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TRIVIAL LAGRANGIANS ON CONNECTIONS AND
INVARIANCE UNDER AUTOMORPHISMS

M. CASTRILLÓN LÓPEZ, J. MUÑOZ MASQUÉ, AND T.S. RATIU

Abstract. Two results are presented: The characterization of first order La-

grangian densities on connections invariant under the full Lie algebra of prin-
cipal infinitesimal automorphisms and the characterization of gauge-invariant
null Lagrangians. Some explicit examples are given as well.

1. Introduction

Let π : P → M be an arbitrary principal bundle with structure group a Lie
group G. The geometric formulation of gauge theories takes place on the bundle of
connections p : C → M by considering variational problems defined by Lagrangians
L : J1C → R on the first jet bundle. Moreover, gauge symmetries play an important
role in these theories. Due to this fact, the Lagrangians used in their formulation
are required to be gauge invariant with respect to the natural representation of the
gauge vector fields of P in the bundle of connections. In the fifties, Utiyama gave a
complete description of these Lagrangians. Roughly speaking, this result says that
a Lagrangian L is gauge invariant if and only if it factors through the curvature
map (that is, L = L̄ ◦ Ω) by means of an adjoint invariant function L̄ (see below
for a more precise statement).

Motivated by this geometric characterization, we present in this paper two re-
sults. First we give a characterization of those Lagrangians defined on J1C which
are invariant under the full algebra of infinitesimal automorphisms. Due to the
interest of the Utiyama’s theorem, it looks reasonable to ask for the invariance
under the functorial group of morphisms of the category of principal bundles (i.e.,
the automorphisms) and not only under the subgroup of vertical morphisms (the
gauge transformations). It turns out that these Lagrangians provide variationally
trivial Lagrangians whose action functionals are the characteristic numbers of π of
degree dim M . Partial results in this direction can be found for the special case
G = U(n) and polynomial Lagrangians in [4, Theorem 2.6.2].
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Secondly, we study whether every gauge-invariant variationally trivial Lagran-
gian density is as described above; that is, invariant under automorphisms and,
therefore, related to a characteristic class. The answer is negative and in fact it
turns out that these Lagrangians are characterized by de Rham cohomology of the
base manifold M and the characteristic classes of P , now of arbitrary degree.

We finally illustrate these results with explicit examples for some classical struc-
ture groups in field theories.

2. Preliminaries

2.1. Automorphisms. An automorphism of a G-principal bundle π : P → M is a
diffeomorphism Φ: P → P which is equivariant with respect to the action of G on
P , that is, Φ(u · g) = Φ(u) · g, u ∈ P , g ∈ G. Automorphisms are projectable; i.e.,
given an automorphism Φ, there exists ϕ ∈ DiffM such that π ◦ Φ = ϕ ◦ π. The
automorphisms such that ϕ = IdM are called gauge transformations. The set AutP
of all automorphisms is a Lie group under the composition and GauP , the subset
of gauge transformation, is a normal subset. In fact AutP and GauP are infinitely
dimensional Lie groups whose Lie algebras can be described as follows: autP is
the algebra of G-invariant vector fields of P and gauP is the subalgebra of vertical
G-invariant vector fields. It is clear that the elements autP are π-projectable. In
fact we have the following short exact sequence of algebras

0 ↪→ gauP ↪→ autP π∗−→ X(M) → 0.

2.2. The bundle of connections. Given the principal bundle π : P → M , let
p : C → M be the bundle of connections of π. As it is well known, C is an
affine bundle modelled over the vector bundle T ∗M ⊗ adP , where adP denotes the
adjoint bundle, that is, the associated bundle defined by the adjoint action of G on
g. There is a bijective correspondence between connections Γ on P and sections σΓ

of C. Giving an automorphism Φ ∈ AutP , there exist an unique diffeomorphism
ΦC : C → C such that for every connection Γ we have ΦC ◦ σΓ = σΦ(Γ) ◦ ϕ, where
Φ(Γ) is the image of Γ by Φ (cf. [5, II.6]). The mapping AutP → DiffC, Φ 7→ ΦC

is a homomorphism of Lie groups which gives, at the level of their Lie algebras, a
Lie algebra homomorphism autP → X(M), X 7→ XC which is called the natural
representation of autP on C.

Next, we give the local expression of this representation. Let (U, xi), i =
1, ..., n = dim M , an open coordinate domain of M such that P is trivializable
over it, that is, π−1(U) ' U × G. The natural identification ad(U × G) = U × g
and the choice of the trivial connection on U×G enables us to identify p−1(U) ⊂ C
with T ∗U⊗g in a natural way. If {B1, ..., Bm} is a basis of g, we endow T ∗U⊗g (and
therefore p−1(U)) with the coordinates (xi, Aα

i ), i = 1, ..., n, α = 1, ...,m = dim G,
defined by the condition

ω = −Aα
i (ω)dxi ⊗Bα, ∀ω ∈ T ∗U ⊗ g.
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Similarly, as TP |U = TU × TG, for every X ∈ autP , we can write

X = f i ∂

∂xi
+ gαB̃α, f i, gα ∈ C∞(U),

where B̃ is the infinitesimal generator of the flow t 7→ exp(tB)g, B ∈ g, in G. Note
that X ∈ gauP if and only if f i = 0, i = 1, ..., n. The local expression of the
natural representation XC of X ∈ autP is

XC = f i ∂

∂xi
−

(
∂gα

∂xi
− cα

βγgβAγ
i +

∂fh

∂xi
Aα

h

)
∂

∂Aα
i

.

2.3. Gauge-invariant Lagrangians. We are concerned with first order varia-
tional problems on connections defined by Lagrangians densities Λ: J1C →

∧n
T ∗M .

From now on, we will consider that the manifold M is oriented by a fix volume
form v ∈ Ωn(M). Then we can write Λ = Lv for certain function L : J1C → R
called the Lagrangian. We say that L is gauge invariant (also called natural for
some authors; e.g. [6, XII]) if X

(1)
C (L) = 0 for every X ∈ gauP , where X

(1)
C is the

natural lifting of XC to the jet bundle J1C. Moreover, a Lagrangian density Λ is
said to be autP -invariant if

L
X

(1)
C

Λ = X
(1)
C (L)v + LLX′v = 0, ∀X ∈ autP,

where X ′ ∈ X(M) is the projection of X onto M . Taking into account that X ′ = 0
for X ∈ gauP , we can recover the definition of gauge invariance from that of autP -
invariance. For the geometric characterization of gauge-invariant Lagrangians we
need to introduce the curvature mapping. We define Ω: J1C →

∧2
T ∗M ⊗ adP as

Ω(j1
xσΓ) = ΩΓ

x , that is, Ω sends the 1-jet of a (local) connection Γ to the curvature
of Γ seen as a two from on M with values in the adjoint bundle. Then we have
Utiyama’s Theorem ([3], [8]). A Lagrangian L : J1C → R is gauge invariant if
and only if L = L̄ ◦ Ω by means of a function L̄ :

∧2
T ∗M ⊗ adP → R which in

turn must be invariant under the adjoint action of g in adP .

3. autP -invariant Lagrangians

Let G be a Lie group and g its Lie algebra. We say that a multilinear map
f : g⊕ (k. . .⊕ g →R is Weil polynomial of degree k if it is invariant under the adjoint
representation of G on g; i.e., if

f(AdgB1, ...,AdgBk) = f(B1, ..., Bk), ∀B1, ..., Bk ∈ g,∀g ∈ G.

The set of all Weil polynomials of degree k is denoted by IG
k . The space

IG =
⊕
k≥0

IG
k

is a subalgebra of the symmetric algebra S•(g∗) of the dual space g∗ (cf. [5, XII.§1]).
Given f ∈ IG

k , we define the function f̄ : adP ⊕ (k. . .⊕ adP → R, by the condition

f̄((u, B1)ad, . . . , (u, Bk)ad) = f(B1, . . . , Bk),
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where (u, B)ad ∈ (adP )x, B ∈ g, x ∈ M , u ∈ π−1(x) denotes the equivalence class
of (u, B) in adP = (P × g)/G. We now suppose that dim M = n = 2k. Let f ∈ IG

k

be a Weil polynomial of degree k. We define the fibred map

Λ̄f :
∧2

T ∗M ⊗ adP →
∧n

T ∗M,

by the condition

Λ̄f (w)(X1, . . . , Xn) = 1
(2k)!

∑
τ∈S2k

ε(τ)f̄
(
w(Xτ(1), Xτ(2)), . . . , w(Xτ(2k−1), Xτ(2k))

)
,

for all w ∈ (
∧2

T ∗M ⊗ adP )x, and X1, . . . , Xn ∈ TxM , x ∈ M , where ε(τ) is
the signature of the permutation τ . The composition of Λ̄f with the curvature
mapping gives a fibered morphism Λf : J1P →

∧n
T ∗M called the Lagrangian

density associated to f . Similarly, the Lagrangian associated to f is the unique
function Lf ∈ C∞(J1C) such that Λf = Lfv. These Lagrangian densities enjoy
the following property

Proposition 1. The Lagrangians densities on the bundle of connections associated
to Weil polynomials are autP -invariant.

In fact, the next result shows that these Lagrangian densities are the only ones
which are autP -invariant. More precisely:

Theorem 1. Let π : P → M be a principal G-bundle with G connected and M
connected and orientable. Then we have:

(1) If dim M is odd, the only autP -invariant Lagrangian density on connections
is the zero density.

(2) If dim M is even (say dim M = 2k), all autP -invariant Lagrangian densities
on connections are of the form Λf , with f ∈ IG

k .

Assume now that M is compact. From the theory of the Weil homomorphism
and the construction of the characteristic classes from the curvature (cf.[5, XIII]),
we know that given any section σΓ : M → P of the bundle of connections, the form
Λf ◦ j1σΓ is a closed form whose cohomology class (the characteristic class of f)
does not depend on Γ. Hence the action funtional σΓ 7→

∫
M

Λf ◦ j1σΓ is constant.
We have thus proved the following

Corollary 1. Every autP -invariant Lagrangian density on connections is varia-
tionally trivial.

4. Variationally trivial Lagrangians

Once we have the characterization of the autP -invariant Lagrangians, one could
ask if these are all possible natural Lagrangian densities which are variationally
trivial at the same time. In fact, variationally trivial natural Lagrangians gives
topological information of the bundle π : P → M . The autP -invariant densities
exclusively give the characteristic classes of degree (dim M)/2 (if dim M is even).
In Theorem 2 below we will see that other trivial natural Lagrangians can be found
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and, in fact, they give the rest of the characteristic classes as well, as a part of the
de Rham complex of M . For the complete characterization we first need some
notation.

The bundle of connections p : C → M is endowed with a canonical p∗adP -valued
2-form Ω2 called the universal curvature (for example, see [2], [3]). This form is a
generalization to an arbitrary fiber bundle P of the canonical g-valued symplectic
form on C = T ∗M ⊗ g in the special case P = M × G and enjoys the following
property: If σΓ : M → C is the section of the bundle of connections defined by a
connection Γ on P , then we have that ΩΓ = σ∗ΓΩ2, where ΩΓ is the curvature of Γ
seen as a 2-form on M taking valued on adP .

Given a Weil polynomial f ∈ IG of arbitrary degree d, we define the 2d-form
f(Ω2) on C by setting

f(Ω2)(Y1, . . . , Y2d) = 1
(2d)!

∑
τ∈S2d

ε(τ)f̄
(
Ω2(Yτ(1), Yτ(2)), . . . ,Ω2(Yτ(2d−1), Yτ(2d))

)
,

for all Y1, ..., Yd ∈ TΓx
C, Γx ∈ C. The form f(Ω2) is called the characteristic

form associated to f . As C is an affine bundle over M , we have that H•(M ; R) '
H•(C; R) and it is not difficult to see that the cohomology class of f(Ω2) coincides
with the characteristic class of P defined by f .

Finally, given an arbitrary n-form Θ on the bundle of connections, we can define
a Lagrangian density ΛΘ = Θh : J1C →

∧n
T ∗M as follows: Θh(j1

xσΓ) = σ∗ΓΘ.
This construction is also called horizontalization and it can be defined as well for
forms of other degrees on arbitrary fibered manifolds.

Theorem 2. Let π : P → M be a G-principal fiber bundle with G connected and
M orientable. Then, every gauge-invariant variationally trivial Lagrangian density
on J1C is of the form Λ = Θh, where Θ is a form on C of the type

Θ =
∑

deg f≤n/2

p∗ωf ∧ f(Ω2),

and ωf are forms on M of degree n− 2 deg f which, in turn, must be closed.

Remark 1. There is a general result yielding a description of variational triviality
on arbitrary bundles: A Lagrangian density Λ is variationally trivial if and only if
Λ is the horizontalization of a closed form (cf. [7]). Theorem 2 above agrees with
this result but it shows that the additional condition of naturality gives a richer
structure on this Lagrangians as it provides the characteristic classes of π : P → M
of arbitrary degree and the de Rham classes (defined by the forms ωf ) of M with
the same parity of dim M .

5. Examples

5.1. The group U(1). Let π : P → M be a principal fiber bundle with structure
group G = U(1). Making the identification u(1) = R, the algebra of Weil polyno-
mials is generated over R by the monomial Id(t) = t. If dim M = n = 2k, the
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only Weil polynomial of degree k is, up to a constant, f(t) = tk. The Lagrangian
density associated to f is Λf : J1(C(P )) →

∧n
T ∗M , Λf = Pf ◦ Ω, where

Pf :
∧2

T ∗M →
∧n

T ∗M, Pf(w2) = w2 ∧ (k. . . ∧ w2.

Locally, in a coordinate system (xi, Ai) on C such that v = dx1 ∧ · · · ∧ dxn, we
have

Lf · v =
1
n!

∑
τ∈Sn

ε(τ)Rτ(1)τ(2) . . . Rτ(n−1)τ(n) · v,

where Rij = Ai,j −Aj,i. This expression is nothing but the Pfaffian of π : P → M
as a function of the curvature (see for example [5, XII]). The cohomology class
of the Pfaffian is the Euler class of π and the action defined by Lfv yields the
Euler characteristic of π. Similarly, every natural trivial Lagrangian is of the form
Λ = Θh with Θ =

∑
d ωn−2d ∧ Ω2 ∧ (d... ∧ Ω2, where Ω2 is the canonical symplectic

form of C and ωn−2d ∈ Ωn−2d(M) are closed. For a deeper study of these results
for G = U(1), see [2].

5.2. The group SU(2). The algebra of Weil polynomial of su(2) is generated by
the determinant, that is ISU(2) = R[det]. We remark that the determinant is a
polynomial of degree two and as a consequence every Weil polynomial must have
even degree. From Theorem 1, if dim M = 2k, we conclude that C will have autP -
invariant Lagrangian densities only for k even. Hence the first dimension where we
can find a non-zero autP -invariant Lagrangian density Λ, is four. In this case the
local expression of Λ takes the form (up to a constant)

Λdet = S123

∑
τ∈S4

1
4
ε(τ)(A1

τ(1),τ(2)A
1
τ(3),τ(4) − 2A1

τ(1),τ(2)A
2
τ(3)A

3
τ(4)) · v,

where the basis of g is assumed to be the Pauli matrices {B1, B2, B3} and S123

denotes cyclic summation over the indices 1, 2, 3. This density provides the second
Chern class of π.

Natural trivial Lagrangians are of the form Λ = Θh with

Θ =
∑

d

ωn−4d ∧ det(Ω2) ∧ (d... ∧ det(Ω2),

where ωn−4d ∈ Ωn−4d(M) are closed.

5.3. The group U(2). In this case, the algebra of Weil polynomials on u(2) is
generated by the trace and determinant, that is, IU(2) = R[tr,det]. For every even
dimension of M there are non-vanishing autP -invariant Lagrangians. For example,
for dim M = 4 we have basically two different invariant densities: One associated
to the polynomial tr · tr and the other associated to det. Locally, these densities
have the following expression

Λtr·tr =
∑
τ∈S4

ε(τ)A0
τ(1),τ(2)A

0
τ(3),τ(4)v,
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and

Λdet = −1
4
Ltr·tr + S123

∑
τ∈S4

1
4
ε(τ)(A1

τ(1),τ(2)A
1
τ(3),τ(4) − 2A1

τ(1),τ(2)A
2
τ(3)A

3
τ(4))v,

where the chosen basis {B0, B1, B2, B3} for u(2) are the Pauli matrices B1, B2, B3

and the matrix B0 = i Id. In this case, natural trivial Lagrangians are of the form
Λ = Θh with

Θ =
∑
l,d

ωn−2l−4d ∧ tr(Ω2)l ∧ det(Ω2)d,

where ωn−2l−4d ∈ Ωn−2l−4d(M) are closed.
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[3] P.L. Garćıa, Gauge algebras,curvature and symplectic structure, J. Differential Geom. 12

(1977), 209–227.
[4] P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem,

CRC Press, Boca Raton, 1995.
[5] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, John Wiley & Sons, Inc.

(Interscience Division), New York, Volume I, 1963; Volume II, 1969.
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