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Abstract: Cultural questions have attended arithmetic since it
began to develop in ancient times. They include possible differ-
ences between integers and non-integral numbers and in operat-
ing with them, religious and mystical uses and interpretations,
the roles of zero, extensions to infinite numbers, and represent-
ing numbers by numerals in ways which aid calculation (in-
cluding the use of algebra). The selection of historical examples
given here concentrates on aspects of numbers which are not well
known but which could be used in teaching, either at school or
undergraduate level. Comments on educational utility are given,
mostly at the end of each section; the word “student” refers to
learners of all ages.

Kurzreferat: Seit ihrer Entwicklung in der Antike wurde die
Arithmetik von kulturellen Fragen begleitet. Sie bezogen sich
auf mogliche Unterschiede zwischen ganzen und nicht-ganzen
Zahlen und Operationen mit diesen, religiose und mystische
Gebréuche und Interpretationen, die Rolle der Null, Erweiterun-
gen auf unendliche Zahlen sowie auf die Darstellung von Zahlen
durch Zahlsymbole, die das Rechnen erleichtern (inkl. der Alge-
bra). Die hier getroffene Auswahl historischer Beispiele umfaf3t
Aspekte von Zahlen, die weniger bekannt sind, aber im Un-
terricht an Schulen und Hochschulen bis zum ersten Abschluf3
behandelt werden konnen. Didaktische Hinweise werden, meist
am Ende eines Kapitels, gegeben. Der Begriff “student” bezieht
sich auf Lernende aller Altersstufen.

ZDM-Classification: A30, F10

1. Ancient number things
The origins of numbers and their arithmetic cannot be
known for certain, but it is likely that both arose in all
cultures from counting and commercial exchange. In such
contexts numbers can be regarded philosophically merely
as marking stages in counting. Ancient texts, especially
Greek and Chinese, give the impression that (say) 3 is
about three things of some kind, even if no particular kind
is mentioned in general explanations. The word “calculus”
in Latin means “pebble”, hinting at the role that tokens had
played in the development of counting, and maybe even
of writing itself (Schmandt-Besserat 1992).

Fractions and ratios raise further conceptual difficulties;
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for a rational number seems to be a different sort of thing
from an integer, even though the rules for adding and
subtracting are similar (Benoit and others 1992). And ir-
rational numbers are even more “risky” (“lawless” would
be a better translation for the Greek word “alogos” than
“irrational”).

In applications to abstract concepts (in science, for ex-
ample), the perplexities can become great. Regarding mul-
tiplication and division, a long tradition stemmed from the
Greeks of working with ratios and proportions (that is,
sentences relating a pair of ratios) rather than equations.
Let a, b, ¢, and d be numbers, and contrast the proportion

a:buc:dwithad=bcanda:c::b:d. (1)

If @ and b refer to the same kind of thing (force, say,
or volume), and so do ¢ and d (but not necessarily the
same kind), then a : b and ¢ : d will be dimensionless
ratios, so that their (in)equality with each other can(not)
be asserted in (1); via “::” without qualms. This was the
way Euclid worked with ratios and proportions, relating,
say, a pair of lines to another pair of lines or to a pair of
numbers (Grattan-Guinness 1996). However, (1)2 poses a
conceptual difficulty about dimensions; ad and bc may be
equal, but in what units? Similarly, the brother proportion
(1)s was maybe better avoided if the ratios were of two
different kinds of thing.

Such emphases on proportions may have been trans-
ferred to metaphysical views about the construction of the
heavens, the chronology of myths, and other cultural con-
cerns in which rhythm or periodicity was held to apply
(McClain 1978). The phrase “music of the spheres” may
carry more overtones (as it were) than is now realised.

In several cultures an early interest in proportion arose
from musical harmony. The octave was set at 2:1, the per-
fect fifth at 3:2, and so on — but how can they fit together,
since no power of 2 can equal any power of 3/2? Various
systems of “temperament” have been devised to place the
seven tones or 12 semitones within the octave, especially
in the late Middle Ages (Cohen 1984); for example, the
devilish character of the mid-note “tritone” (the augmented
fourth) was associated with the irrational ratio /2 : 1.

During that period the theory of ratios became rather
more arithmetical and less linked to geometry via dimen-
sions. In the new approach it was permitted to state, say,

a:b=cand to deduce that a = b x c. (2)
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The distinction between a fraction and a ratio tended to
disappear, and proportions were replaced by equations
(Sylla 1984). Indeed, for a long time the words “ratio”
and “proportion” have been treated as synonyms, a slop-
piness that was not practised in earlier centuries.

The use of ratios was not confined to ancient or older
times. For example, mechanics through the 18th century
and 19th century mathematical physics used in order ratios
to avoid exactly the same kinds of questions about force,
say, or electrostatic charge.

Comment

Ratios deserve a much greater role in teaching than they
normally receive; for their long history shows them to be
a very natural way for human beings to compare. The
well-known difficulties in teaching fractions can be alle-
viated by converting to ratios (so that 4/7 becomes 4:7)
and pointing to examples in the classroom and ordinary
life where they occur; music is a particularly good source
for the latter context, or even both of them.

2. Integers with properties

The autonomy of integers and their arithmetic from empir-
ical factors became more evident when they began to be
regarded as objects in some (usually unspecified) sense;
that is, they possessed properties such as being prime, or
factors of other integers. Diophantos (flourished around
250 AD) used such properties to find solutions to linear
equations, many of which involve rational as well as in-
tegral solutions.

But the importance of proportions just described is an
example of cultural contexts in which integers were treated
as objects. They involve forms of numerology, in which
a community granted special status to certain integers by
associating them with their metaphysical or religious be-
liefs. Probably they saw integers as invariants, which have
always been a strong theme in mathematics; things which
remain the same while other things change around them.
A closely related doctrine was gematria, created when a
culture had developed a written alphabet; each letter was
associated with some integer, and a word or phrase of the
language took the integer given by the sum of those of its
constituent letters.

Several Greek thinkers, especially Plato and followers
such as Tamblichos (flourished in the 3rd century AD),
advocated numerology. One important category was the
“triangle numbers”, integers starting 3, 6, 10, ... which
can be written as 1+2+3+...; the name indicates the prop-
erty that they can be represented spatially by triangles of
tokens. Maybe this property was one source of the 3ness
of orthodox Christianity, in which Jesus is held to have
lived for 3 x 10 years in obscurity before prosecuting a
3-year ministry and advocating the Trinity prior to dying
in 3some on a cross but coming back to life 3 days later.
After his resurrection Jesus appeared 3 times before the
remaining apostles; the second time was before 7 (sic) of
them on the Sea of Galilee, whereupon Peter catches fish
to the total of 153 (John 21:11) — the triangle number of
17, which was the number of principal sects and societies
in the Jewish Kingdom of the time.

The full account is given in the New Testament, which
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contains 27 books: 33, the Trinity propounded across the
3 dimensions of space. Such features embody profoundly
meaningful metaphysics to cognisant Christians. There
were many of them in the Middle Ages, deeply aware of
both numerology and gematria (Hopper 1938); but now it
is usually ignored or even derided. Thus believers do not
know a significant factor in their belief system.

These examples show connections between mathemat-
ics and (a) religion, a rich aspect of mathematics which
is often ignored but which is not even confined to arith-
metic (mechanics and probability theory are among other
branches). The Jewish tradition is very strong here. For
example, the 22 letters of its alphabet are understood as
“Alpeh” followed by 3 7s respectively of grace, mercy and
strict justice, while 10 features as the number of connected
circles in the Sefirot tree of the Kabbalah (Judaica 1971).
For Hindus, 9 is especially important, as the number of
parts of the religion itself and of the points in their special
symbol, the swastika.

Comment
The arithmetic involved here is trivial; but its cultural
weight is substantial, and gives a route into multi-ethnic
education.

3. Algebra within and beyond arithmetic

The advocacy of algebra from the late Middle Ages on-
wards was helped by its prowess in finding the roots of
polynomial equations; but it also served to generalise arith-
metic by expressing the basic properties of any numbers,
known or unknown real ones, and even complex. This as-
pect was also encouraged by the neo-Humanist movement
of the late 16th century, which extolled the merits of the
inheritance from Greek culture (Klein 1968). An impor-
tant example is Rafael Bombelli (1526-1572), who was
shown a manuscript by Diophantos and rewrote part of
his Algebra before publishing it in 1572 to include solu-
tions to Diophantine equations. As his bald one-word title
shows starkly, he wished that now algebra was not merely
a means to aid arithmetical calculation but a brother dis-
cipline in mathematics.

Another line emanating from Bombelli was continued
fractions, an arithmetical analogue of the Euclidean al-
gorithm. Let b > a, and divide and use the successive
remainders ¢, d, ... as follows:

bja=C+cla=C+1/(D+d/a)=

C+1/(D+1/[E+efa])=.... (3)
Some of the new integers C, D, ... may be zero; if there is
a remainder b, ¢, . . ., then the algorithm stops, and b/a is

a rational fraction. Properties of continued fractions have
enriched both arithmetic and algebra, although the topic
remains curiously fugitive; for example, it is rarely taught.

Bombelli’s contemporary Frangois Viete (1543—-1603)
was also influenced by neo-Humanism. For he viewed the
new art of algebra as “analytic” in the sense of the proof
method advocated by Greeks such as Pappos, which starts
out from the theorem and ended up with axioms or with
previously known results, in contrast with the “synthetic”
proof method, which proceeds from assumptions to theo-
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rem and was associated with geometry. This pair of associ-
ations endured in the philosophy of mathematics, although
often to little benefit as geometry turned more analytical
and algebra used synthetic proof methods in its more ad-
vanced theories. Further, the philosophy of algebra was
still tied down by geometrical considerations; for exam-
ple, since space had only three dimensions, then for Viéte
zxxr was the “plano-planum” power of z, not its “quar-
tum”. Liberation from such constraints came only in the
qualm-free “z*” used by René Descartes (1596-1650) in
his Géométrie (1637); however, as his title shows, algebra
served as handmaiden to his creation of analytic geometry.
(This was not co-ordinate geometry, by the way, where a
system of axes is imposed upon a diagram; G. W. Leibniz
(1646-1716) was a pioneer here, in the development of
his differential and integral calculus from the 1670s.)

Attached to the development of algebra was the status
of negative numbers, which have suffered a nervous press
over the centuries. For some mathematicians (including
Descartes) their status was linked to that of complex num-
bers, since both kinds of number arose in connection with
solving polynomial equations. Although one can naturally
think of interpretations of negatives (as financial debts,
for example, or as numbers marked off in the direction
opposite to that of the positive numbers), their legitimacy
as self-standing objects has frequently been questioned.
Consider the two equations

5-35=15and35-5=—15. (4)

Philosophically speaking, can the second equation stand
on its own, or is it only a way of really saying the first?
The second position was preferred by many mathemati-
cians from the days of early algebra until the 19th century,
especially in England. Rather greater confidence for nega-
tive numbers was evident among Continentals. Immanual
Kant (1724-1804) argued in 1763 that negation should be
construed as the dialectic opposite to positiveness (it is
curious that one cannot say “position”!) rather than as ex-
pression of its absence. Later, the abbot Condillac (1714—
1780) saw algebra as the language par excellence within
his semiotics, and so treated negative quantities on a par
with positive ones in his account of ordinary algebra, pub-
lished posthumously in 1807 under another striking title:
La langue des calculs.

Comment

This is a case where the historical lesson is negative;
for the two natural interpretations are easy to teach (the
latter as a staple in financial mathematics, which is be-
coming a trendy topic in education). The failure to draw
upon such cases in the past reflects, I suspect, the lack of
model-theoretic thinking in mathematics in those times.
This view, which has flourished only in this century, al-
lows negative numbers to be interpretable in such contexts
while not in others. It is worth teaching explicitly, though
the technicalities of model theory should be left until well
into the undergraduate career.

4. Number systems and calculation
The Babylonians worked with a number system based on
60, which still leaves its traces on our system of time
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keeping. They also used 10 as their base, as have most
cultures. A system of counting based on 12 is more con-
venient, since it can be done on one hand by counting the
knuckles of the fingers with the thumb; but sadly this sys-
tem never became popular, although it is richer in that 12
contains more factors than does 10. Note that both 10 and
12 are both factors of 60, which may have been a com-
mon source for both integers: against frequent statement,
the linguistic evidence is not strong that 10 came from the
numbers of fingers and thumbs or of toes; maybe its status
as the triangle number of 4 also played some role.

A variety of other number systems have been known;
for example, the Mayans took 1 and 5 as their basic units
in a 20-place arithmetic (Lounsbury 1978). Not all non-
standard systems are ancient; for modern science is still
developing a library of adjectives (mostly derived from
Greek) for these numbers 10™:

n= ...—-18 —15 -12 -9 —6
name: ... atto- femto- pico- nano- micro-
()
-3 3 6 9 12
milli- kilo-  mega- giga- tera-.

Some systems of numerals reflect the operations carried
out. For instance, if in our Hindu-Arabic system (hereafter,
“HA”) I add 6 apples to 2 apples, then I obtain 8 apples;
but in Roman numerals I go from ii and vi to viii, and the
sign “viii” exhibits the process of adding ii and vi. This
feature seems to have appealed to accountants and others
in the 16th century as a means of controlling honesty in
financial records; so they opposed the introduction of HA.
However, HA has other advantages, and became dominant.
Simon Stevin (1548—16207?) pointed out one benefit: if HA
were extended to the use of decimal expansion of numbers,
then magnitudes could be easily compared. Indeed, how
else can one readily tell whether, say, 83/35 is less or
greater than 71/29?

Although virtuosi on the abacus could be found until re-
cently in Soviet supermarkets, gift at calculation has been
most frequently found among the exponents of HA. Many
interesting and indeed little-understood questions in psy-
chology arise; for example, “lightning calculators™ often
do not know themselves how they calculate at such speed,
and most of them have no particular gift for mathematics
itself (Smith 1983).

At the other extreme come innumerate people, for whom
arithmetic is a frightening subject. While social condi-
tioning from bad educational experience is a major factor,
mental incapacity also seems to be involved, especially
when it occurs in some forms of calculation and not in
others.

One feature which inhibits proficiency in multiplication
and division in HA is that the standard methods do not
make full use of the number system. To multiply two in-
tegers, the natural way should be to take the units of each
integer to find the units place of the product; multiply the
units of each integer with the tens of the other one to find
the tens place; and so on. This insight, which is due to
the Vedic tradition in India (Shankarachaya 1965), yields
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the product very easily: for example,

First integer 467

Second integer 58 5)
Product 27086

Carrying 785

The hundreds figure, 0, arises thus: 8 x44+6x5+7x0 =
62; take the 8 carried from the tens to get 70; hence the 0,
and carry 7 to the thousands; read the 70 diagonally in the
last two lines. A companion method for doing (not very)
long division was also known.

A major issue in the development of methods of cal-
culation in the Middle Ages was whether or not the de-
tails were retained, for purposes of checking. The non-
retentive methods, such as the use of tokens mentioned in
1, which advanced to moving pebbles to various posi-
tions on an abacus (Latin for “flat surface”) to represent
values, became known as “algorist”; the other methods
were “abbacist”. (Note the two b’s now used to avoid the
clash of names; the latter sense came from Fibonacci’s
“Liber Abbaci” (1202), an important source for Europe
of Arabic and Hebrew arithmetic and algebra.) Gradu-
ally abbacist methods came to prevail, mainly because of
the advantages of being able to check; Figure 1 shows a
classic illustration of the triumph of an abbacist over her
plodding algorist companion.

! ==
Fig. 1: Happy abbacist, sad algorist (as in Greek drama?):
propaganda in Georg Reisch’s Margarita philosophica, 1504.
The algorist has these numbers on his board: on our left,
2+30+50=82; on our right, 1+40+200+1,000=1,241.

Comments

1) The issue of checking calculations bears upon modern
education in a way that is often overlooked: namely,
that an electronic calculator is an algorist device, in
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that no means are available to check the answers de-
livered. Abbacist principles should be emphasised in
teaching, at least that the student should have some
idea of the order of magnitude of the answer before
pressing the buttons.

2) Errors in calculation can provide amusing but instruc-
tive cases. For example,

$4/16 = 4 can be generalised to ¢b/1¢ = b, (6)

which is an indeterminate problem and so requires the
student to examine options rather than proceed to the
answer(s) in the usual robotic manner. A little work
on factors in (6) will furnish also

#5/19 = 5; and there are variants, such as

98/49 = 8/4. (7)

5. The logic and set theory of arithmetic

The arithmetic of positive integers received two new levels
of foundation in the 1880s. C.S. Peirce (1839-1914) and
Giuseppe Peano (1858-1932) both put forward axioma-
tisations based on the notion of 1 as the initial integer
and on the operation of successorship (2 as the successor
of 1, and so on). One of the axioms was the principle
of mathematical induction, in the form that if a property
applies for n = 1, and if applicable for any value of n
then is also for its successor, then it applies for all n. The
formulation was simplified in 1907 by Mario Pieri (1860—
1913). Richard Dedekind (1831-1916) gave a somewhat
similar treatment in 1888, in terms of a notion of chain
(a relation mapping a set of integers onto itself in such
a way that all the successors of some initial integer were
obtained); but he went further in proving a theorem which
legitimated proofs by mathematical induction by provid-
ing a justification for inductive definitions. Van Heijenoort
1967 contains many original texts on foundations.

In 1884, Gottlob Frege (1848—1925) had gone a layer
below this one when he gave nominal definitions of inte-
gers, which Bertrand Russell (1872-1970) was to find in-
dependently in 1901. They defined integers as sets of sets,
starting with 0 and the unit set of the empty set (), 1 as the
set of sets isomorphic (that is, in one-one correspondence)
to {0}, and so on upwards but not in a vicious circle. The
ascent was infinite for Russell, since he accepted the the-
ory of transfinite numbers (which is described in the next
section).

Frege proceeded to further definitions of real numbers
(whether integral or not) via expansions of their non-
integral part in the bicimal power-series

Z a,2”", where each a,, =0 or 1; (8)

Russell defined rational and irrational numbers as certain
sets of integers and of rationals respectively. Arithmeti-
cal operations were defined in terms of the corresponding
combinations of sets (for example, addition from the union
of disjoint sets). Both men also had means of defining
negative numbers.
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Both men also defined sets in terms of propositional
functions, for these procedures formed part of their logi-
cist theses, that arithmetic (for Frege) or all “pure” math-
ematics (for Russell) could be derived solely from logical
principles and procedures. A modern variant of their ap-
proach regards integers as quantifiers: the sentential form
“there are ... apples here” is bound into a sentence by the
insertion of the integer in question (Bostock 1974, 1979).

Comments

1) The vision behind these enterprises, especially Rus-
sell’s, was the unification of arithmetic, mathemati-
cal analysis and geometries under the umbrella of set
theory and mathematical logic. The purpose was epis-
temological, concerned with restructuring and “justi-
fying” known theories by locating them within such
foundations; there was no educational or heuristic con-
tent, although some parts can be taught in late student
years at university. Sadly, half-understood versions per-
colated down to the educational community, granting
set theory a central place in the “New Mathematics” of
the 1960s. One factor was played by Jean Piaget’s mis-
understanding of Russell’s enterprise, especially in giv-
ing such a grossly exaggerated place to isomorphisms
in “the child’s conception of number” (Piaget 1952).

2) The adjective “New” shows already the absence of his-
torical knowledge (after all, Sibelius was hardly New
Music at that time), never mind the original purpose
and its limitations. The basic error in the approach
was premature rigour and generality, solving prob-
lems which the student cannot have encountered in
the first place (Grattan-Guinness 1973). Further, mis-
takes made in the texts testify to the subtlety of set
theory, such as distinguishing properties of a set from
those of its members. And the idea that the theory is
the most general way of handling collections is dou-
bly mistaken. Firstly, it assumes membership always
to be well-defined (that is, true or false): fuzzy set
theory takes care of the many exceptions (Dubois and
Prade 1980). Secondly, it only allows members to be-
long once to the set — an elementary limitation, as ev-
idenced by multiple roots of a polynomial equation:
multiset theory is needed instead (Rado 1975).

6. Transfinite arithmetic

From 1883 Georg Cantor (1845-1918) also defined in-
tegers from sets, but by a very different means: from a
given set M, abstract (that is, mentally ignore) the na-
ture of its elements to leave behind the “order-type” M
in which its members lie; then abstract the order to leave
behind the cardinal number M of M (Dauben 1979). The
role which he gave to mental acts was rejected by most
of his contemporaries, although some residue lies in the
phenomenological interpretation of integers proposed by
Edmund Husserl (1859-1928) from 1891, partly under in-
fluence from Cantor (Willard 1984).

Further, Cantor realised that infinities came in different
sizes, and so introduced the concept of inequalities be-
tween infinitely large integers. He defined the sequence
of transfinite ordinals, starting with the smallest of them,
w, assumed to exist after the finite ordinals, and with no
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predecessor ordinal:

1,2,3, ... wyw+1,... 20,2w+1, ...

3w, ... w LWl L (9)

He also found a way of dividing this literally infinite se-
quence into “number classes” whose sizes (that is, car-
dinalities independent of order) were shown to be differ-
ent. The first one, comprising the finite integers, took the
smallest such cardinal number, Xg; the second class, start-
ing at w and defined by the property that the count up to
any ordinal member could be reordered into a set of size
Ng, was itself of the next larger cardinality, N1, and so on,
for infinitely ever.

Another of Cantor’s innovations was to realise that
the members of a set may be ordered in different ways.
In order to preserve the generality of arithmetic, he as-
serted the “well-ordering principle”, that any set could
have its elements arrayed in the order exemplified by (9).
This was to be one of his unsolved problems, of which
the proof (in 1904) turned out to require the axiom of
choice (Moore 1982). The main advocate of this axiom,
which caused much controversy among mathematicians
and philosophers for its various forms and especially for
its non-constructive character, was Ernst Zermelo (1871—
1953); but Russell found a form slightly earlier, in the
context of defining the infinite product of numbers.

Cantor developed an arithmetic for each kind of integer,
different from each other and from that of finite arithmetic;
for example,

wH+l>w, 1l4+w=w;andRg+R; =N;. (10)

However, his sequence (10) also led to paradoxes of the
supposedly greatest ordinal, and also the greatest cardi-
nal; for either such number N, both N = N and N > N.
Avoiding these paradoxes, and those like Russell’s con-
cerning sets alone, led to modified definitions of numbers
as sets of sets. In particular, the type theory in Russell’s
post-paradox logicism required that integers be defined
and their arithmetic be developed for each type.

Comments

This material forms a good undergraduate course. I find
that the axioms of choice are rather more fruitful source
of appreciation than the details of transfinite arithmetic,
partly because the range of consequences for mathematics
far exceeds set theory and arithmetic, and partly because
the wide range of equivalent axioms expose fine examples
of apparent (non-)constructivity in mathematics.

7. Much ado about zero
The Babylonians usually indicated zero by an empty
space; but then it is hard to distinguish, for example,
35 from 3 5 (in HA, 305 from 30,005). So a sign
was needed; they had one, looking something like <;
but it seems to have been used only as place marker for
the blanks. The great step of using it also as a number
which could be combined arithmetically with other num-
bers seems to be of Indian origin.

Culturally, the status of zero, its mis-identification with
nothing, has been widespread concern (Rotman 1987).
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An important example is the playwright who wrote as
“William Shakespeare”, especially in his “King Lear”
where nothing is everything. He was working at the turn
of the 16th and 17th centuries, precisely when HA was
coming into general use in Britain; doubtless this process
heightened his awareness.

As for signs, HA has “07; its origins are not known
for certain, for it may lie in Greek, Indian and Chinese
mathematics (possibly independently), perhaps from the
2nd century AD onwards. In addition, “o0” is the first letter
of the word “ouden” in Greek for nothing. It may also have
been proposed as a sign for the vagina, as the nothing out
of which things are born; for it is well known that fertility
and sexual symbols played a prominent role in cultural
and religious life of ancient civilisations. Other symbols
used were similar to “0”; a dot e, and in Greek sometimes
either “¢” or “6”.

Even when the need for a sign was recognised, much
philosophical perplexity surrounded zero, especially for its
failure to satisfy the cancellation law (a <0 = bx 0 without
a = b). In addition, it was usually associated (too) closely
with nothing. Even in their formulations of arithmetic re-
ported in §5 and §6, Cantor and Dedekind both always be-
gan with 1: Cantor could not define 0, for he would have
had to abstract from the empty set () (which makes sur-
prising his notation “Ny”!) Only Russell and Frege clearly
understood the difference between nothing, (), and 0. Since
then the distinction has become firmly established, even
in systems where a mathematician may choose to con-
flate them. For example, the system of ordinals proposed
in 1923 by Johann von Neumann (1905-1958) goes as
follows:

0:=0, 1:={0}, 2:={0,1},...,

w:={0,1,...},.... (11)

Comments

1) The teaching of zero is often deplorable, especially
when it is stated to be nothing. This is quite incorrect;
for zero has properties, such as 7+ 0 = 7 (74 nothing
is not defined).

2) One can also use zero to emphasise the distinction
between equality and identity; in addition to standard
cases such as

242 =4, examples suchas 0+0=0 (12)

show the difference still more starkly (two zeros on the
left hand side, only one on the right, hence not identi-
cal). Identity is a difficult philosophical concept with
which to work; for educational purposes in mathemat-
ics, it is best presented in terms of identification (of 4
as the sum of 2 and 2, say).

8. Formalisms and incompleteness

The word “formalism” occurs regularly in connection with
the philosophy of arithmetic, but various types should be
distinguished. There is a type of formalism in Cantor, in
that he saw that the consistent construction of transfi-
nite numbers guaranteed their existence. He had no meta-
theory in which consistency could be proved, and this lack
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may have been one of stimuli for David Hilbert (1862—
1943) to devise metamathematics as a theory in which
it (and completeness) of an axiomatised theory could be
studied.

Hilbert’s formalist programme, which flourished mainly
in the 1920s and 1930s after launch at the beginning of
the century (Detlefsen 1986), took arithmetic in a form
broadly similar to Peano’s axiomatisation mentioned in
§5, and viewed its foundation as sufficient to provide the
foundations of much (maybe “all”’) mathematics. But his
hope of demonstrating the consistency of arithmetic was
set back by a theorem proved in 1931 by Kurt Godel
(1906—1978); for its corollary shows that consistency can
be proved only in a meta-theory richer than arithmetic
itself, contrary to Hilbert’s vision of a more primitive
meta-theory, then still more primitive meta-meta-theory,
.... Further, G6del’s main theorem refuted Russell’s (intu-
itive) belief that his logicist axiomatisation of arithmetic
would be complete.

In addition, Godel’s proof-method based upon expressed
the meta-theory in arithmetical terms was a principal stim-
ulus for the study of recursive functions, which itself be-
came a leading technique in the development of comput-
ers with Alan Turing (1912—1954), and has formed last-
ing links with both logic and mathematics (Davis 1965).
Finally, the distinction between theory and meta-theory re-
quired by Godel’s proof brought home to logicians the care
with which they needed to observe this distinction. For
mathematicians, however, his theorems were of marginal
importance, since Godel worked with a much stricter con-
cept of proof than that with which they were (or still are)
accustomed.

However, most recent philosophy of arithmetic has built
on versions of Hilbert’s or on a set-theoretic approach;
some have been constructivistic or intuitionistic in char-
acter. Some other treatments are nominalistic, in trying to
avoid giving numbers an abstract status (Field 1987). In
addition, social interpretations of numbers and arithmetic
have gained some favour (Livingstone 1986), in which
numbers are experienced, arithmetical operations are per-
formed, and proofs are actions; “2 + 2 = 4” is less than a
traditional Platonic truth, but more than a matter of per-
sonal opinion. Numbers are ancient things (or symbols,
or sets, or acts, or ...); their statusses have always been
obscure, and are likely to remain so.

Comments

1) Some aspects of formalism, especially recursion and
computability, link nicely to under- and post-graduate
courses in computing. But richer contexts arise in more
elementary contexts, especially in stressing the differ-
ence between numbers and numerals, the brute sense
of formalism. Relationships such as “7 > 3” should be
studied carefully, and also the nonsense of wondering
whether “3”, “3” or “3” is the true number three; for
then the more abstract character of numbers relative to
numerals can be clearly indicated, whatever status one
chooses to assign to them.

2) In addition to numbers and numerals, digit strings
should be stressed. We have long been familiar with
them as telephone numbers, but now they come also in
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barcodes, PIN numbers, and so on. While a digit string
can easily be associated with its corresponding num-
ber (numerologists often do this, such as the orthodox
Christians taking 111 as the Trinity number), they are
treated differently, with much less mathematical con-
tent; in particular, they have no associated arithmetic.
We even say strings in a different way (“one one one”
rather than “one hundred and eleven™), and also write
them; for example, there are various ways of stating
telephone numbers in different countries.

3) There are a few overlaps; one is the manner of reading
decimal expansions, where 27 - 27 is understood as
“twenty seven point two seven” since the latter part is
read from left to right. There is a psychological point
involved here also; because of the geographical origins
of HA, we read integers from right to left, contrary
to that of the words of our language. We do this too
often to notice, for integers up to the early millions;
but when faced with, say, “463,563,640,863,759”, then
the reverse process becomes conscious, even with the
partitioning of the component digits into threes to aid
the reading.
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