are summarized in the following
lemma. Let C*°(Q) denote, as usual, the set of all v € C°(Q) such that there exists a
¢ > 0 with

holy(v(-,t)) ;==  sup vz, t) = Uiy’t)| <c (te]0,T)).
z,y€[0,1],z#y |x-—y|

Lemma 1. For f € L*°(Q), the heat potential

t 1
u(z,t) = L7 f(z, 1) ://rmg, f(&,7)dédr (19)
0 O
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has the following properties:

(a) u|R =0 and u € C°(Q) with SUP,epo,1] [w(@: 1) < c1(T) [|fllo t where || flloo =
inf,,(nNy=0 SUP(4 tyeo\n |f (7, 1) is a norm in L>(Q).

(b) uz € C%Q) with ug(z,t) fo fo (x,t; &, 7)f (&, 7)dédT, up(z,0) = 0, and
SUPzelo,1] g (z,t)| < co(T )”f”oo\/_

(¢) ug € C5°(Q), ie. [ug(2+8,8) —ug (2,0)| < ca(T) | flloo [8]5 (46,2 €[0,1], ¢t €
[0,T7]).

Proof. Part (a): Since the §-function is bounded on the set

D= {(m,t;E,T) €R4‘£L',f€ [0,1], t,7 € [0,T], T<t},

we may estimate the function u by

/7 L(x,t;€,7)|[f(&§ )| dédT

t oo
< sup 00z, 56, 1 |- 0/47<x—5,t—r)d§dr

-~

=c1(T)

< c1(T) |[f]oot-

So the function u is well defined on @ and satisfies the asserted inequality. Furthermore,
we estimate the difference u — uy by

t 1
) —un@)| < [ [ Gt 16 dear
= () ] ch

Taking a sequence (hy,) with lim,, . hy, = 0 the sequence (up,,) of continuous functions
converges uniformly on [0, 1] x [e,T] towards the function u for all e > 0. Hence we
have u € C°([0,1] x (0,7T]) and the function u(-,t) possesses zero boundary values

u(0,t) = Jim up,, 0,t) = Jim up,, (1,t) = u(1,t) (t € (0,77).

Moreover, the estimation |u(z,t)| < c1(T) [[f||lcot shows that u(z,t) — 0 as ¢ 0
uniformly for all z € [0, 1], and we conclude u € C%(Q) with u|R = 0.

Part (b): The existence of the first derivative u, of the heat potential is based on
the crucial inequality

: (20)

t—T1

1
/ (o, 156, 7)| dé < e(T)
0
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which we prove first. The product rule and further estimation leads to

1

/ T (o, 1€, 7)) de

1

1
S/IH;,,-(af,t;f,T)lv(af—&,t—T)dé+/\9(33,?5;5,7)\I%(ﬂf—&t—T)\df
0

0

= J1 + Jz.

We estimate the integral J; by the two integrals

1

[0t D@t - yde < A+ B

with
n=-+oo 2
n| n r—§
A_/ Z — exp(—t_T—l—nt_ )'y(x—f,t—r)d§
p n=—o
and

n=+4oo
B:/ Z uexp(— n’ +nx+£— zé )v(az—ﬁ,t—T)dﬁ

t—171 t—T1 t—17

and consider each integral separately using the convention of constants. We write A as
a sum of integrals A = A; + Ay + A3z and treat each integral separately as follows:

-
Alz‘/Z%exp(—tiT—knf T)’y(x—f,t—T)dé'

0 Inl>2
(Un)F [ Inl 1= |nl
T) 2 n —|n
= t— / t— exp(t_T>d£
T 2




o (-

N

V=T
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e R
exp— 2= @=O)° < (ix__T’;c))Z d¢

P 1— - %

e
R (et

Next we turn to the integral B = B; + By + B3 + By, where we look at

_ In —¢| n? x+E& x€
Bl_/z P exp< t_T-i-nt_T—t_T)’y(:v—g,t—T)dg
o Inl>2
1 )
n+1 1—n\ (4m)~2 (x —¢)?
< [2 d
_/ 22 exp(t T) t—r 4(t — 1) ¢
o "=
12(47r)—% - no1 (z —¢€)?
< _ _ _
_/ L exXp 2}(n+3)(exp ) —— exp 5= 1)
0 n= ., ~—_———
<o(T) <1
< C(T) .
TVt —T
Then we estimate the integral B,
1 4r)—2 )
n:O:B2:/ § Um7 o 4
t—T\Vt—T At — )
0
[ & (m)h ;
< d
_/t—T b A4t — 1) ¢
0

165
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and substitute by ¢(&) = £4/4(t — 7) to gain the desired inequality

4(4r)~2 i 9 1 T
By T [V coxp g < t_TT()/sexp —e%de.

where we applied the substitution 1 (§) = 1+ £+/4(t — 7). Finally, the asserted estima-
tion holds for the integral By

1

n=-—1: B4:/1+§exp—(1+x)(1+£)

’)’(l’-f,t—T)d&

-7 t—1

0
1

2

<= y(x— &t —7)de
0
1
c(T .

Considering the integral Jy we see that the boundedness of the #-function and the
substitution by ¢(§) = x + {/4(t — 7) yield

|z —&| (4m)~> p_(x—§)2

Jo < e(T) 2-r)Vi—7 0 Alt—1)

dg

1—2
4(t—T)

< ex(T) / €] exp —€2d¢
\/4(t—r)

1
w2

Vi—T

1

7'[' 2

Vi-rt

+oo
< e(T) /_ €l exp—€2de
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Now we are able to estimate the function g, where

t1

/g_l;“g, fl&, 1) dedr ((x,t) € [0,1] x [0,T))

with the help of the just derived inequality as

lq(z,1)] < /t/l

) |fllo [ = r

(2,156, 7)| £ (€ 7)| dédr

g \

= 2¢(T) || flloVt
= c2(T) [|fllo V.
Obviously, the function ¢(-,t) is uniformly bounded on [0, 1] for each t and g(z,t) — 0
uniformly on [0,1] as ¢ \, 0. Looking at the difference ¢ — % , we get
ouy,

q(z,t) —

- @) <caD) [IflleVh (1) €[0,1] x &, T)).

We conclude like in part (a) ¢ € C°(Q) with ¢(z,0) = 0 for all z € [0,1]. For each t
the functions up(-,%) are continuously differentiable on [0,1] and satisfy the equation
up(0,t) = 0; after the fundamental theorem of calculus the identity

wn(a,t) = / Yeyde  (1eleT)

0

holds, and we gain applying the uniform convergence of the functions u; and %Lm" as
h (0 on [0,1] X [e, T] the equation

x

uw,t) = [a(€0de (@0 € 0.1% (0,7,
0
By the uniform convergence of g(z,t) as ¢t ™\, 0 this relationship is also true for ¢ = 0.
Differentiating with respect to x leads to u,(z,t) = q(z,t) on Q.
Part (c): In order to show the claimed inequality, we proof first that an estimate

of the type

1

[P tenlde <o) (méclosr<t<T) (21
0
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holds. For this sake we apply the product rule and obtain

1

1
/ oo (2 856, 7)| dé < / 0(2,8:6,7)| ool — €,¢ — )| de
0 0
1

+2/|ew(x,t;g,f)\ el — &t — 1) de

0

1
+ / O (2, 1:€,7)| |Y(z— €, — 7)]| e
0

=:J1+2Jy+ J3
where each integral Ji, Jy and J3 will be investigated separately.

With regard to the integral J; we employ the boundedness of the #-function

Jl S Cl(T)ﬂ'_E

Next we estimate the absolute value of the integral .J; by the sum A + B of the two
integrals

1n:+oo
_ In| n’ =&\ |z =& 1 (z = &)°
A_/ eXp<_t—T+nt—'r)2(t—7') 47r(t—7')exp_4(t_7)d§

and

b [IS Iy (e sty

< t—171 t—T1 t—171 t—171
o M=—

|z — ¢ 1 (z=9)?

20— 1) Vi) P T a—n %
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Similiar estimations as in the proof of Part (b) lead to

as it fron(- ) Soa(en 1) 24 L

1
1 lz —¢| 1 2+ (=-9)
+t—70/2(t—7') o - ©
1 lz = ¢ 1 (2-(z-9)?
+t—7'0/2(t—7') 47r(t—’r)exp At —7) “
1
SC(T)t—T
Let us write B = B; + By + B3 + Bs. We estimate B; via
1
In — ¢ n? r+&
Blg/Z t—1T exp<_t—7'+nt—7'_t—7')
o [n|>2
o=l LR
t—T)\/47rt—7' —7)
1
1 e 1—ny\ |z —¢ 1 (z —§)?
St—TO/;zz("“)exp(t—T)2<t—r> i e ®
<c(T)
1
Then we consider Bs:
1
3 lz = ¢ 1 ( —E)
BQSO/t— eXp( t—T) 2(t— 1) \Jan(t — 1) | )d£
1
_ (z+&)?
= %/ 5§|37_£|eXp_4(t_7_) d§
0

1 1 ! ¢ ($+€)2 Py (:c+§)2
S4<ﬂ>“—7/t— o (= §a=r) V= s—n) %

-~

<c

1
1 § £’
< _
_Ct—T/t—TeXp 8(t—7')d§
0
1
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For the integral B3 we obtain

¢ L ste_ st yleog 1 %

t—r t—7  t—71 t—7)20—7) Jarli—1) O 4@t —r)
0

:/ll—sexp(_((1—a:>+<1—£>>2>|x—s| L

t—7 4(t — 1) 2(t —7) \Jan(t — 1)

B3 < exp ( — d¢

0
Using the estimation

=g <|z-1+1-¢=2-(z+& (2,£€]0,1])

we calculate further
1

1-¢ (A-2)+(1-§)*2-(=+¢§) 2-(z+§)°
ng/ )Qexp(— ) - d¢

(t—r 8(t—1) NN A Ty
0 N — _
<c
C / 2
1-— 1-—-
< / Eexp_( £ de
t—7) t—7 8(t— )
0
1
<c(T .
< )t—T
At last, we proceed with the integral B4 to get
1
1 - 1 —§£)?
B4S/1+£exp(_ o+ %€ ) |z — ¢ exp_(w 3, de
t—r t—7 t—T1 t—7/2(t—7)\/An(t —7) 4(t — 1)
0
1
1+¢ Q+z)1+8y [z ¢ 1 (z —&)?
= — — d
/t—TeXp( t—1 )2(t—7') 47r(t_7)eXp 4(t — 1) £
0
/ 1 1 1
< — d
_!t—Texp( t—T)Q(t—T) 47'((75—7') €
<c(T .
< )t—T
Finally, it remains to investigate the integral J3, which we estimate by
1n=—}-c>o 2 2 2
n n x—¢& 1 (x = &)
< — — - d
J3_/ _z: (t—T)2eXp( t—T+nt—T) 47r(t_7_)exp A(t — 1) :
0 n=—oo
1

o[ 2 () e (- e )
§
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We treat the integral C in a similiar manner as the integral A above and derive without

difficulties 1

t—1

C <¢(T)

For the integral D; we obtain

n—&\2 n? x+€ x€ 1 (x — £)2
Dlé/; (t—T) eXp(_t—T+nt—T_t—T) 4ﬂ(t_7)eXp_4(t—T)d£

0 In|>2
1
= 1—-n 1 (x — &)?
SO/n=22(n+1)(15_T)2exp<t—T) 47r(t—T)exp_4(t—T)d£
1
1 e n ]
St—7/22(n+3)(e){p_f> t—T1
0 n=0
1 1 (z =€)
XeXp(_t—r) At — 1) Py — )dg
gc(T)t_lT.
Next we go on estimating
1
_ £ 29 1 (z - ¢)?
D2_O/(t—r)2eXp(_t—7-) 47r(t_7—)eXp_4(t—T)d§
:/1 £ 1 exp_(“’5)2d§
/ (t—T)21/47r(t—7') 4(t—7’)
1
1 £ £ £ £
St—T/t—TeXp(_S(t—T)> 47r(t_7-)eXp_8(t—T)d£
0 N _
<c
R ¢
SCt—r/t—TeXp_fs(t— y %
0
1
SC(T)t—T
The integral D3z will be estimated by
1
_[(a=¢? 1 w+& a€ 1 (z —¢)?
D3_/(t—r)2eXp<_t—r+t—T_t—r> 47r(t_T)eXp_4(t—r)d£
0
1
:/(1—5)2 NN (R L (T 3)
/ (t—T)21/47r(t—T) 4(t—7')



1
< ! 1-¢ (_ (1=¢° 1-& _(1—€)ZdE
[ ) o

t—1) t—7 8(t—71)/) \Jan(t— 1) 8(t—7)
<c
1
C 1-¢ (1-¢)?
St—r/t—reXp_és(t— y %
0
< o(T) —

t—1
At last we calculate for the integral D4 without difficulties

_ [a+¢)? 1 z+f % 1 (z = §)?
Da= /(t—T) Xp(_t—T_t—T_t—7'> 47r(t_7-)exp_4(t—7')d§

_1(1+§>2 CQ+n+oy 1 C(@-¢p
_0/ T p( t—T )1/47r(t_7—)eXp 4(t—T)d

1
4 1 1
SZu_TV T R

Now we turn to the asserted inequality of this lemma and obtain for a positive
parameter 7

g (T + 6,1) — ug(w,t)| <

—.
—

ITo(z+ 6,6, 7) — Tola, t;€,7)| | £ (€, 7)| dédr

~ O

IN

To(x+ 6,66, 7) = To(x, 1€, 7)| | f(€, )| dédr

+ Ty(z+ 6,8 €,7)| (€, 7)| dédr

t—

+//‘I‘$xt§, )| £ (€, 7)|dedr

t—m 0
= Il + Ig + I3.

=}
o~ d\ﬂ- o\i e
o O\H

We already know by the result of part (b) that Iy + Iz < 2¢2(T) ||f|leen? is true.
Moreover, we obtain by the mean value theorem

t—m 1

L= / / T, 56, 7)| | £ (€, 7)| deddr
0 O
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for y between = and x + §. We calculate further applying the inequality above

t—n

h<eD)lflle [

0

t
=c(T 000 1n —
A(T) [ fllocd n

1 dréd
-7

t
c(T) | fllocd—.
(@) 1] ;
Setting 7 = 63 we have for all ¢ € [0 %,T] the estimation

g (2 + 6, 8) — ug (@, 8)] < (T) || f|lootd® + 2¢2(T) || f|ood?
(e(T)T + 2¢5(T))]| f]] 000
ca(T) || £]lo

IN

whereas in the case t € [0, 9 §] the inequality

Uz (T +0,t) — ug(z,1)| <2 sup |ug(z,t)]
z€[0,1]

< 2¢5(T) || [|oot®
< 265(T) || |oo 8

holds

Equipped with the norm

[ollgang) = lolloc + sup_héila(v(-, 1), [0, 1),
te[0,T]

C*%(Q) is a Banach space. The subspace CJ°(Q) consisting of all v € C*°(Q) with
v(0,t) =v(1,t) =0 (t €10,T)) (22)
is a closed subspace of C*°(Q), hence also a Banach space. We point out that the norm

V|| var0, 7y = sup holy(v(-,t),[0,1
I¥lcgog) = sup Aéla(v(,0)[0,1)

is equivalent to the norm || - || a0 @ on C$°(Q). In the Banach space CJ°(Q) we
obtain the following
Lemma 2. For f € Ca’o(a) the heat potential (19) has the following properties:
(a) u € C°(Q) with sup,epo 1 [u(z, t) fgf(a:,T) dr| < ¢(a,T) Hchng@) 1+
(b) u|[R=0 and SUPgzel0,1] U | (z,t)] < c1(e, T) ||f|‘cg~0(§) t.
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1+ o

(c) uz € C°(Q) with uz(x,0) = 0 and SUPLeqo,1] Uz (2, )] < c2(a, T) ||f||cg*°(§) 2.

(d) ugz € C°(Q) with ugz|R = 0, ugy(,t) fo fo Cyo(z, 856, 7)f(€,7) dédT and
Supxe[o,l] |u$$(ﬂ?,t)| < C3(OJ,T) ”f”cg‘*o(Q) t2 .

(€) Uge € CF°(Q), i-e. |tge(x + 0,t) — Uge(z,1)| < ca(a, T) ||f||cg,o(§)\5‘a.

(f) u € CS"O(@) with ug(x,t) = uge(x,t) + f(x,t) on Q, ug(z,0) = f(z,0), and
Supeqo  e(z, ) < 11l o (L + cslan T E).

Proof. Parts (a) and (b): By the continuity of the imbedding Cy"°(Q) C L>(Q)
we conclude u € C°(Q) with u|R = 0 and sup,ep ) [u(z,t)| < c1(T) ||f||Ca,0(6) t. In
’ 0
view of the asserted inequality in statement (a) we estimate

t
</
0

t 1

u(z, ) - / flz,7)dr / (2,86,7) — 7(@ — &t — 7)) (€, 7) de|dr
0 0

t1l

//w;—gt—Tf(g, dng—/fxT

First we consider the inner integral of I; to obtain the estimation

<A+B

1
/ (@,:6,7) — (3 — &, — 7)) F(€,7) dE
0

with the integral

-7 -7

1
2 —
A= [ 3 en (-S4l e g - Dife ) ag
0

and the other integral

& 2

B= [ 3 e (-t g i e

-7 t—7 t—1T

p n=—00

As usual we write A = A; + Ay + A3 and, obviously, we gain the inequality

/ n?  m—g\ (t—7)% s (z-g)
O/g;exp( ) s el ds

-~

<e(T)

o(T) (t = 1) | fllgao gy
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For Ay (n=+1) and A3 (n = —1) there are no difficulties to show the same inequality,
so we omit it. Considering B = B, + By + B3 + B4 we get for the integral B,

Blz/zexp(_ n2 +na:-|—§_ z€ ) (t—71)"%

) ni>2 t—T1 t—17 t—1T 47r(t—7')4
<e(T)
_ 2
(=) exp— ST 6, 7)

<e(T)(t-7)2 [ fllceo @)
In the integral Bs we apply
|f(£a7—)‘ = ‘f(ga’r) - f(O,T)| S ga”fHC(‘J’*O(@)

and derive the inequality

£ x€ (z —&)? _
By < \/ﬁexp_t—Texp_Ll(t—T) d£||f||cg»°(Q)

£ (z+¢)?

i) P T4t —1)

Then we estimate further

S O ——__

A [ fllgoo )

1
£ £’
B Xp —
2SO/\/47T(t—T)ep 4t — )
and substitute by ¢(&) = £4/4(t — 7) to obtain

€ |11l gaoca)

“+o00
By < /§aexp—§2d§(4(t—T))%47T_%Hfuog*°(§)
—0o0

< (@, T)(t = 1) [|llgeogg).
In the integral Bs the inequality
FED = £, ~ FED < 1 - O flleangg)

leads us to

1-z+1-¢)2

1 i 1
B3Sb/(1_£) \/mexp_ 4(t—7')

A€ [|fllgeo gy

1
e L (e )
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and substitution via ¢(§) = £4/4(t — 7) + 1 yields the inequality
B3 < c(a, T)(t - T)%“f”cgvo(@-

Concerning the integral B4 no difficulties occur in proofing the same kind of esti-
mation. We summarize our results so far

< (@) |fllmogg t—1F.  (23)

1
/ (@,6:6,7) — y(w — &t — 7)) F(£,7) dE
0

For the investigation of the integral I> we use the property fjocf y(x—=&t—T1)dE =1
and extend the function f € C2°(Q) by 0 in the set Rx [0, T]\@ to obtain the extension
f € GO ® x [0, 7)) with || fll o) = 1Flloeo @xpo.y

1

+o0
/ (@ — &t —7) (€, 7) dE — / (@ — &t —7)f(a,7) dt

0

+o0

/ vz - &t —7)(f(€,7) — fla, 7)) de

— 00

<[ L \:v—s|“exp—(””'_5)2 d¢ || f|| gao
) Vimt—r1 At — ) Co* (Rx[0,1])°
— 00

Finally, substitution with ¢(§) = = + £4/4(t — 7) yields the inequality

nlR
—~
[\]
>
~—

1
[r@=t=nfE ) de~ 1(o,m)| < e D) [ Flgg o) ¢~ 7
0

Therefore we deduce
Li+ I < c(a, T) || fllgaoigy t' 2

and our assertion is proved.
Part (c): Obviously, we may apply Lemma 1 to get u, € C°(Q) and u,(z,0) =0
for all x € [0,1]. In order to proof the inequality

1te
[us(2,8)] < c2(e, T) [ fl| googy t

it suffices to convince ourselves that both inequalities

1
L= / 0a (&, 66, 7)y(z — €.t — 7) (€, 7)| de
0

< c(e,T) Hf||cg’0(§) (t—7)"=+%
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and

I = O(x,t;&, T)Ve(x — &t — T ,T)|d
) O/|(:c €. el — €.t — 7)F(€,7)| de 20

_lia
< e, T) |||l geoggy (¢ — 1) 443
hold. As usual we employ the integral

/"ioo exp(— n +n$_£)'y(a:—§,t—r)d£

t—T1 t—1T1

n=—oo

and the other integral

n= —I—oo . 2
B= / Z t—f‘eXp(_tiT—l_nfj—f_t:igT)’Y(x_g’t_T)dg

to estimate I; by I; < A+ B. Writing A as sum of integrals A = A; + Ay + A3 we get

n? z =&\ (4m) 72 1
A= /Zt_Texp( P ) i o

|n|>2

<c(a,T)

(=) enp = = el g

_l,a
< (@, T) |[fllgmogg (t = 7)++2
and remark that we can reach the same estimation for the integrals A and As.
In view of B = By + By + B3 + B4 we obtain for B; the estimation

n— ¢ n? x4+ €  x€ N\ (4m)73
/Z exp(_t—T-l_nt—T_t—T)(t—T)%

|n|>2

(M

—14e ($_£)2
(=) exp= T (e

7)
<l T) ||fllgeoig (E—7)72 2+8,
The integral B is treated by

& (4%)_% zé (a:—f)z
P t_Texp—t_TeXP—4(t_T)|f(£,7')|d§
0
1
gte (4m) =2 (@ + €)?2
So/t—r t_Texp_mdgthHcg’o(a)
1
gl—i—a (4#)_% 2
So/t—T t_TeXp_mdechg,O@)
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and substitution with (&) = £/4(t — 7) leads to

wlR

By < c(a,T) Hchng@) (t—7)72"%,

The integral B3 will be estimated in the following way:

(QA-2)+(1-9)
t—T\t—T1 4(t — 1)

2
d¢ [|fllgeo gy

(1-He(m) 2 (1-¢)
t—r i—r ¥ At—7)

A€ [|fllgeo -

Now substitution with ¢(&) = £4/4(t — 7) + 1 yields the desired estimation

wlR

Bs < c(e, T) Hf”cgvo@) (t—1)72 "=,

For the integral By (n = —1) we obtain without difficulties the same kind of esti-
mation. In order to reach the desired inequality for the integral I3 we estimate it with
the help of two integrals

—

L < [ 10, t:6,7) = 1] ra — €.t — )| |F(€,7)| dé
’ 1
T / Yal@ — &t — 1) f(€,7) de
0
::J1+J2.

We estimate J; < C' + D with the integrals

1
n=+4oo 2
n r—¢&
C’—/_ exp(—t_T+nt_T>|’Ym(ﬂ7—§at—T)|d§
p N=—
and
n=-4oo 2
_ n r+§ 2§ e
D= [ 3 ew (- ani s - P e - Gt )l de

The integral C can be treated in the usual way, so we turn at once to the integral
D = D1+ Dy + D3+ Dy. Here we restrict ourselves to the investigation of the integrals
Dy and D3, because the way to estimate the other two integrals is clear. For the integral
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Dy we obtain

1 lz — €| (4%)_% z€ (x—§)2
/2<t—7>¢t_—fexp—mexp—4(t_7) F(& )l de

/é-a [z +¢l ( )_‘5 (z + &)

oy s b — g de |f oy

< [lrereum t b @48

2t—71) Vt—r 4t — 1) d§||f||03’0(§)
0

and substitution via ¢(£) = £4/4(t — 7) — z leads to the inequality

Dy < e{on T) ||fllgeoggy (¢ = 7) " 2+5.

At last we estimate the integral D3 in the following way:

v —¢| (4m) 1 z+&  ag (z - &)
/2(t—T)\/t——'reXp(_t—7'+t—T_t—T)eXp_él(t—T)'f(g’T)‘dg
0

< [a-ge 2 EEOO o CoErD i) o

F2—(c+ ) (4n)d  (2—(z+)
SO/ 20t — 1) s Sy e sl SIHUEERIE)

Then we substitute by ¢(&) = £4/4(t — 7) — x + 2 to derive the desired inequality.

With regard to the integral J; we apply the identity f Yo(z—&,t—7)dE = 0 and
employ the extended function f € CS°(R x [0, T]) of the function f (see p. 176) to get

+oo
et ) (€, dE — / Yol@ — €t — 1) dE f(z,7)

—&t—1)|f(& 1)~ Fz,7)| d¢

o[
fe

@ — &[+e (4m) 3 (z—¢&)? N
/ 207 vier PP aq = Xl llegom;

Finally the substitution ¢(£) = £4/4(t — 7) + z yield inequality (26).
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Part (d): To derive the existence of the second derivative u,, of the heat potential
we show that the inequality

< (@, T) || fllgmog (¢ =) 3 (27)

1
/rm o, b€, 7) (€, 7) dE
0

holds. After applying the product rule we estimate this integral by four integrals:

1
/ Tpo (2, £ €,7) (€, 7) de
0

1

< / Opa(, 116, 7)y (@ — €,8 — 7) F (£, 7)]| de
0

1
+2 / 100 (2, 1€, 7)val — £, — 7) F(€,7)| de
0

1

+ / ‘(9(.’5 t'f,T) - 1)'7:1:3:('7j - f,t - T)f(f,T)‘ d&

1
/ £— €t —7) (67 de
0
+

=111 + 2 + I3+ I4.

These integrals will be investigated separately. First we estimate the integral I; by the
sum of the two integrals

_ o n? n? x—¢& 1 (x —&)?
A_/_X: (t—T)2eXp(_t—T+nt—T) 47r(t—T)eXp_4(t—7')|f(§’T)|d£

and

1o—ioo _
2= [ 3T (58 e (- e )

1 (z—¢)°
8 Are(t — 1) P At —7)

£ (& 7| de.

We turn at once to the two interesting parts of the integral B. For the one part we
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obtain

1
S 1 (z—&)”
0/ (t—7)2 exp t—T> Am(t —7) exp—4(t_7_)‘f(§’7—)|d§
1

IN

2—|—a 52
S 4 0=
/ t—7) 47r t— 7') oxp 4(t — 1) £HfHCo °@)

0
< (@, ) [|flgaocgy (¢~ 7) 3"

where we employed the substitution ¢(§) = &£4/4(t — 7). Similiar calculations lead to
1
(1-¢)? L z+§ 2§ 1 (z - §)?
[ (- s T - ) e s el de

/ (t—r t—1 t—T t—1) 4t — 1)

A 1-er,
A A (1-¢)?
S/ (t—7)? 47T(t—T)exp_4( )ngHCQO

0
< (@, 1) |fllgaogg) (t —1)F

for the other part. In the treatment of the integral I we proceed in the same way. We
have

i o-g 1 (@~ ¢y
O/t— exp - t—7>2(t—T)\/mexp_4(t—r)‘f(£’T)|d£

IN

1
24«
/ (z+¢) ! @O il geoga)

ex
20t —7)2 JAn(t—r) D A(t—7)
21
> C(a7T) HfHC(‘)"’O(Q) (t—7)>

where ¢(a, t) is a positive constant obtained via the transformation ¢(§) = £4/4(t — T)—
z. Then we estimate

1
1-¢ 1 z+&  x€ 1 |z —¢| (z —¢)”
/t—TeXp(_t—T+t—T t—T)\/mz(t—T e daTrmes LACELS
1

(1-&™W 1 2-g-¢  (2-z-¢)
S/ t—7 ar(—r) 20t—7) YT 4(t—1)

0

A€ [|fllceo g

e 1 (@2-a-¢?
t—T 4(t —T) P 4@t — )

< (o, T) Hchng@) (t—m)5

d§ ||f||c§¢»0(§)

o\H
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using the substitution ¢(§) = €+/4(t — T) + x — 2. Also, by the integral I35 we restrict
ourselves to the following two cases. First we calculate

O/exp ( a t:igT) 47r(1t —T) <2(t 1— T) " Zl(éif'))2> exp = El:l(:t_—i)') &)l

sO/ (e ) e e e

t—r t—71) A4t —171)2 4t — 1)

[ 1 (ror, @ty (z + &)
0/ 47T(t—7')(2(t—7') + 4(t — 7)2 )exp At —T) §||f||ca0
C(a T)Hf”c" O(Q)( T)%_l

where we used the substitution ¢(§) = £41/4(t — 7) — x. Next we estimate

O/exp(— t—lT * fjf B taigT B Elaét_—i)')>
L (am)
(t—7)

N[

1 (z —&)*
(2(1& —7) + 4(t — T)z)lf(gﬂ'” d§

1 —O" (@  (2-z-§)

/\/47T(t—7' 2i—1) 4t —1) ) e i—n  “llezo@)
(2—36—5)“ (2 -z &> 2-z-¢)?

/s/47r(t—7' 2t—7) | 4@t —r) )exp = “Wloem

< c(a,T) ||f‘|cg:0(Q) (t—m)zt

employing the substitution ¢(&) = £/4(t —7) + 2 — .
At last, it remains to look at the integral I,. Here we apply the identity [ _Jr:: Yoz (T—

€,t —7)d¢ = 0 and use the extension f of the function f (see p. 176) to get

1

I = / o ( — €t — 7) F(€,7) dé

0

400

_ /%m(x—f t—7)(f(&7) = flz,7)) dg

IN

/ as(@ — &t — )| |F(E,7) — f(a,7)| de
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|£U—€|°‘ (z —&)ot? (z —&)?
/,/715_7 20—r) 4(t—r)2>eXp_4(t—T)

Substituting with ¢(£) = = + £1/4(t — 7) yields the asserted inequality. Now we may
conclude that the function

dg ||f||cgv0(§)

:ct):/t/lf‘mxtﬁ, Vf(&,7)dEdT

is well-defined and satisfies the inequality

t)\s/t

(0T | fllego@) | Gt nFT

0
=c(a,T) Hf||cgv°(§)t%-

1
/Fm o, t,€,7) f(€,7) dE|dr
0

Hence the function p(-,t) is uniformly bounded on [0, 1] for each ¢ and p(z,t) — 0
uniformly on [0,1] as ¢ \, 0. C -

0? o
p(e,t) = 554 @,t)| S oo, T) [[fllggoh? (@) €[0,1] x [, T)).

We conclude similiarly as in Lemma 1/Part (a), p € C°(Q) with p(x,0) = 0 for all
€ [0,1]. Moreover, we have p|R = 0. Since the functions %i(-,t) are continuously

differentiable on [0, 1] for each ¢, we may apply the fundamental theorem of calculus to
get

0 0 82
@) = SO0 = [ SEHEnde (@) €[0,1]x [6,T]).
0
Obviously, we gain further
0 0 f
@t =500 = [pEend (@0 el1x01)
0

as h ™ 0, and this equation is also true for { = 0. Differentiating with respect to z
yields ug,(z,t) = p(z,t) for all (z,t) € Q.
Part (e): Assuming ¢ € [0, %] we calculate by virtue of Part (d)

‘um(m +0,t) — um(x,t)‘ <2 51[1p | |Ugs (z,1)]
z€[0,1

< 2c3(e, T) || fll goo gy 12

< 2¢3(0, T) || fll g0y
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and the claimed inequality is valid.

In the case t € (0%, T] we estimate with the help of three integrals

|t (2 + 6,1) = Uga (2, 1)

Loo(@ + 6,46, 7) = Tau(z, 1€, 7)) f (€, 7) dédr

t 1
+ { O/ Tuo(z 4+ 6,66, 7) f (€, 7) dédr

t—02

t
-
t—620
=: Il + I2 + I3.

\»—l

Cyo(z, t;&, 1) f(E,7) dEdT

Of course, we deduce a suitable inequality for I + I3
I + I < 260, T) | ll oo gy (6%)3

So it remains to consider the integral I;. Applying the mean value theorem we obtain
for the inner integral of Iy

1

/ Toaa(y, 6 €,7) f(€,7) dES

0

where y lies between z and x 4 §. The product rule and further estimations lead to the
investigation of integrals which have the form

1
al
A= [ |2 ten S -6 t-nrErlie  (ri=3k1eN)
0
We remark that each integral may be estimated by
At < oo, T) ||f | gy (E = 7

using simliar calculations as in Part (d). Hence we know

)"Ets

t—52
I < e, D) ||l gsogg) /(t_T)—%+%dT(s
0
2 —ita t—§2
= (@, ) I fllggoq (==t -D "7, )d

2 4o —1ta

2
< c(a,T)m Hchng@)(s
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and our assertion is proved.
Part (f): We conclude with the help of the results of Part (a) and the inequalities

‘u(x,t) —u(z,0) f(z, 0)‘

t
t t
O/fa:TdT O/ a:O))d
t

a 1
< o0, T) |fllgoytt + 7 [ 1£(o.0) = flw.0)]dr

0

e+-||—l
~ | =

—0

as t N\, 0, uniformly for all z € [0, 1], and this yields the property us(z,0) = f(z,0).
Next we consider the estimation
1

[r@ et nrEe-wd- s

0

<

(C(z,t;6,t —h) —v(z — & 1)) f(&,t — h) d€

o —

1

+‘/Ww—&MN&#Jw%—f@J—M

+ [ f(z,t=h) = f(=,1)]

= I1 + I2 + I3.
Applying inequalities (23) and (24) for 7 =t — h we get
I + 1 < 2¢(a, T) Hf||cg‘v0(§) h?,

and from the uniform continuity of the function f on [0,1] X [e,T] we deduce the
relationship

1
/F(w,t;ﬁ,t— h)f(§,t—h)dE — f(x,t) as h \ 0 uniformly on [0, 1] x [e, T].
0

With regard to equality (18) we notice that
a;th (z,t) — g%; (z,t) + f(z,1) as h 0 uniformly on [0, 1] x [e, T'].
Hence u;(x,t) exists for all (z,t) € [0,1] x (0,T]. We include the case t = 0 to yield
ug (2, t) = Ugg (2, ) + f(2,1) ((z,t) € Q).
The properties u; € C&°(Q) and SUPgepo,1] Ut (2, 1)| < ||f||Cg,o(§)(1+03(a, T)t?) follow
now from the identity above in connection with Part (d)



186 W. Kohl

3. The Barbashin operator

In this section we state sufficient conditions under which both (4) and (5) are continuous
operator functions mapping Cg' ’O(@) into itself and estimate their norm.

Lemma 3. Suppose that ¢ € C*°(Q). Then the corresponding multiplication op-
erator (4) is bounded in C3°(Q) and ||C|| < llellgano(g)-

Proof. From the definition of C§"°(Q) and the hypothesis on the function ¢ we
conclude directly that Cu € C°(Q) for u € C5°(Q) and that the function Cu satisfies
the boundary condition (22). From the estimates

|e(z, tyu(z, t) — cly, t)u(y, t)|
< ez, tyu(e, t) — c(z, huly, t)| + |c(z, t)uly, t) — cly, t)u(y, )|
< ez, t)] Ju(z, t) — u(y, t)| + |e(z,t) — c(y, )] July, )]
< |lellochbla (u(-,1),[0,1]) | = y|* + hole (c(-, t), [0,1]) |z — y|*|Jul|oo
< hila (u(, 1), 10,11) |2 = 1121l

it follows that Cu € Cg"o(é) and ||C]| < |\C||Ca,0(§) L

Lemma 4. Suppose that the function k : [0,1] x [0,1] = R has the following prop-
erties:

(a) k(-,x) is measurable for each x € [0,1].

(b) k(s,-) € C%([0,1]) uniformly for all s € [0,1], i.e. there exists a constant § € R
with
k(s,2) = k(s,9)| < qle —y|* (s €][0,1]). (28)

(c) k(s,0)=k(s,1) =0 for all s € [0,1].

Then the corresponding partial integral operator (5) is bounded in C5°(Q) with || K|| <

q
417 where

g = sup holy(k(s,-),[0,1]). (29)
s€[0,1]

Proof. The function F(-,z,t) = k(-,z)u(-,t) is measurable and bounded on the
interval [0, 1] for fixed (z,t) € [0,1] x [0, T, while the function F(s,-,-) = k(s,-)u(s,")
is continuous on @ for fixed s € [0, 1]. Since

[F(s,2,t) < qllulle  ((s,2,8) €[0,1] x [0,1] x [0,T]),

we conclude that the integral over F(-,z,t) depe@s continuously on the parameters
x € [0,1] and ¢ € [0, T]; this means that Ku € C°(Q). It is clear that the function Ku
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fulfills the boundary condition (22). Finally, from

|Ku(z,t) — Ku(y,t)| = /[k(s,x) —k(s,y)u(s,t)ds
< [ 1k(s.2) = k(s,)!lus,1) ~ (0,0 ds

< sup hdoly(k(s,-),[0,1]) |z — y|°‘/ lu(s,t) —u(0,t)|ds
s€[0,1]

1
<qlz—-yl* / s holy(u(-,t),[0,1]) ds
0
we get
|Ku(z,t) — Ku(y,t)|
|z —yl*

1
< qholy(u(-,t),]0,1]) /
0

hence
holo(Ku(-,t),[0,1]) < QLH héla (u(- 1), [0,1]).

Passing to the supremum in the interval [0, T] leads to ||Ku||ca,0(§) <L ||U||Ca,0(§)
0 0
as claimed

4. The linear problem

Now we turn from the parabolic differential equation (6) to the equivalent operator
equation (8). We calculate the spectral radius of the operator L=1(C + K) and give
existence and uniqueness results for equation (6).

First of all, we need the following
Lemma 5. For f € Cg"o(@), the following two statements are equivalent:

(A) u € C°Q) has the properties u, € C°(Q), wus,uzz € C°(Q) and solves the
boundary value problem

(30)

Lu=(C+K)u+f inQ
u=0>0 on R.

(B) u e C5°(Q) satisfies the linear operator equation (8).

Proof. Let u be as in statement (A). We fix (z,f) € Q and observe that for 0 <
to < t the vector field F : [0,1] x [0,9] — R? defined by

F(&,7) = (D(@, ;€ muel€, 7) — Tela, &, mu(§, 7), —D(, 1€, T)u(é, 7))
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is continuous on [0, 1] x [0, o] and continuously differentiable on (0,1) x (0,¢p) with
div F(€,7) = —T(2, ;& 7) Lu(§, 7) — u(é, 7) [Cee (2, 456, 7) + T (2,5, 7)]
= (2, ¢ 7) [(C+ K)u(€,7) + [ (€ 7)]-

So the divergence of the vector field F' is continuous and bounded on (0,1) x (0, ¢p) and
we may apply the Gauss theorem to obtain

/ / T(a,1:6,7)[(C + K)ule,r) + f(€, )| dédr = / D, 15 €, to)u(e, to) de.

Letting to — t we get the identity
t1l
/ / P(a,t6,7)[(C + K)u(e,r) + f(€,7)] dédr = u(z,t)  (@,8)€Q).  (31)
00

The function on the left-hand side of (31) is continuous on @ by Lemma 1 and we have
u € C°(Q), so the above equation holds for all (z,t) € Q. Of course, u € C3°(Q) and
[I-L7Y(C+ K)jlu=L"1f.

Conversely, let u be as in (B). Since f € C3'°(Q), the same is true for the function
(C + K)u + f. Moreover, from the identity L='[(C + K)u + f] = v and from Lemmas
1 and 2 it follows that the function u has the regularity properties stated in (A) and
satisfies (30) il

Lemma 6. The spectral radius r(A) of the operator A= L~Y(C +K) : C3°(Q) —
C3P(Q) is zero.

Proof. We use the classical Gel'fand formula
r(A) = VA",

First of all, the inequalities ||Cv||oo < ||€]|oo ||V]|co and |[|[Kv||eo < ¢ ||v]|0o, With g as in

(29), combined with property (a) in Lemma 1, lead to the estimate
[ Av(z, )| < ter ([lefloo + ) [10]]oo-

By induction, we get then

lim
n—,oo

[A"v(2, )| < %7: [e1 ([lelloc + D] [[0]lec (n €N). (32)

Furthermore, for arbitrary z, z € [0, 1] we have, by the mean value theorem,
|A"v(z,t) — A™v(z,t)|
|z —z|*

< |A"v(z,t) — A™v(z,1)|

|z — 2|

t 1
_ / T, (y, 1€, 7)(C + K) A" 1w (€, 7) dédr
00

I
~

(y)
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for some y between x and z. Applying inequalities (20) and (32) we obtain

t1l
st/lu@ma
)

t—T (n—1)!

1
7)| |c(£,T)\IA"‘lfv(f,T)\+q/|A"—1v(s,T)\ds] d¢ dr
0

n—1

e ([lelloo + )] H[v]loo dT

IN
S
Y
8
+
S

dr | [a([lelloo + @)]"|v]]o

¢
/ ,rn—l
Vt—1(n—-1)!
0
with ¢ = max{cy, ca}. The identity

t Fn—1 1 on .
/\/t—(n—l) dr 1.3.5...(2n_1)t * (33)

leads to

/J%_. 3147 | [e(lelloo + )" o]l

2n
<
~1-3-5---(2n—1)
_ 2aT(lelloe + )"

"2 a((lelloo + @)]"[[v]loo

1
e L[l

Consequently, we obtain the estimate

n 2aT([|clloo + D]" -2
|A U||cg 0@ = nl "> ||U||Cgv0(§) (n € N).

From this estimate we deduce

w1
YA < 2aT(||¢||oo +q) VT2 E_)O (n — o0)

as claimed B
Building on the results of the previous sections we are now able to prove the following

Theorem 1. The inhomogeneous linear equation (8) has for each f € Cg"o(é) a
unique solution u € Cg"o(é). This solution can be represented as infinite series

u—Z[L (C+ K)™(L7Lf) (34)

and depends continuously on the data f € C’S"O(Q).

Proof. The operator A = L=1(C+K) is a continuous endomorphism of the Banach
space Cg ’O(Q). From Lemma 6 we know that the Neumann series Y ., A™ converges
to the inverse of the operator I — A. Consequently, for f € Cy ’O(Q) the inhomogeneous
linear equation (8) has a unique solution u = (I—A)~'(L~1f) € C3°(Q) which depends
continuously on f and has the representation (34)
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From the proof of Lemma 6 we see that the norm of (I — A)~! may be estimated
by

exp [2aT([|c]|oc + @)] 1

I-A)Y <1+ A <1+
[I( )M <14+ ) A7) < T

n=1

Next we consider the Dirichlet problem for the linear equation (8) with prescribed
boundary function ¢, which belongs to the set

CY(R) = {p € C°(R)| o(-,0) € C([0,1]) and ¢(0,), ¢(1,) € ([0, T]) }.

Theorem 2. Let f € C3°(Q) and ¢ € C*(R). Then the problem

=(C+K)u+f in Q

u(z,0) = ¢(x,0) (z €[0,1]) (35)
u(0,t) = (0,1) (te (0,7))
u(1,t) = ¢(1,1) (te(0,7))

has a unique solution u € C°(Q) with u, € C°(Q) and us, uze € C°(Q).

Proof. If u; and us are two solutions of problem (35), we see that the function
u = u1 — ug solves problem (30), and hence u =0 il

As usual, we obtain a representation of a solution u of problem (35) if we add the
solution of problem (30) to the solution of the homogeneous heat equation Lu = 0 with
u|R = ¢, which we denote by S¢, with

Sﬂ%ﬂ=/f@£&®w&®%
° (36)

t
+ | Te(z,t;0,7)p(0, 7) dT—/Fg(:E,t;l,T)(p(l,T) dr.
0

o

So we have explicitly

Z[L (C + K™ (L7 f)(z, t) + So(z,t).
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5. The nonlinear problem

In the nonlinear case we first give sufficient conditions under which the nonlinear op-
erator K H, with K given by (5) and H given by (10), acts on C"°(Q) and satisfies a
Lipschitz condition in order to apply a classical fixed point principle.

Lemma 7. Suppose that the function k : [0,1] x [0,1] — R satisfies the three
conditions (a) - (c) stated in Lemma 4. Moreover, let h : Q x R — R be a continuous
function satisfying a Lipschitz condition

|h(z,t,u) — h(z,t,v)| < L|u—v|. (37)
Then the nonlinear operator KH acts on Cy ’0(@) with

||KHu — KHvl|oo < qL||u—v||oo }

||KHu — KHU||Cg,o(§) < gqL|lu— ”HC{)’*O@)

where q is given by (29).

Proof. It is easy to see that the function K Hu is continuous if u is continuous. Fur-
thermore, the function K Hu satisfies the boundary condition K Hu(0,t) = K Hu(1,t) =
0 for all ¢t € [0,T]. From the estimate

|KHu(z,t) — KHu(y,1) / (s,y)| |h(s,t,u(s,t))|ds

0
<qlz—y|* max_[h(s,t,u(s,?))]
(s,t)EQ

we see that the operator K H maps C°(Q) into C3°(Q), and hence KH : C°(Q) —
C3°(Q). For functions u,v € CF°(Q) we have

(KHu— KHv)(z,t) — (KHu — KHv)(y,1)|

|z —yl@

P—E 0/ Ik(s,2) — k(s, 9)| | (s, 1, u(s, 1) — h(s, t, u(s, 1)) | ds

< gL |Ju = vl|oo

< gL |Ju = vl|geo -

From this the assertion follows

In view of the nonlinear operator equation (12) with imposed boundary conditions
we define the function spaces

C3(10.1)) = {g € C*([0,1))| 9(0) = 9(1) = 0}
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and

Cy°’(Q) = {u‘ u,uz; € C°(Q) and u(0,t) = u(1,t) =0 for all t € [O,T]}.
Equipped with the norms

lgllczqo,ay = sup |g'(x)]  and  |luf|grog = sup |ug(z, )],
A RIS

respectively, both function spaces are Banach spaces, and we can state the following

Lemma 8. For g € C}([0,1]), the boundary operator S with
1
(S9)@.6) = [ Do, 56, 0)9(6) dt
0

is a continuous operator from CZ([0,1]) into Cy°(Q) and ||S|| = 1.

Proof. The function r» = Sg satisfies the homogenuous heat equation Lr(z,t) = 0
for all (z,t) € @ with the boundary conditions r(z,0) = g(z) for all z € [0,1] and
r(0,t) = r(1,t) = 0 for all ¢ € [0, T]. If we extend g to the odd function § on the interval
[—1,1] and continue § to the periodic function § with period 2, we remark that the

function fj;o v(x —&,t)g(&) d€ is also a solution of the Dirichlet problem above. Hence
a unicity argument yields

+o00
T@JF=/7@—&ﬂﬂ®% (1) € Q).

—00

Obviously, g and _g' are bounded and continuous functions on the whole real line. First
we have r € C°(Q). Considering the difference quotients

r(x+ h,t) — r(z,t)

I, = .
(7 7
= /7(x+h—g,t)g(g) dé — /v(x—s,t)g(é) dg
+o0
B g€+z+h)—g(E+2)
= / (€ 1) P dé

we notice that the integrand is dominated by

g€+ +h)— g€+
h

&) <yEn)-swli| (€ eR).

~ 7

eLlr(R)
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Now Lebesgue’s Dominated Convergence Theorem insures that

400 —+o0
In > / (€, 003 (€ + ) dE = / Y@ — & 0)§(€) de
as h — 0. Thus
+oo

ro (1) = / V@ —E07€)de  and s e COQ)

hold. Moreover, from the inequality
+00
sup |ra(z, t)] < / (@ — £,8) de sup|§'(€)| = sup |g'(€)|
(z,t)€Q . £ER ¢elo,1]

we deduce ||S|| < 1. For the function g(z) = sinmz € C([0,1]) we have explicitly
Sglz,t) = exp—rtsinme € CH@)  and  [|Sgllsg) = I9/lcaqony =

so ||S|| cannot be less than 1 1

Before we turn to the nonlinear operator equation (12), we remark that equations (9)
and (12) are equivalent. Even more is true, namely (9)/(2) is equivalent to a nonlinear
operator equation with an imposed boundary operator in the sense of the following

Lemma 9. For f € C’g"o(@) and g € C§([0,1]), the following two statements are
equivalent:

(A) u € C%Q) has the properties u, € C°(Q), ut, uze € C°(Q) and solves the
boundary value problem

Lu=(C+KH)u+ f in Q
u(z,0) = g(x) (z €[0,1]) (38)
u(0,t) = u(l,t) =0 (t € [0,T)).

(B) ue CS"O(Q) satisfies the nonlinear operator equation

u— L Y C+KH)u=L"'f+8g.

Proof. It follows the pattern of the proof of Lemma 5 with only minor modifica-
tions. Hence it is omitted B
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Theorem 3. The nonlinear operator B : Co°(Q) — 08"0(_) defined by Bu =
Y C+KH)u+ L=t f+Sg has precisely one fized point w € Ca (Q). This fived point
may be obtained as limit of the successive approrimations v, = B™vy with arbitrary

Vo € Cg’o(é).

Proof. First of all, the inequalities

1C(u = )] < [l¢floo [t = v[loo }
|KHu — KHvl|oo < qL|[u—v|
with ¢ given by (29) and L by (37), lead to
|Bu(z,t) — Bo(x,t)| = |[L7'C(u —v)(z,t) + L' K(Hu — Hv)(z,t)
< |L7'C(u —v)(z,t)| + [L7 'K (Hu — Hv)(z,t)|
< tey (|lelloo + L) |t — v|oo-
By induction, the inequality

t
Bru(z,t) — Bo(,1)] < Slen(lelloo + gL fu — ol

may be proved for arbitrary n € N. In order to estimate the norm ||B"u — B™v|| (@)
(0]
we fix z,z € [0,1] and get, by the mean value theorem,

|(B™u — B™)(z,t) — (B"u — B"v)(2,1)|

// (z,t;&,71) I‘(z,t;&,T)] [(C’—i—KH)B"_lu — (C—i—KH)B"_lv] (&, 1) dedr

lz— 2 To(y,t;6,7)[(C+ KH)B" 'u— (C + KH)B" | (¢, 7) dédr
|/ )[( ) ( VB 0] (€, 7)

=:J(y)

for some y between x and z. Furthermore,

Jy) < |z — 2| / / Tuly,t:6,7)||(C + KH)B" 'u— (C + KH)B" 1) (¢, 7)| dedr
t1

<lo= o [ [ aly, 560 (el + L) [(B™ M= B o) 6, )] ddr

00
¢
|a/02(||0||oo+qL) T Hea(llelloo + aD)]"Hlu = 0l
Vi—T (n—1)!
0

t

o 1 7n—1 "

< |z — 2| — (n—1)!dT [a(llel]oo + g L)]™[|u — v[|oo
0
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with @ = max {c, co}. Using again identity (33) we obtain

2"t" % [a(||c||oo + L)]"
1-3:5---(2n— 1)

hola((B"u — B™v)(+,t)) <

[ = v[co-

This implies that ||B"u — B”U||Cg,o(§) < dnl|lu— ’U||Cg,o(§) where

2" T % [a(||¢l|oo + ¢L)]"

d, =
1-3-5---(2n— 1)

Obviously, we can choose ng € N such that

dnr _ 2Ta(|lloo+aL) _ 3
dn on + 1 4’

say, for n > ng. Consequently, the series )~ d, converges. By Weissinger’s fixed
point theorem of [7], the operator B has a unique fixed point w € Cy' ’O(@), which can
be obtained by the successive approximation v, 11 = Bvy,, with vy € Cy ’0(@) arbitrary.
Moreover, the error estimate ||w — 'Un||ca '@ < || Bug — 'U0||Ca,0(§) > re,, di is true

(0]

As a corollary of Theorem 3, we get the followmg

Theorem 4. Let f € C3°(Q) and ¢ € C°(R). Then the problem

Lu=(C+KH)u+ f in Q } (39)

U= on R

has a at least one solution u € C°(Q) such that ug, us, Uze € C°(Q). One solution can
be represented in the form

1
u(a:t-wact—i—/I‘xt&O (&,0) d¢
0

¢ ¢
+/I‘£(x,t;0,r)<p(0,7') dT—/Fg(.’IZ,t;l,T)(p(l,T) dr
0 0

where w € C{;"O(@) 1 the unique fixed point of the nonlinear operator Bu = L= YC +
KH)yu+ L71f.

Theorem 5. The solution of the boundary value problem (38) depends continuously
on the functions f € C3°(Q) and g € C([0,1]).

Proof. Given f,h € C3°(Q) and g,j € C([0,1]), denote by v,w € CF°(Q) the
unique solutions of the operator equations
v=L""(C+KH)v+L 'f+Sg
w=L"YC+ KH)w+ L 'h+8j,
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respectively. Differencing the derivatives with respect to  and estimating yields

Ve (1) — wa (2, )]

< |89 = Sjllcrog)

00

< e(T)VE||f — thg’O(@) +1lg = llci(on

[

We apply the mean value theorem

[ [ vt ) [[00 = Cwl + [KHo ~ KHu| + | = hl] (6, 7) dedr

clloo +qL) 581[11) | (v —w)(&, )| dT.

’

(v —w)(&, )| = [(v—w)(&t) — (v —w)(0,8)] = |(v

T = wg;)(Z, t)| |§|
for z € (0,&), to obtain the relationship
sup [(v—w)(&1)| < sup |vg(z,t) — we(,1)] := o(t).
£elo,1] z€[0,1]

Employing this inequality and passing to the supremum over the interval [0, 1] yields

t

o(t) < ca(MWVEf = hll oo gy + 19 = dllozo, +

(llelloo + qL)(T) dr.
0

By virtue of the generalized Gronwall’s inequality (see, e.g., [2: p. 304/ Lemma 17.7.1])
the estimate

@(t) < & (T) (ex(MVAIS = Bllggo g + 19 = dllesqo))

holds. Hence we get the inequality

v — ’w”c;vo@) < C(T)(”f - h”cg’o@) +llg = Jllerqon )
with a certain constant é(7"). This concludes the proof B

(40)

To illustrate the existence and uniqueness results of the previous section, let us
consider a very simple example. Let w : [0, 1] — R be defined by

(@) = ¢ for 0
@ —-2)* for 3
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Put X
k(s,z) = k(s)w(zx)
h(z,t,u) = h(z,t)arctanu
f(.’L‘,t) =wlr f(t)
g(z) =sinnz

where & : (0,1) — R is measureable and bounded, while : Q — R and f : [0,7] — R
are continuous. Obviously, k satisfies the hypotheses of Lemma 4 with ¢ = ||k|| Lo ((0,1))-
Moreover, h satisfies (37) with L = max{|h(z,t)| : (z,t) € Q}, f € CI°(Q) with
||f||03,0@) = ||f|\00([0’T]) and g € C§([0,1]). As multiplicator we may choose, for

example, c(x,t) = z%p(t) with p € C°([0, T]; from Lemma 3 we know then that ||C|| <
2|p||co(o,r7)- For this choice of data, the operator C' + K H has the form

1
(C+ KH)u(z,t) = z%u(z,t) / h(s,t) arctanu(s,t) ds. (41)
0

From Theorem 3 we conclude that the sequence of successive approximations

vo(z,t) =0

Vpi1(z,t) = L7HC + KH)v,(z,t) + LY f(z,t) + Sg(z, t)

has a well-defined limit w € CJ°(Q). If f(t) = 0 and g = 0, we have of course
u(z,t) = 0, and this is the only solution of problem (38), by Lemma 9 and Theorem 3.

On the other hand, if f(¢) # 0 and g # 0, from Theorem 5 we may conclude not only
that u(z,t) = w(z,t) is the unique solution of problem (38), but also that this solution

depends continuously on f. In particular, u(z,t) — 0 uniformly on @ if ||f||cc — 0 and
gllc2 0,17y = O

6. The extension of the operator L~

This last section is concerned with some generalizations of the preceding results. In
order to solve the inhomogenuous heat equation with zero boundary values, we chose
for technical reasons the heat source f from the Holder space Cg ’O(Q). On this space
the operator L~! has particularly nice properties. Actually, one can take the larger
Hélder space C*%(Q) as underlying Banach space of the boundary value problem (7).

Together with the solution operator S of the homogenuous heat equation with C-
boundary values, where S¢ is given by (36), with the projection operator P,

Pf(xat) :f(O,t)-l—a:(f(l,t)—f(O,t)), (42)
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and with the Volterra operator V,

VF(m.t) = / Fz, ) dr, (43)

we can represent the unique solution of the boundary value problem (7) with the help
of the extended operator L1

L'=L"'I-P)+(I-S)VP (44)

e

in the form
u=L;'f+ So.
In fact, we have u,u, € C°(Q), and direct calculations yield u|R = ¢ and Lu = f.
According to the plan in the introduction we formulate now sufficient conditions

that the operators C and K H act continuously on C*%(Q).

Lemma 10. Suppose that ¢ € C*%(Q). Then the corresponding multiplication
operator (4) is bounded in C*°(Q) and ||C|| < Hc||0a,o@).

Lemma 11. Suppose that the function k : [0,1] x [0,1] — R has the following
properties:
(a) k(z,-) € L1([0,1]) for each x € [0,1].

(b) k(-,s) € C*([0,1]) for almost every s € [0,1], such that there erists a function
q € L'([0,1]) with the property

|k(z,s) — k(y,s)| <q(s) |z —y|* for a.e. s €[0,1]. (45)
Then the corresponding partial integral operator (5) is bounded in C*°(Q) with
K| < llgllzrqoay + sup [|k(z,-)|[L1(0,1)-

z€[0,1]

Lemma 12. Suppose that the function k : [0,1] x [0,1] — R satisfies conditions (a)
and (b) stated in Lemma 11. Moreover, let h: Q@ xR — R be a continuous function sat-
isfying the Lipschitz condition (37). Then the nonlinear operator KH acts on C*°%(Q)
with

|IKHu — KHv||oo < L sup 1k (2, )l o, 1w — vl
z€[0,1

K Hu = KHllgangy < L(|lallo oy + 599 (1K) llpiqo) 1u= vl

We omit the proofs of these three lemmata, because their proofs follow the pattern
of that given in Lemma 3, 4 and 7 with only minor modifications.

After modifying the proof of Lemma 5 we are able to establish the next result.
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Lemma 13. For f € C*%(Q) and ¢ € C1(R), the following two statements are
equivalent:

(A) u € C%Q) has the properties u, € C°(Q) and ug, uze € C°(Q) and solves the
boundary value problem

Lu=(C+KH)u+ f in Q } (46)

ulR=¢ on R
(B) u € C*%(Q) satisfies the nonlinear operator equation

u— LY (C+ KH)u=L'f+Sg.
Our main existence and uniqueness result reads as follows.

Theorem 6. For f € C*°(Q) and initial data ¢ € C'(R) the boundary value
problem
Lu=(C+KH)u+ f
ulR=¢
possesses a unique solution.
Proof. By Lemma 13 it suffices to show that the integral equation admits a unique
solution. For a < b the set

B(la, b)) = {v: [0,1] x [a,5] = R| 0,05 € C°([0,1] x [a,1]) }

becomes together with the norm

ey =~ sup  Jo(z,t)[+  sup  |ug(z,1)]

(z,t)€[0,1] X [a,b] (z,t)€[0,1] % [a,b]

a Banach space. The nonlinear operator Au = L;'(C + KH)u + L;'f + S¢ maps
B([0,n]) into B([0,7n)]) for 0 < n < T. Employing Lemma 1 we know that for v € B([0, 7))
the estimation

[L™ ]

0. < ¢(T) (n + v/n)||v]

holds. Actually, the same kind of estimation is valid for the operator L. Applying this
and the assumptions on the continuity of the operator C'+ K H we obtain the inequality

[0,m]

||Au — Av|

0. < €0+ v/n)l[u = vl[fo,n)

with a constant ¢(T, ||C]], ||K ||, L). Choosing n € N such that the estimation
E(n+ i) <1 (46)

holds for n = L, the operator A is a contraction of B([0,7]) into B([0,7]), and ac-
cording to the Banach fixed point theorem the operator A possesses a unique fixed
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point wy € B([0,n]). Assuming that the integral equation possesses a unique solution
wy € B([0,kn)]) for £ < n — 1 we introduce the function r : [0, 1] x [kn, (k + 1)n] = R,
1

r(a,t) = / T(z, t;€,0)p(€, 0) dé

0
kn1

+ //I‘(a:,t;&,T)(I— P) [(C’+KH)wk(§,7') + f(&,T)} dédr

kn
+/P[(C-i—KH)wk(a:,T)—i-f(x,T)] dr
Okn T
—/I‘g(:c,t;O,T) /(C—i—KH)wk(O,s)+f(0,s)ds—g0(0,7) dr

k’n T
+ /Fg(m,t; 1,7) (/(C—i—KH)wk(l,s) + f(1,8)ds — go(l,r)) dr.
0 0
Next we consider the operator Ay,

Av(z,t) = r(z,t) + //F(a:, t;&,7)(I — P) [(C’ + KH)v(¢,7)+ f({,T)] dédr

knO

+ /P[(C + KH)o(z,7) + f(z,7)] dr

kn
t T
— /Fg(x,t; 0,7) /(C + KH)v(0,s)+ f(0,s)ds — ¢(0,7) | dT
kn kn

dr.

)
/
¢ T \
+ /Fg(:c,t; 1,7) /(c T+ KH)o(1,8) + £(1,8)ds — p(1,7)
kn kn /
Of course, A; maps B([kn, (k + 1)n]) into B([kn, (k + 1)n]) and the estimate

[Arw = A10|[ [, (k+1)m) < €M+ VM)l [w = 0l fn, (k+1)m)
holds. From (46), we conclude that A; is a contraction and hence possesses a unique
fixed point u € B([kn, (k+1)n]). Since the fixed point of A; matches continuously with
wg(z, kn) and a%wk (z,kn), we see that the function wgy1,
wesr (1) = {wk(w,t) if (z,t) € [0,1] x [0, kn]
’ u(z,t) if (z,t) € [0,1] x [kn, (k+ 1)n]

is the unique solution of the integral equation in B([0, (k+1)n]). Applying this argument
we can construct inductively the unique solution of the integral equation in B([0,7])
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