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Quaternionic methods recently proved to be a powerful tool in conformal surface theory. A
first account of this was presented in the ICM 98 article [5], and the theory was developed
further by the authors of [1] in an informal seminar at Technische Universitidt Berlin since
then . I presented this research to the Summer School on Differential Geometry at Coimbra
1999 in a series of lectures that gave an elementary introduction to the new concepts, but
also included several recent results with complete proofs. The present article contains an
extended abstract of my lectures, while the details will appear in [1].
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1. Linear Algebra over the Quaternions

We consider the skew-field H of the Hamiltonian quaternions in the usual representation
a=ag+ a1t + asj +azk, a; € R, (1.1)
with imaginary units ¢, 7, k. We define
a:= ayg — a1t — asj — agk,

Rea:=ay, Ima:= a1+ asj+ ask,
— 1 —
< a,b >r= Re(ab) = Re(ab) = §(db + ba).

We shall identify the real vector space H in the obvious way with R*, and the subspace of
purely imaginary quaternions with R3:

R?® = Im H.

The quaternion multiplication incorporates both the usual vector and scalar products on R3.
For a,b € ImH = R? we have

ab=axb— <a,b>g. (1.2)
In particular, the usual two-sphere is given by
S’CR*=ImH = {a € H|a® = —1}.

We choose quaternion vector spaces to be right vector spaces, i.e. vectors are multiplied
by quaternions from the right. We shall often have an additional complex structure on V,
acting from the left, and hence commuting with the quaternionic structure. In other words,
we consider a fixed J € End(V) such that J?> = —I. In this case we call (V,J) a complex
quaternionic (bi-)vector space. If (V,J) and (W, J) are such spaces, then the quaternionic
linear maps from V' to W split as a direct sum of the real vector spaces of complex linear
and anti-linear homomorphisms:

Hom(V, W) = Hom (V, W) @ Hom_(V, W).

Lemma 1. (Fundamental lemma) If N,R € H with N> = —1 = R?, then o(z) := NzR
defines a self-adjoint endomorphism of H = R*, and its +1-eigenspaces U, U+ are real 2-
planes. Conversely, each real 2-plane in H determines a pair (N, R) of imaginary units
unique up to sign. An orientation of U can be used to fix that sign.

If U C ImH, then N = R, and this is perpendicular to U. We, therefore, call N and R the
left and right normal of U though, in general, they are not at all orthogonal to U.
Conformal maps of Euclidean spaces are maps with differential preserving the metric up to
a factor. In the case of maps from R? = C into itself, this can be characterized in terms of
the complex structure J : z +— iz alone, not referring to the metric. In fact, f is conformal,
if and only if it satisfies the Cauchy-Riemann equation

xdf :=df o J = +J odf,

where the sign depends on the orientation behaviour of df. We generalize this to maps into
the quaternions in the following fundamental
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Definition. Let M be a Riemann surface, i.e. a 2-dimensional manifold endowed with a
complex structure J : TM — TM,J? = —1. A map f: M — H =R* is called conformal, if
there exist N, R : M — H such that, with *df := df o J,

N?=-1=R? (1.3)
xdf = Ndf = —dfR. (1.4)

If f is an immersion then (1.3) follows from (1.4), and N and R are unique, called the left
and right normal vector of f.

Equation (1.4) is a Cauchy-Riemann equation with a “variable complex structure” on the
target space side. In this sense conformal maps into H are a generalization of complex
holomorphic maps.

For an immersion f the existence of N : M — H such that xdf = Ndf already implies that
the immersion f : M — H is conformal. Similarly for R.

If f: M — ImH = R® is an immersion then N = R is “the classical” unit normal vector of
f. But for general f: M — H, the vectors N and R are not orthogonal to df (T M).

2. Projective Spaces

In complex function theory the Riemann sphere CP! is more convenient as a target space for
holomorphic functions than the complex plane. Similarly, the natural target space for confor-
mal immersions is HP!, rather than H. We therefore give a description of the quaternionic
projective space.

The quaternionic projective space HP" is defined, similar to its real and complex cousins, as
the set of quaternionic lines in H*"'. We have the (continuous) canonical projection

7 N\{0} — HP",z + 7(z) = [z] = 2H.

The manifold structure of HP" is defined as follows: For any linear form 3 # 0 on H*!

u:m(z) = x < Bz >

is well-defined and maps the open set {7(z) | < 3,z ># 0} onto the affine hyperplane g = 1,
which is isomorphic to H". Coordinates of this type are called affine coordinates for HP".
They define a (real-analytic) atlas for HP™.

The set

{r(z)| < B,z >=0}
is called the hyperplane at infinity.

Example. In the special case n = 1, the hyperplane at infinity is a single point: HP! is the
one-point compactification of R*, hence “the” 4-sphere:

HP' = S*.
The projective line is a perfect model for the conformal structure of S*. On the other hand,

for instance the antipodal map is natural on the usual 4-sphere, but not on HP' — unless we
introduce additional structure, like a metric.
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The tangent space of HP" admits a well-defined isomorphism

T,HP™ = Hom(I, H"" /I) (2.1)
using the following

Proposition 1. Let f: M — H*"'\{0} and f = nf : M — HP".
Letpe M,l:= f(p),v € T,M. Then

dpf : TyM — Ty HP" = Hom(f(p), H*! /f(p))

is given by dpf(v)(f(p)A) = m(dpf(v)N). We denote the differential in this interpretation by
6f:

5f(w)(f) =df(v) mod f. (2:2)

Given a non-degenerate quaternionic hermitian inner product < .,. > on H**!, we define
a (possibly degenerate Pseudo-) Riemannian metric on HP" as follows: For x € H**! with
< z,z >#0and v,w € (zH)*, we put

1
< dem(v),dpm(w) >= ———— Re < v,w > .
<z, >

Example 1. For < v,w >= Y xw; we obtain the standard Riemannian metric on HP".
(In the complex case, this is the so-called Fubini-Study metric.) The corresponding conformal
structure is in the background of all of the following considerations. Comparison with the
stereographic projection shows that on HP! it induces a metric of constant curvature 4.

Example 2. If we consider an indefinite hermitian metric on H**!, then the above construc-
tion of a metric on HP" fails for isotropic lines (< [,] >= 0), but these points are scarce. We
consider the case n = 1, and the hermitian inner product < v, w >= v wy + Uow;. Isotropic

lines are characterized in affine coordinates h : x — <T) by Z+2 =0, i.e. by z € ImH = R3.

Therefore, the set of isotropic points is a 3-sphere S® C S*, and its complement consists of
two open discs or — in affine coordinates — two open half-spaces. The induced metric is — up
to a constant factor — the standard hyperbolic metric on these half-spaces.

Let
Z={S € End(H?)|S? = T}

and, for S € Z, define S' := {l € HP' | SI = I}. Using affine coordinates with co € S’ and
Lemma 1 one shows that

Z is the set of oriented 2-spheres in S* = HP".
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3. Vector Bundles

A quaternionic vector bundle 7 : V. — M of rank n over a smooth manifold M is a real
vector bundle of rank 4n together with a smooth fibre-preserving action of H on V' from the
right such that the fibres become quaternionic vector spaces.

Example 3. The points of the projective space HP"™ are the 1-dimensional subspaces of
H**. The tautological bundle

m:Y — HP"
is the line bundle with ¥; = [. More precisely
Yi={(l,v) e HP" x """ v €}, w(l,v)=1.

We shall be concerned with maps f : M — HP™ from a surface into the projective space. To
f we associate the bundle L := f*¥, whose fibre over z is f(z) C H*™' = {2} x H"*'. The
bundle L is a line subbundle of the product bundle

H:= M x H*'.

Conversely, every line subbundle L of H over M determines a map f : M — HP" by
f(z) :== L,. We obtain an identification

Maps Line subbundles
f: M — HP" LCc H=MxH*!

All natural constructions for quaternionic vector spaces extend, fibre-wise, to operations in
the category of quaternionic vector bundles. For example, a subbundle L of a vector bundle
H induces a quotient bundle H/L with fibres H,/L,. However, given two quaternionic vector
bundles V1, V5, the homomorphism bundle Hom(V;, V5) is merely a real vector bundle.

Example 4. Over HP" we have the product bundle H = HP™ x H*'! and, inside it, the
tautological subbundle . Then

THP" = Hom(%, H/Y),
see (2.1).

Example 5 (and Definition). Let L be a line subbundle of H = M x H**! corresponding
to f: M — HP". Then, by Proposition 1,

F*THP™ = Hom(L, H/L),
and the differential of f = L should be viewed as a 1-form on M with values in Hom(L, H/L):

§ € Q' (Hom(L, H/L)). (3.1)
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We now endow quaternionic vector bundles with additional structure. A complez quaternionic

vector bundle is a pair (V,J) consisting of a quaternionic vector bundle V' and a section
J € T(End(V)) with

J? =1,
see Section 1.

Example 6. Given f: M — H, xdf = Ndf, the quaternionic line bundle L = M x H has a
complex structure given by

Jv := Nwv.
With the use of Lemma 1 we obtain

Proposition 2. Let L C H = M x H? be an immersed oriented surface in HP' with deriva-
tive 6 € Q'(Hom(L,H/L)). Then there exist unique complex structures on L and H/L,
denoted by J, J, such that for all z € M

Jo(T,M) = 6(T, M) = §(T,M)J,
J6 =41,
and J is compatible with the orientation induced by 6 : T,M — 6(T,M).

Definition. A line subbundle L C H = M x H'™! over a Riemann surface M is called
conformal or a holomorphic curve in HP™, if there exists a complex structure J on L such
that

x) = 4.J.

From the proposition we see: If L is an immersed holomorphic curve in HP?, i.e. if § is
in addition injective, such that 6(T'M) C Hom(L, H/L) is a real subbundle of rank 2, then
there is also a complex structure J € I'(End(H/L)) such that

%6 = 6J = J§. (3.2)

A Riemann surface immersed into HP! is a holomorphic curve if and only if the complex
structures given by the proposition are compatible with the complex structure given on M
in the sense of (3.2).

Example 7. Let f : M — H be a conformally immersed Riemann surface with right normal
vector R, and let L be the line bundle corresponding to

m : M — HP!.

Then J ({) = — <J1t) R defines a complex structure with

0J = %0.
Hence (L,.J) is a holomorphic curve. Conversely, if (L, J) is a holomorphic curve, then

J ({) =— ({) R for some R : M — H, and f is conformal with right normal vector R.
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Let (V,J) be a complex quaternionic vector bundle over the Riemann surface M. We de-
compose

Homg(TM,V) = KV & KV,
where

KV :={w:TM - V| xw = Jw},
KV ={w:TM -V | xw=—Juw}.

Definition. A holomorphic structure on (V,J) is a quaternionic linear map
D:T(V) = T(KV)
such that for all p € T(V) and A : M — H
D(yX) = (DY)X + %(wd)\ + J * d]). (3.3)
A section 1 € I'(V) is called holomorphic if D = 0, and we put
H°(V)=ker D C T'(V).

Remark 1. For a better understanding of this, note that for complex-valued A the anti-C-
linear part (the K-part) of d) is given by O = 1(dA + i x d)). In fact,

(dX + i % dN)(JX) = %d\(X) — i dA(X) = —i(d) + i % dN)(X).

A holomorphic structure is a generalized 0-operator. Equation (3._3) is the only natural way
to make sense of a product rule of the form D(yA) = (D)X + YOA.

Example 8. Any given J € End(H"), J? = —1, turns H = M x H" into a complex quater-
nionic vector bundle. Then I'(H) = {¢) : M — H"}, and

Dy = %(dd/ + T % di)

is a holomorphic structure.

Example 9. If L is a complex quaternionic line bundle and ¢ € T'(L) has no zeros, then
there exists exactly one holomorphic structure D on (L, J) such that ¢ becomes holomorphic.
In fact, any ¢ € I'(L) can be written as ¢ = ¢p with u : M — H, and our only chance is

Dip = %(gbdu +Jéwdp). (3.4)

This, indeed, satisfies the definition of a holomorphic structure.
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4. The Mean Curvature Sphere

Let M be a Riemann surface. Let H := M x H? denote the product bundle over M, and let
S: M — End(H?) € T'(End(H)) with S = —I be a complex structure on H. We split the
differential according to type:

dip = d'p + d"y,

where d' and d” denote the C-linear and anti-linear components, respectively. In general
d(Sv) # Sdi), and we decompose further:

d=0+A4, d'=0+Q,
where
O(Sy) = Soy, 0(Sy) = Soy,
AS=-5A, QS =-5Q.

Then O defines a holomorphic structure and 0 an anti-holomorphic structure on H, while A
and () are tensorial:

A€T(KEnd (H)), QeT(KEnd (H)). (4.1)

We find
SdS = 2(Q + A), (4.2)
Q= %(Sds —4dS), A= %(Sds + +dS). (4.3)

Remark 2. Since A and @ are of different type, dS = 0 if and only if A = 0 and @ = 0.
If dS = 0, then the +i-eigenspaces of the complex endomorphism S decompose H = (M X
C) ® (M x C). Therefore A and ) measure the deviation from the “complex case”.

We now consider an immersed holomorphic curve L C H in HP! with derivative 6 = d;, €
Q'(Hom(L, H/L)). Then there exist complex structures J on L and J on H/L such that

x6 =0J = J6.
We want to extend J and J to a complex structure of H, i.e. to find an
S e I'(End(H))
such that
SL=L, S|p=J «8=Jn.
Note that this implies 7dS (1)) = 7(d(St) — Sdyp) = §Jv — J&ip = 0, and therefore
dSL C L. (4.4)

The existence of S is clear: Write H = L @ L' for some complementary bundle I'. Identify
L' with H/L using 7, and define S|, := J, S|y := J. Since L' is not unique, S is not unique.
It is a very important feature of the 4-dimensional case that we can add a natural condition
to single out a unique extension:
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Theorem 1. Let L C H = M xH? be a holomorphic curve immersed into HP'. Then there
erists a unique complex structure S on H such that

SL=L, dSLCL, (4.5)
x*0 =005 =S5o04, )
QL =0. (4.7)

S is a family of 2-spheres, a sphere congruence in classical terms. Because S,L, = L, the
sphere S, goes through L, € HP', while dSL C L (or, equivalently, 65 = S§) implies it is

tangent to L in p, see Example 5. In an affine coordinate system [ﬂ = L the sphere S, has

the same mean curvature vector as f : M — R* = H at p. This motivates the

Definition. S is called the mean curvature sphere (congruence) of L. The differential forms
A, Q € QY(End(H)) are called the Hopf fields of L.

Remark 3. Equations (4.5), (4.6) imply dy + S * dip € I'(L) for ¢ € T'(L), whence d" =
0+Q = %(d + S * d) leaves L invariant. Hence an immersed holomorphic curve in HP! is a
holomorphic subbundle of (H, S,d") and, in particular, is a holomorphic quaternionic vector
bundle itself.

We now collect some information about the Hopf fields and the mean curvature sphere con-
gruence S : M — Z.

Lemma 2.
dA+Q)=2(QNQ+ANA).

Lemma 3. Let L C H be an immersed surface and S a complex structure on H stabilizing
L such that dSL C L. Then Q 1, = 0 is equivalent to AH C L.

Definition. For a quaternionic vector space or bundle V of rank n and an endomorphism
A € End(V) we define

1
< A >:= —traceg A,
4n

where the trace is taken of the real endomorphism A. In particular < I >=1. We obtain an
indefinite scalar product < A,B >:=< AB >.

Proposition 3. The mean curvature sphere S of an immersed Riemann surface L satisfies
<dS,dS >=<*dS,*dS >, <dS,*dS >=0,
i.e. S: M — Z is conformal.

Because of this proposition, S is also called the conformal Gauss map, see Bryant [2].
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5. Willmore Surfaces

Throughout this section M denotes a compact surface.
The set

Z={S € End(H?)|S? = —TI}
of oriented 2-spheres in HP' is a submanifold of End(H?) with
TsZ={X € End(l*)| XS = -SX}, 1lgZ={Y €End(l)|YS=SY}
Here we use the (indefinite) inner product < A, B >:=< AB > = { tracer(AB).

Definition. The energy functional of a map S : M — Z of a Riemann surface M is defined
by

E(S):z/ < dS A *dS > .
M

Critical points S of this functional with respect to variations of S are called harmonic maps
from M to Z.

Proposition 4. S is harmonic if and only if the Z-tangential component of d*dS vanishes:
(d*dS)" = 0. (5.1)

This condition is equivalent to any of the following:

d(S *dS) =0, (5.2)
dxA=0, .
d+Q =0. (5.4)

We now consider the case where S is the mean curvature sphere of an immersed holomorphic
curve. We decompose dS into the Hopf fields.

Lemma 4.

<ASNA*dS >=4(< AN*A >+ < QA*Q >), (5.5)
<ASANSAS >=4(< AN*A> — < QA*Q >). (5.6)

Proposition 5. The integral
1
degS:z—/ <ANKA> — < QA*Q >
T Jm

15 a topological invariant of S.
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Therefore,
E(S):4/ <A/\*A>+<Q/\*Q>=8/ < AN*A> —4mdeg S,
M M
and for variational problems the energy functional can be replaced by the integral of

< ANxA >.

Definition. Let L be a compact immersed holomorphic curve in HP' with Hopf field A. The
Willmore functional of L is defined as

1
W(L):z;/M<A/\*A>.

If we vary the immersion L : M — HP*, it will in general not remain a holomorphic curve.
On the other hand, any immersion induces a complex structure J on M such that with respect
to this it is a holomorphic curve, see Proposition 2. Critical points of W with respect to such
variations are called Willmore surfaces.

Computation of the first variation of W yields

Theorem 2. (Ejiri [3], Rigoli [8]) An immersed holomorphic curve L is Willmore if and only
if its mean curvature sphere S is harmonic.

6. Metric and Affine Conformal Geometry

We consider the metric extrinsic geometry of f : M — R* in relation to the quantities
associated to

L= [ﬂ : M — HP!.

For brevity we write < .,. > instead of < .,. >g.
Let N, R denote the left and right normal vector of f: M — Hj i.e.

xdf = Ndf = —df R.
Then
Proposition 6. (i) The second fundamental form II1(X,Y) = (X - df(Y))* of f is given
by

[I(X,Y) = = (+df (Y)dR(X) — AN(X) % df (V). (6.1)

1

2

(ii) The mean curvature vector H = 1 trace I1, the Gaussian curvature K and the normal
curvature K* are given by

_ 1 _ 1
Hdf = 5(*dR+ RdR), dfH = —5(*dN + NdN) (6.2)
1
K|df|? = 5(< *dR, RAR > + < *dN, NdN >) (6.3)

1
K*|df|> = 5(< *dR, RAR > — < *dN, NdN >) (6.4)
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(iii) We obtain
1
([H* = K = KH)|df|* = 3| » dR - RdR]?

In particular, if f : M — ImH = R® then K+ = 0, and the classical Willmore integrand

s given by
1
(| H]? — K)|df|> = Z' * dR — RAR|*. (6.5)
The Hopf fields are given by
Proposition 7.
i dN + N xdN 0 -1 . 0 0 -1
4*Q_G( —2dH + w 0) G 4*A_G(w dR—i—R*dR) G

where G = <(1] J;), and w=dH + H xdf H+ RxdH — H * dN.

Proposition 8. The Willmore integrand is given by
1 1
<AN¥A> = E\RdR — xdR|* = Z(|711|2 — K — K*)|df|?.

For f: M — R3, this is the classical integrand ¢(|H|> — K)|df|*.

We finally express the FEuler-Lagrange equation d * A = 0 for Willmore surfaces in affine
coordinates.

Proposition 9.

_ L (0 0\ 4 _ [—fdw —fduf
d*A_ZG(dw 0>G1_(dw dwf)'

with w =dH + R+ dH + %H(NdN — *dN). Therefore, f is Willmore if and only if dw = 0.

Example 10. (Willmore Cylinder) Lety: R — ImH be a unit-speed curve, and f : R* —
H the cylinder defined by

fs,t) =(s) +1

with the conformal structure J % = %. Then using Proposition 9, we obtain, after some

computation, that f is (non-compact) Willmore if and only if

1
5&3 +K"—kt?=0, (k7)) =0.

This is exactly the condition that v be a free elastic curve.
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7. Twistor Projections

Let EC H:= M x H? = M x C* be a complex (not a quaternionic) line subbundle over a
Riemann surface M with complex structure Jz induced from right multiplication by i on HZ.
We define 6 € Q' (Hom(E, H/E)) by 6g¢ := mgd¢, and call E a holomorphic curve in CP3,
if

This is equivalent to the fact that the holomorphic structure

d'p = %(ahﬁ ik di) (7.1)

of H maps I'(E) into itself, and hence induces a holomorphic structure on the complex line
bundle E.
A complex line bundle ¥ C H induces a quaternionic line bundle

L=EH=FE®EjCH.

The complex structure Jg admits a unique extension to the structure of a complex quater-
nionic bundle (L, J), namely right-multiplication by (—i) on Ej. Conversely, a complex
quaternionic line bundle (L, J) C H induces a complex line bundle

E:={¢eL|Jp= i}
Definition. We call (L, J) the twistor projection of E, and E the twistor lift of (L, J).

Remark 4. As in the quaternionic case, any map f : M — CP? induces a complex line
bundle E, where the fibre over p is f(p), and vice versa. Holomorphic curves as defined
above correspond to holomorphic curves in the sense of complex analysis. The correspondence
between E and (L, J) is mediated by the Penrose twistor projection CP?* — HP!.

Theorem 3. Let E C H be a a complex line subbundle over a Riemann surface M, and

(L, J) its twistor projection. Assume L to be immersed. Then E is a holomorphic curve in
CP? if and only if (L,J) is a holomorphic curve in HP* with A|p, = 0.

Given a surface conformally immersed into R?, the image of a tangential circle under the
quadratic second fundamental form is (a double cover of) an ellipse in the normal space,
centered at the mean curvature vector, the so-called curvature ellipse. The surface is called
super-conformal if this ellipse is a circle. Using results of Section 6 in connection with
Proposition 7, one can show that the condition A|;, = 0 is essentially the super-conformality:

Theorem 4. A conformally immersed Riemann surface f : M — H = R* is super-conformal
iof and only if [‘ﬂ : M — HP! or []” : M — HP! is the twistor projection of a holomorphic
curve in CP3.
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8. Backlund Transforms of Willmore Surfaces

In this section we shall describe a method to construct new Willmore surfaces from a given
one. The construction depends on the choice of a point oo, and therefore generously offers a
4-parameter family of such transformations. On the other hand, the necessary computations

are not invariant, and therefore ought to be done in affine coordinates.
Let f: M — H be a Willmore surface with N, R, H, and

w=dH+Hx*dfH+ RxdH — H xdN.

Then dw = 0, and hence we can integrate it (on the universal covering of M). Assume that
g : M — H is an immersion with

dg = %w. (8.1)

We want to show that g is again a Willmore surface called a Backlund transform of f. Using
this name, we refer to the fact that in a given category of surfaces we construct new examples
from old ones by solving an ODE (8.1), similar to the classical Bécklund transforms of K-
surfaces, see Tenenblat [9].

We denote the associated to g by a subscript (.),, and want to prove dw, = 0. The com-
putation of w, can be done under the weaker assumption (8.2), which holds in the case
above.

Proposition 10. Let f,g: M — H be immersions such that
df Ndg = 0. (8.2)
Then [ and g induce the same conformal structure on M, and

N, = -R, (8.3)
dg(2dH, — w,) = —wdf. (8.4)

If f is Willmore, and ¢ is defined by (8.1), then
dg(2df + 2dH, — w,) = 2dgdf + dg(2dH, — w,) = (2dg — w)df = 0.
Hence
wy = 2d(f + H,), (8.5)

and g is Willmore, too.
Now assume that h := g — H is again an immersion. Then,

2dh A df = (2dg — 2dH) A df = (w — 2dH) A df = 0.
Proposition 10 applied to (h, f) instead of (f, g) then says
—wpdh = df (2dH — w) = df (2dH — 2dg) = —2df dh.
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We find w, = 2df, whence h is again a Willmore surface. We call g a forward, and h a
backward Backlund transform of f. h can be obtained without reference to g by integrating
d(g—H) = 3w —dH.

Note that f is a forward Backlund transform of h because df = %wh, and is also a backward
transform of g because df = sw, — dHy, see (8.5).

The concept of Béacklund transformations depends on the choice of affine coordinates. The
following theorem clarifies this situation.

Theorem 5. Let L be a Willmore surface in HIP'. Choose non-zero 3 € (H?)*,a € H? such
that < B,a >=0. Thend < 3,*x4a >=0=d < 3,%*Qa >. If g,h : M — H C HP' are
immersions that satisfy

dg=2<fB,%xAa >, dh=2<p,%Qa >,

they are again Willmore surfaces, called forward respectively backward Béicklund transforms of
L. The free choice of 3 implies that there is a whole S* of such pairs of Bicklund transforms.
(Different choices of a result in Moebius transforms g — g\, or h — h\, for a constant \.)

We can now proceed from g with another forward Backlund transform. To do so, we must
integrate sw, = d(f + Hy). But, up to a translational constant, this yields

f:=f+H, (8.6)

Using Proposition 7, we now get for f, and similarly for the twofold backward Bécklund

transform f
({) € ker A, ({) H D image Q.

But this means that away from the zeros of A or () the 2-step Béacklund transforms of a Will-
more surface L in HP' can be described simply as L = ker A or L= image @. In particular
there are no periods arising. It can be shown that (as a consequence of holomorphicity) the
kernel of A defines a non-singular line bundle L even at the zeros of A:

Proposition 11. Let L be a Willmore surface in HP!, and A # 0 on each component of
M. Then there exists a unique line bundle L C H such that on an open dense subset of M
we have:

L=kerA, and H=L& L.
A similar assertion holds for image Q.

Assuming that L is immersed, its invariants can be obtained directly from L. E.g. for the
@-Hopf field we get

Theorem 6. For the 2-step Bicklund transform L of L we have
Q= A. (8.7)

Hence L is again a Willmore surface.
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We obtain a chain of Backlund transforms

- f = h > f = g — f
I I I
— L — L — L

Of course, the chain may break down if we arrive at non-immersed surfaces, or it may close

up. 5 .
Taking the two-step backward transform of L, we get image() = image A = L. Hence

L = L. We remark that the above results similarly apply to the backward two-step Backlund
transformation L — L = image ). As a corollary of (8.7) and its analog A = () we obtain

Theorem 7.

e
Il
e~

Il
S~

9. Willmore Surfaces in S®

Let < .,. > be an indefinite hermitian inner product on H?. Then the set of isotropic lines
< 1,1 >= 0 defines an S® C HP?, while the complementary 4-discs are hyperbolic 4-spaces.
Let L be a line bundle with mean curvature sphere S. We look at the adjoint map M —
Z,p— S, with respect to < .,. >. It is easily seen that S = S* implies that L is isotropic.
Conversely, if L is isotropic, then S* satisfies the characterization of S given in Theorem 1.

Proposition 12. An immersed holomorphic curve L in HP' is isotropic, i.e. a surface in
S3, if and only if S = S*.

On the other hand, a 2-sphere S € Z intersects the isotropic S? orthogonally, if and only if it
represents totally geodesic 2-planes in the complementary hyperbolic 4-spaces. The orthog-
onality can be described using affine coordinates with isotropic point oo and the reflexion
H— H 2+ —7 at InH = S®. We get

Proposition 13. A 2-sphere S € Z intersects the hyperbolic 4-spaces determined by an
indefinite inner product in hyperbolic 2-planes if and only if S* = —S.

Now let L be a connected Willmore surface in S? C HP!, where S? is the isotropic set of an
indefinite hermitian form on H?. Then its mean curvature sphere satisfies

S*=5.

Let us assume that A #Z 0, and let L = ker A and L = image Q be the 2-step Backlund
transforms of L. Then S* = S implies L=1L. Using this one shows that —S satisfies the
requirements for S and hence S = —S. We now turn to the 1- -step Backlund transform of
L. If dFF =2 x% A, then

AdF+F*)=2+%A4+2+A"=2xA—-2xQ = —
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Because 5* = S, we can choose suitable initial conditions for F' such that
F+F=-8S. (9.1)

f
1

transform of f, and from S* = S we get ¢ + g = H. Using the properties of Backlund
transforms we compute the mean curvature sphere Sy and find S; = —S;. Hence the mean
curvature spheres of g intersect S® orthogonally, and therefore are hyperbolic planes. We
know that, using affine coordinates and a Euclidean metric, the mean curvature spheres are
tangent to g and have the same mean curvature vector as g. This property remains under
conformal changes of the ambient metric. Therefore, in the hyperbolic metric, ¢ has mean
curvature 0, and hence is minimal. If A = 0, then w = 0, and the “Bécklund transform”
is constant, which may be considered as a degenerate minimal surface. In general g will be
singular in the (isolated) zeros of dg = fw, but minimal elsewhere.

The converse is also true:

We now use affine coordinates with L = . Then the lower left entry g of F' is a Backlund

Theorem 8. (Richter [7]) Let < .,. > be an indefinite hermitian product on H?. Then
the isotropic lines form an S® C HP', while the two complementary discs inherit complete
hyperbolic metrics. Let L be a Willmore surface in S° C HP'. Then a suitable forward
Backlund transform of L s hyperbolic minimal. Conversely, an immersed holomorphic curve
that is hyperbolic minimal is Willmore, and a suitable backward Bdcklund transformation is
a Willmore surface in S3.

10. Spherical Willmore Surfaces in HP!

In this section we sketch a proof of the following theorem of Montiel, which generalizes an
earlier result of Bryant [2] for Willmore spheres in S°.

Theorem 9. (Montiel [4]) A Willmore sphere in HP' is a twistor projection of a holomor-
phic or anti-holomorphic curve in CP2, or, in suitable affine coordinates, corresponds to a
minimal surface in R*.

The material differs from what we have treated so far: The theorem is global, and therefore
requires global methods of proof,imported from complex function theory.

Let F be a complex vector bundles. We keep the symbol J € End(H) for the endomorphism
given by multiplication with the imaginary unit ;.

We denote by E the bundle where J is replaced by —J. If < .,. > is a hermitian metric on
E, then

E—SE=E"' 9 —o<y,.>

is an isomorphism of complex vector bundles. Also note that for complex line bundles F, F,
the bundle Hom(E}, E») is again a complex line bundle.

There is a powerful integer invariant for complex line bundles E over a compact Riemann
surface, the degree, classifying these bundles up to isomorphism. It can be defined as the
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integrated curvature form w of a complex connection, or, equivalently, as the algebraic number
of zeros of a generic section ¢ € I'(E):

deg(E) := %/Mw,zord(ﬁ:: Y ind, ¢.

#(p)=0

The degree satisfies

deg(E) =degE ' = —degE,
deg(E; ® E5) = deg E + deg Es.

Example 11. Let M be a compact Riemann surface of genus g, and F its tangent bundle,
viewed as a complex line bundle. Using a complex connection, we compute its degree to find
deg(E) = x(M) = (2 — 2g). For the canonical bundle K := E~! we therefore get

deg(K) = 29 — 2.

Now, let (E, ) be a holomorphic complex vector bundle. We denote by H°(E|y) the vector
space of holomorphic sections over U.

If E is a complex line bundle with holomorphic structure, and ¢ € H(E)\{0}, then the
zeros of 1 are isolated and of positive index because holomorphic maps preserve orientation.
In particular, if M is compact and deg £ < 0, then any global holomorphic section in F
vanishes identically.

In the proof of the Montiel theorem we shall apply the concepts of degree and holomorphicity
to several complex bundles obtained from quaternionic ones. We relate these concepts.

Definition. If (L,J) is a complex quaternionic line bundle, then Ey, := {4 € L|Jy = ¢i}
1s a complex line bundle. We define deg L := deg E.

If Ly, Ly are complex quaternionic line bundles, and E; := E,, then Hom, (L1, L) is iso-
morphic to Home(E4, Ey) as a complex vector bundle. In particular

degHom (L1, Ly) = — deg Ly + deg Ls.

We now consider an immersed holomorphic curve L € H = M x H? in HP! with mean
curvature sphere S. The bundle K End_(H) is a complex vector bundle, the complex struc-
ture being given by post-composition with S. The complex structure 0 on TM, and the
(quaternionic) holomorphic structures d on H and d on H induce a holomorphic structure
on

KEnd (H)= KHom, (H,H) = K Hom¢(H, H).
If L is Willmore, then d * A = 0, and this implies 0A = 0, and A is holomorphic:

A€ H'(KEnd_(H)) = H(K Hom, (H, H)).
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As a consequence, either A = 0, or the zeros of A are isolated, and there exists a line bundle
L C H such that L = ker A away from the zeros of A. For local ¥ € T'(L) and holomorphic
Y € H°(TM) we have

QA =BAV)) - AX)0v.

Therefore L is invariant under 9, like L is invariant under 9, see Remark 3. As above, we
get a holomorphic structure on the complex line bundle K Hom, (H /L, L) and A defines a
holomorphic section of this bundle:

A€ H (K Hom,(H/L,L)).
We turn to the

Proof of Theorem 9. If A =0 or @) =0, then L is a twistor projection by Theorem 4.
Otherwise we have the line bundle L, and similarly a line bundle L that coincides with the
image of ) almost everywhere.

Proposition 14. We have the following holomorphic sections of complex holomorphic line
bundles:

A€ HY(KHom (A/L, L)), Q¢ H'(KHom, (H/L,1L)),
6, € H'(K Hom, (L, H/L)), AQ € H°(K*Hom,(H/L,L)),
and if AQ =0 then §; € H'(K Hom, (L, H/L)).

We proved the statement about A, the other proofs are similar.
The degree formula then yields

ordé;, =deg K —deg L +deg H/L
ord(AQ) =2deg K — deg H/L + deg L
=3deg K —ord dy,
=6(g—1)—orddy.
For M = S, ie. g =0, we get ord(AQ) < 0, whence AQ = 0. Then L = L, and
ord A =deg K + deg H/L + deg L
ordQ = deg K — deg H/L — deg L
ord0; = deg K + deg L — deg H/L.
Addition yields
ordd; +ord@ +ord A = 3deg K —deg H/L + deg L
=4deg K —ordd, = —8 —ord .
It follows that ordd; < 0, i.e. d; = 0, and L is d-stable, hence constant in H = M x HZ.
From AS = —-SA = O we conclude SL = L. Therefore all mean curvature spheres of L pass

through the fixed point L. Choosing affine coordinates with L = oo, all mean curvature
spheres are affine planes, and L corresponds to a minimal surface in R4. O
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