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ABSTRACT. Almost-complex and hyper-complex manifolds are considered in this
paper from the point of view of complex analysis and potential theory. The idea
of holomorphic coordinates on an almost-complex manifold (M,J) is suggested by
D. Spencer [Sp]. For hypercomplex manifolds we introduce the notion of hyper-
holomorphic function and develop some analogous statements. Elliptic equations
are developed in a different way than D. Spencer . In general here we describe only
the formal aspect of the developed theory.

1. INTRODUCTION.

Differentiable manifolds are described locally by smooth real coordinates. This
is typical in differential geometry. Complex-analytic manifolds are equipped locally
by complex-analytic coordinates. This give rise to the possibility of applying the
theory of holomorphic functions of many complex variables in the local geometry of
complex-analytic manifolds. In the case of almost complex manifolds (M, J) one use
ordinary real coordinates (z!, ..., 2?"). Here we shall consider complex self-conjugate
coordinates (z!,...,2", 2%, ..., 2"), where 2¥ = 2% ! 4+ i2?f and 2% = 22F 1 — 22k,

We denote by J* the action of J on differential forms of M, i. e. by definition

(J*(w)X et w(JX), where X is a vector field, and w is a differential form on M. For

a fixed index k, we say that z* is a “holomorphic” coordinate if J*dz* = idz* and
J*dz*¥ = —idz*. For non-holomorphic coordinates 27 we have

Jdz? = Jydz' + ...+ Jde" + IR 4 L T

In the case z* is a holomorphic coordinate for each £ = 1,...,n, the almost com-

plex structure J is an integrable one. The interest of the existence of holomorphic
coordinates ¥ when the index k takes not all values 1,...,n is suggested by Donald
Spencer [Sp].

By H = H(1,i,j,k),ij=k , we will denote the 4-dimensional quaternionic vector space,
i. e. ¢ € H means that ¢ = 2° + iz! + jz? + kx3, where 2°, 2!, 22, 23 € R. We will use
different complex number representation for quaternions ¢, namely ¢ = z + (j, where
z = 2% +irtand ¢ = 2? +iz3. So we obtain the right j-complex splitting of H, denoted
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by lW,i.e. ' = (R®iR)®(RDiR)j. By RdiR is denoted the tensor product of
R with itself under the basis (1,0) and (0,7). Identifying R&®i R with C we have that
¥ is isomorphic to C x C. Analogously, we will consider the right i-complex splitting
of H, namely ' = (R®jR)®(ROjR)i ,ie q=2°+ jr+ +(2? —jz*)i. H is
isomorphic to C x C too.

By H" is denoted the n-dimensional quaternionic vector space (real 4n-dimensional)

H' = {(¢",....,q") : ¢ € H,a = 1,...,n}
According to the above accepted notation we have ¢* = 2 +(%j, a=1,...,n or
H" :(Cn _{_(cn.]’ Cn — {zl"”’zn . Za c (C}

This representation is with respect of the right j-complex splitting H/. A similar
representation of H" can be written with respect to the right i-complex splitting
H-H=C+C'i, C"=R"¢R'i,C*=R*'oR"i.

Let (M,J,K) be a hyper-complex manifold, JK +KJ = 0, dim Mg = 4n. A pair of
complex coordinates (z, () is called hyper-holomorphic pair if z is holomorphic with
respect to the almost-complex manifold (M, J) and ¢ is holomorphic with respect to
(M, K).

2. HOLOMORPHIC COORDINATES

2.0.1. Almost-holomorphic functions. By definition a function f : U — C, where U
is an open subset of M, is called almost holomorphic or almost complex if 0f = 0.
The above definition can be reformulated in the following equivalent form:

f is almost holomorphic iff J*df = idf

Respectively, f is almost-antiholomorphic iff J*df = —idf . For the proof
of the equivalence it is enough to take in view that the exterior derivative d is decom-
posed as d = 0 + O over the space of smooth functions on M. Another form of this
definition is obtained taking the real and imaginary parts of f,i.e. f = u+v. In view
of df = du + idv we receive J*du + iJ*dv = idu — dv. This means that J*du = —dv
and J*dv = du. As the obtained two equations are not independent, we can state the
following Cauchy- Riemann type form of the definition

f =u+ 1 is almost-holomorphic iff J*dv = du or equivalently J*du = —dv.

Respectively: f = u+1v is almost-anti holomorphic iff J*dv = —du or equivalently
J*du = dv

Remark: For an almost complex manifold (M, J) with non-integrable J, the de-
composition d = d + 0 is not valid over differential (p, ¢)-forms on (M, J).

The following proposition is well-known:

Proposition 1. The almost complex structure J of the almost complex manifold
(M,J), dimpM = 2n, is an integrable almost complex structure if and only if for
every point p € M, there is a neighborhood U of p and almost holomorphic functions
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fi U —C, 7 =1,...,n, which differentials at p, i.e. dpf;, j = 1,...,n, are C-linear
independent.

Remark: Taking (U; fi, ..., fn) as local coordinate system (as f; are functionally
independent on a neighborhood of p), we obtain a local complex-analytic coordinate
system (U; 21, ..., 2,), where zF = f;.

3. SPENCER COORDINATES

We say that a local Spencer coordinate system of type m is defined on an almost
complex manifold (M, J) if the following conditions hold:

1.) There exist an open subset U of M and m different functionally independent
almost holomorphic functions f; : U — C, j = 1,...,m, such that

2.) The sequence (f1,-.., fm) is a maximal sequence of functionally independent
on U almost-holomorphic functions. 3.) The sequence

1 m _m+1 n —n+l —n+m n+m-+1 =2n
(U,w, cyw™, 2™ 2N w0, L w™ T Z e 2

where w/ = fj, 3 =1,...,m, determines a local self-conjugate system on (M, J).

An almost complex manifold which is equipped with an atlas of local Spencer
coordinate systems is by definition an almost-complex manifold of Spencer type m.
It is to remark that the notion of Spencer type is correctly defined in the category of
almost complex manifolds. This follows by the fact that each composition of almost-
holomorphic mappings and each inverse of almost-holomorphic diffeomorphism are
almost-holomorphic too.

Lemma 1: The matrix representation of J* in each local Spencer coordinate
system

1 m _m+1 n —n+l —n+m zn+m+1 =2n
(U,w™, cyw™, 2™ 2w, a2 yey Z00)

where w? = f;, j = 1,...,m, are functionally independent almost holomorphic func-
tions, seems as follows

1B, * 0 *
0 = 0 *
0 *x —iF, *
0 = 0 *

E,, being the unit m X m matrix.
Proof. 1t is enough to take in view that:

(dw?, ..., dw™, dz™*t .. d2", dw" T .., dw™T, 2T L dZP)
is basis of the cotangent space and
J*dw’ = J*df; = idf; = idw?, j=1,...,m A
Consequences: The first m equations of the system J*df = idf are just the condi-
tions 0f/0z; =0,j=1,....m
We shall consider the mapping from U to C™ defined by fi, ..., frs. This mapping is
a smooth submersion as it can be considered as a composition of the diffeomorphism
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defined by Spencer coordinates of U in C* x C* and the projection of C* x C" on
C™, m < n. This mapping will be denoted by fi;, and the image of U by fy will be
denoted Uf,. It is an open subset of C™, which will be called a naturally associated
m-~dimensional open set to the considered local Spencer coordinate system.

Lemma 2: Each almost holomorphic function A, defined on a local Spencer coordi-
nate system U is represented as a superposition of a holomorphic function H defined
on Uy, and the almost holomorphic functions fi, ..., f, defined on U, i.e.

h=Ho (fi, s fm) = H(f1, s fn)

Proof: As w; = f;, j =1,...,m, is a system of smooth functionally independent on
U functions, we have h = H(w!, ..., w™) with H € C*°(U). But

OH = (0H/0w")dw' + ... + (0H/ow™)dw™

and in view of 0H = 0h = 0, we get that the above written (0,1)-form is a zero-form,
or 0H/ow; =0, j=1,..m. A

Lemma 3: Let (w!,...,w™) and (v!,...,v™) be two systems of holomorphic coor-
dinates on U, defined by two different systems of almost holomorphic on U systems
(f1, -, fm) and (hyq, ..., hy). Then there exists a bijective holomorphic transition map-
ping between the mentioned two coordinate systems.

Proof. According to Lemma 2 we have v; = Hj(w?, ..., w™), j = 1,...,n,where H;
are holomorphic functions of (wy, ..., w,,). The system H = (Hy, ..., H,) defines the
mentioned transition mapping as the differentials dH; are C-linear independent. M

Recapitulating we obtain the following

Proposition 2: On each paracompact almost complex manifold (M, J) of constant
Spencer type m there exists a locally finite covering U; by self-conjugated Spencer’s
coordinate system (U, zjl-, ey 20 ...) such that in every intersection U; N Uy the holo-
morphic coordinates z}, .., 2" change holomorphically in the other holomorphic co-
ordinates zj, ..., 2}".

4. LOCAL SUBMERSIONS AND LOCAL FOLIATIONS

As it was remarked above the mapping fy : U — C™, defined by the almost
holomorphic functions (f1, ..., fin) is a local submersion. According to the introduced
notations

fuU) =Uy, cC”

The leaves of this submersion are defined as the stalks of the mapping f;. Each
leaf is a smooth (2n — 2m)-dimensional submanifold of U on which all functions f;
have constant value. Transversal leaves are defined as univalent inverse images of Uy,
i.e. as sections of U over Uy,.

We shall consider the set of all open subsets U, C C™, corresponding to different
mappings fy, U open subset of M. This set together with the transition mappings
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described in Lemma & defines a pseudo-group of holomorphic transition mappings
between open subsets of C™ denoted as follows

T{US, Ve, .sH:US = VE, ..}

We shall denote by C™/I" the set of equivalent points of C™ with respect to the
natural equivalence defined by the holomorphic transition mappings. With this in
mind we consider the family {fy : U — M} and will define a glued mapping

f:M—-C"/T
as follows: if p € M we take an open subset U such that p € U and we set
f(p) = {the equivalence class of the point fy(p).}

Under the assumption that C™ /T is equipped with the standard complex structure
i defined by holomorphic coordinates (w?, ...,w™) we can formulate the following

Lemma 4. The glued mapping f : M — C™ /T is an almost holomorphic mapping
between (M,J) and (C™ /L, 1i).

Proof. As the glued mapping f coincides locally with some f;; we have:

Tdfy = FA(fy, s fin) = Tty s dfin) = (Fdfyy s Todfm) = i(dfs, oy dfi) =
1d fy. So each fy is an almost holomorphic mapping

Lemma 5. The sheaf of almost holomorphic functions on M is the inverse image
of the sheaf of holomorphic functions on C™/T.

Proof. The mentioned sheaf on M is defined by the presheaf {U, O (U)} where
U varies in the set of all open subsets of M and Oy (U) is defined as follows:

OM(U) = {hO fU | h e O(Cm/rfU(U))} .

4.1. Hypercomplex manifolds and hyperholomorphic functions. Let M be a
4n-dimensional (C*°) smooth manifold. A hypercomplex structure on M is defined by
a pair of two almost complex structures J and K such that JK 4+ KJ = 0. It is easy
to see that the composition JK is an almost-complex structure too. Moreover, for
each triple of real numbers b, ¢, d, such that b 4+ ¢ + d? = 1, the linear combination
bJ + cK + d(JK) is an almost-complex structure on M. So there is a family of almost
complex structures on M parametrized by the points of sphere ¥?. (See for instance
[AM], [ABM]).

We shall consider almost-holomorphic functions on hypercomplex manifolds. The
definition remains the same as in the above considered case, for instance on (M, J, K)
we have J-almost- holomorphic function which are complex-valued function f on
(M,J) such that J*df = idf using the right-side j-complex splitting of H. Respec-
tively K-almost- holomorphic functions g on (M, J, K) are the almost-holomorphic
with respect to(M,K) such that K*dg = jdg using an i-complex splitting of H.
Let(M, J,K) be a hypercomplex manifolds and H be 4-dimensional quaternionic vec-
tor space. According to Sommese [So] the right-side multiplication by i and j are
given respectively by the matrices S and 7', called standard quaternionic structures.
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0 1.0 O 0 0 10
-1 00 0 0 0 01
5= 0 00 -1 I'= -1 0 0 0
0 01 O 0 -1 00

In the paper of Sommese the matrix 7" s denoted by K.

As we have S = —1,7? = —1,(ST)?> = -1, and ST + TS = 0, we can consider
(H, S,T) as a special hypercomplex manifold. (See [So] ). A function F' defined on
an open subset U C M with valued in H is called J-hyper-holomorphic function on
UifdFoJ=SodF,or J*dF = SdF. Using the right-side j-complex splitting H
we take the compositions of F' with the projections of H on the first and the second
components of V. So F is represented by a pair of complex valued functions denoted
respectively by f and ¢. If we set F' = u+iv 4+ j ¢ + k n, where u,v,(,n are
real-valued functions on U, we can write ¢ = u + v+ ( ¢ +in)j, with f = u + iv,
¢ = ( +1n. Complexifying the matrix S, i.e. setting

g_[1 0 |0 1] o=[0 0}
0 —i}l’ -1 0 0 0}
and taking dF' = df + dyj, we calculate that
JUdf + J*dpj = idf —idpj.
Having in mind the splitting B, we get J*df = i df and J*dy = —i dyp, which means
that f is J-almost-holomorphic function on U and ¢ is J-almost-antiholomorphic.

For the definition of K-hyper-holomorphic function on U we shall use the other

complex splitting of H, namely H'. A function G : M — I, ie. G = g+ i,

g = u + j{', ¥ = v — jn, will be called K-hyper-holomorphic function on U if
dGo K =T odG or K*dG = TdG. Taking a (2x2)-representation of the matrix 7T,

l.e.
0 1 10 00
] e P B P!

after a short calculation we get
K*dg+i K*dy =dy—1idg

It follows that K*dg = dv) and K*di = —dg. This result is in terms of H.
Now we will translate the obtained result in terms of H/. From
K*(du' + d('j) = dv'— dn'j we get

K*du' =dv' and K*d{' = —dn'.
Analogously, from K*(dv' — dn'j) = —(du' + d('j) we get
K*dv' = —du’ and K*dn' = —d('.

But the system K*du' = dv’, K*dv' = —du' is just the Cauchy-Riemann system,
which says that the function u'+4v' is J-almost-antiholomorphic, i. e. J*d(u'+iv') =
=—id(u' + w'). The function ¢’ 4 i1’ is J-almost-holomorphic.
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4.2. Hyper-Spencer coordinates. Hyper-holomorphic coordinates on a hyper-complex
manifold (M, J, K) can be introduced by functionally independent quaternionic-valued
functions f, + ¢aj, @ = 1,...,m, m = (1/2)dimMp, or by the complex-valued func-
tion ( fa, o). We are interested of the possibility to have m < (1/2) dim Mg. More
precisely, a J-hyper- Spencer coordinate system is defined locally on M as a maximal
system of m functionally independent J-hyper-holomorphic functions. A hypercom-
plex manifold equipped with an atlas of local J-hyper-Spencer coordinate systems is
called a hypercomplex manifold of Spencer type m.

Having in mind the interconnection between J-hyper-holomorphic functions and
J-almost-holomorphic ones we derive the analogues of the Lemmas 1,2 and & of the
previous paragraphs. Let us remark that in view that f, are J-almost- holomorphic,
and ¢, are J-almost-antiholomorphic, the corresponding matrix representations of J*
is as follows (according to Lemma 1)

1B, * 0 * —E, x 0 x
0 = 0 * 0 E I |
0 *x —iFE, =* X 0 x 1B, *
0 =* 0 * 0 * 0 %

Analogously, K-hyper-Spencer coordinates can be introduced with the help of K-
hyper holomorphic mappings. The Proposition 2 remains valid for J-holomorphic
transition functions and K-holomorphic transition functions. When the transition
transformations are simultaneously J- and K-holomorphic it follows that they are
affine.

Full coordinate systems defined by m = (1/2) dim My functions which are both J
and K hyper-holomorphic lead to quaternionic manifolds.

5. ELLIPTIC EQUATIONS

5.1. Potential structures on almost-complex manifolds. Let (M, J) be an al-
most complex manifold. We shall consider the following globally defined on M Pfaffian
form: w = J*du, where u = u(p),p € M, is a real-valued smooth (at least of class
C?) function. In the case the 1-form w is closed, we will say that w defines a poten-
tial structure on the almost complex manifold (M, J). On each local real coordinate
system (U,z = (2%)),z* € R,k = 1,...,2n, we have a matrix representation of J, i.e.

J =| JF(z) ||, where J¥(x) are smooth real functions on U. By J; is denoted the
j-row of the mentioned matrix and Vu is the gradient of u. It is easy to see
2n
Jdu =" "(J,- Vu)da?
g=1
where

1 9gp’

2n ou
Jg-Vu=Y _Jr
p=1
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For each potential structure on (M, J) the following two statements hold.
Consequence 1. On every simply connected domain {2 C M it holds that

/J*duzO
v

Consequence 2. The following system
O(J,eVu) 0O(J;eVu)

oxs oxs
s,q=1,---, 2n, is satisfied locally.

for each closed curve 7 in €.

5.2. Almost pluri-harmonic functions. By (M, J,w) is denoted an almost-complex
manifold (M,J) equipped with potential structure w. Then the 1-form w = J*du is

close, and we have dJ*du = 0. In this case we will say that the function u is an

almost-pluriharmonic function. The interconnection between almost-pluriharmonic

functions and almost-holomorphic ones (with respect to J) is like to this one be-

tween pluriharmonic functions and holomorphic ones. This follows directly form the

Cauchy-Riemann equations J*du = —dv, J*dv = du. Clearly the real part u and

the imaginary part v of the almost-holomorphic function f = u + v are almost-

pluriharmonic functions.

5.3. Elliptic equations on almost-complex manifolds. We denote by Ay the
following differential operator of second order (in terms of coordinates)

2n 82 2n 8
AJ = Zl AsPa.’L'Sal'p + ZIBP@
§,p= p=

where
n

Ay =) (J3J2 +830D),
g=1

and

2n
aJy  aJr
— s 9 _ S
Bp—ZJq (8$5 83:‘1)’
s,q=1
6,6 are the Kronecker symbols. Setting Ay = ||A,||, we obtain

AJ:JJ*+E27L

where J* is the transpose of J and FEs, is the unity 2n x 2n matrix.

We emphasize here that now we work with real coordinates, but not with complex
self-conjugate ones. However this corresponds to the Spencer type 0. In the other
extreme case of Spencer type n we have complex-analytic (holomorphic) coordinates.
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This is the case of complex analytic manifold with the standard almost-complex
structure denoted by S° (it is different from S in the previous paragraph).

—S‘):[_O1 é}x...x{_ol (1]} (n times)

As S%(S%* = FE,, we get Ago = 2E,, and Ago = 2A, where A is the Laplace
operator in 2n real variables.

Proposition 3:/\j is an elliptic differential operator.

Proof: Tt is sufficient to consider the following inequality

iimp&sfp Z (Z Jsﬁs) + Zn: (Z 55@)2 > g;g;, m

s=1 p=1
Considering the PDE
A_]’U, = 0,

we can state the following

Theorem :Fach almost pluriharmonic function u satisfies locally the equation
AJU/ =0

Proof: Let u be almost pluriharmonic, i.e. dJdu = 0, or the 1-form J*du is closed.
According to the previous paragraph u satisfies locally the following system of PDEs

(J,eVu)  0(J; e Vu)

ox* O0x?
s,q=1, -+, 2n. Now replacing
2n 8’11,
Jq.w—;J{;ﬂ and  J, oVu—Z saxp

in (4) we obtain the system

5" (6(%2) _ 6(Jf§;;>> 0

ors ok

p=1

k,s=1,---,2n. Multiplying each of the above written equations by J; and summing
with respect to s we obtain

g o 7 (0P 9P\ ou
ZZ(J’I:qasaxp_J &E’“&ﬂ’) ZZ‘] (axk_aa;)axp‘

p=1 s=1 =1 s=1

As we have

2n
IELEE
s=1



110 ST. DIMIEV, R. LAZOV, AND N. MILEV

and
Pu_ i 5 0*u
Ozkdzr 4 *0xsdar’
we obtain
2n  2n 2n  2n
oJ?  9Jr\ Ou
D 7S P s s k
53 U 800 g = 20 (e~ ) o
p=1 s=1 =1 s=1
Now taking ¢ = k£ and summing with respect to k we get exactly
AJU =0. N
In the case J = S° the above written equation is just the classical Cauchy-Riemann
system.
Consequences:

1. Each almost pluriharmonic function and respectively every almost holomorphic
function of class C? on a smooth manifold are of class C* too.

2. For connected smooth manifolds the maximum principle holds.

3. In the case of real analytic manifold M ,equipped with real-analytic structure J,
each J-pluriharmonic and each J-almost-holomorphic function is real analytic.

4. In the case of connected real analytic manifold M with real-analytic structure
J the principle of unicity of the analytic continuation holds.

Remark: This theorem is inspired from the paper [BKW]. The first announcement
is in [DM]
5.4. The equation dJ*du = 0 in terms of vector fields - commutators and
anti-commutators. Applying the well known formula

dw(X,Y) =X (w(Y)) = Y(w(X)) —w([X,Y]), wis 1-form, X, Y are vector fields

to the 1-form w = Jdu we present the equation (2) in terms of expressions of vector
fields, namely

(X, Y]3(u) = J[X,Y](u)
where [X,Y]; = “ X o0JV -V o0JX. Tt is to remark that [X, Y]y is not a vector field.
For instance:
(X, Y]s(fh) = (X, YL(Hh+ [ [X,Y]s(h) + X(F)IY)(R) —
(IX)(NY (h) + X (R)IY)(f) = IX)(R)Y(f)

Some properties of [X,Y];
Considering the natural splitting

CTM =T"*°M e T'M
we can take the restriction of [X, Y]y on T%YM. This means that
JX =4X and JY =Y
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where X,Y € T*YM. So we have
[X,Y];=Xo(iY)—Y o (iX) =i[X,Y]
Analogously
[X,Y]; = (—49)[X,Y] on T™'M
Now we take Xe€ T'9M and Y € T M
[X,Y]y=Xo(i¥) = Yo (=iX)=i(X oV +YoX)=i{X,Y}

Here {X,Y} denotes the anticommutator of X and Y. Analogously, if X € T%'M
and Y € THOM:

(X,Y]; =—i{X,Y}

5.5. Potential structures on hypercomplex manifolds. On a hypercomplex
manifold (M, J, K) we can consider two separate potential structures, namely

w; =J'du and wy = K*d(
or the sum
w=J"du + K*"d¢
The corresponding almost-pluriharmonic functions u, v, , n satisfy the equations:
dJ*du = dJ*dv =0 and dJ*d(=dJ*dn=0

We have also the natural defined elliptic operators Ay and Agk. According to the
proved theorem:

dJ'du=dJ*dv=0 = Aju=Az;v=0
and
dK*d( =dK*dn=0 = Agx(=Agn=0

For the sum w = J*du + K*d( a pair of functions (u,() appears, namely the
solutions of the following second order equation:

dY*du + dK*d( =0
In terms of vector fields the above written equations seem as follows

(X, Y];u=JX,Y](u) and [X,Y]xu=K[X,Y](u)
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6. GENERATION OF ALMOST-COMPLEX STRUCTURES

6.1. Remarks on the local equation of almost-holomorphic functions. Let
(M,J) be an almost-complex manifold, dimM = 2n. Having in mind the question
of the local integration of the equation J*df = idf, we shall examine how ”far away”
a non- integrable almost complex structure J is from the classical complex structure
related with the standard almost-complex structure S.

Let p be a point of M. Taking an open neighborhood U of the point p, small
enough, we can accept that U is a neighborhood of the origin in R*" (p to be the
origin). Now we shall replace J by it matrix representation J on U and J* will denote
the transposed matrix. We will use general real coordinates z = (z', ..., z?") € R?".
Let G denotes a non-degenerate (2n X 2n) matrix, such that G~1J*(0)G = S*, where
S* is the transposed matrix of 5,

S = [ E(J] _(?" ] , E, being the unit n x n matrix.

For x € U we set:

G LI(2)G = [

A(z), B(z),C(z), D(z) are n x n matrices.
Clearly we have for x = 0:
A(z)  B(z)+ En

g P = s and a0 = BO) = 00) = DO = 0

Moreover, we have (G~'J(z)G)? = —Es,, which implies the following identities:
A%(z) + (B(z ) E,)(C(x) — n):_E
A(z)(B(z) + Ep) + (B(z) + Eq)D(z) =
ECExg—En) (z) + ( )(C ( )~ En) =

E.)(B(z) + En) + D*(z) = —EQn
t

From the last system it follow that loca lly is valid:
A(z) = =(C(z) — Eq) ™' D(x) Clz) - )
B(z) + En = —(C(z) - Ex) ' (D*(2) + Ex)

Indeed, as

det(C(0) — En) = (=1)" #0

the inverse matrix (C(z) — E,) 'exists in some neighborhood of the origin 0€ R".
Now lets consider the equation (J* — iFy,)df = 0. It follows that

(GT'J*G — iEy,)df =0
and also

A(z) —iE, B(z)+ E,
C(z)— E, D(z)—iE,

Proposition:The following block matrix identity is valid:

df =0
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[ A(z) —iE, B(x)+E, ] = (A()—iE,)(C(z)—FE,)"' [ C(z) — E, D(z)—iE, ]

Proof: Let consider the right side of the identity:
(A(z) — iE,)(C(z) — E,) ™' [ C(z) — En D(z)—iE, | =
ut:

(A(x) — iE,)(C(x) — E,)"Y(D(z) — iE,) = B(z) + E,, as A(z) = —(C(z) —
E,)™'D(z)(C(z) — E,).

The last equality becomes:

(—=(C(2) = Eu)"'D(2)(C(z) = En) — iE,)(C(z) — En) " (D(z) — iE,) =

= (C(z) — En)™'(=D(z) — iE,)(C(x) — En)( (x) = En)"(D(z) — iEn) =

=—(C($)—En)‘( (z) +iEn)(D(z) — iEp) =

= —(C(z) — Bn) ' (D*(z) + iEy) = B(z) + E,. W

Corollary: The first n equations of the considered system

(J* = iBs)df =0
follow from the last n ones. So we obtain that locally this system is equivalent to the
next one:
| C(z) — B, D(z)—iE, |df =0
or:
[ E, (C(z) — E,) YD(z) —iE,) |df =0

Setting P(x) et (C(z) — E,) 'D(z) and Q(z) = wf (C(z) — E,) !, we receive the
following block matrix form of the considered equation of almost holomorphic func-
tions:

[ E. P(z)+iQ(z) | df = 0.

6.2. Local reconstruction of J by the matrices P and (). We will use the
following equalities:

C—E,=Q"'; D=Q 'P; A=-QQ 'PQ=—-PQ";

B+ E, =—Q((Q P)’+E,)=-PQ'P - E,

The matrix J can be reconstructed as follows:

~PQ' —PQ'P-Q
J = -1 -1 (*)
Q QTP

The mentioned reconstruction (*) can be considered as a generation of the matrix
representation of J on the open set U by the pair of matrices (P, Q). Denoting by
M(U, n) the algebra of all (n x n)-matrices equipped with the topology of coordinate
convergence, we can consider the Cartesian product M(U,n) x M(U,n) with the
product topology as a continuous family which generates the set J(U,2n) of all
(2n x 2n)-matrices J, which verify the matrix equation

J? + Ey, =0,
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as a kind of moduli space (locally). More precisely, the following proposition holds
Proposition 4:For each J € J (U, 2n) there is a pair (P, Q) € M(U,n) x M(U,n)

such that J is generated by (P, @) in the sense of the rule (*). Conversely, each pair

(P, Q) defines a J according to the rule (*). Each sequence (P,,Q,) of elements of

M(U,n) x M(U,n) determines a sequence of elements of J (U, 2n), and the limit of

the second sequence corresponds by the rule (*) to the limit of the first sequence.
The proof is clear.

6.3. Global reconstruction of J.. The problem of global reconstruction of almost
complex structures on a smooth manifold by an appropriate algebraic objects is much
more difficult. It seems that an approach can be developed on real-analytic almost
complex manifold (M, J) having local matrix representation for J with real-analytic
coefficients. Now we shall consider the sheaf of germs of almost complex structures,
denoted by J (M), and the sheaf of germs of pairs of matrices (P, Q). Supposing that
each J can be considered as a global section of the sheaf J (M), we can develop the
rule (*) for germs of J (M) and germs of pairs (P, Q) at each point p € M. The set
of global sections of J(M) must be generated by the sections of the sheaf of germs
of pairs (P, Q).
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