References

  1. P. Arnoux, V. Berthé & S. Ito (2002): Discrete planes, \Bbb Z^2-actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier (Grenoble) 52(2), pp. 305–349. Available at http://aif.cedram.org/item?id=AIF_2002__52_2_305_0.
  2. Pierre Arnoux (1988): Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore. Bull. Soc. Math. France 116(4), pp. 489–500 (1989). Available at http://www.numdam.org/item?id=BSMF_1988__116_4_489_0.
  3. Pierre Arnoux & Gérard Rauzy (1991): Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France 119(2), pp. 199–215. Available at http://www.numdam.org/item?id=BSMF_1991__119_2_199_0.
  4. Valérie Berthé (1996): Fréquences des facteurs des suites sturmiennes. Theoret. Comput. Sci. 165(2), pp. 295–309, doi:10.1016/0304-3975(95)00224-3.
  5. Valérie Berthé, Nataliya Chekhova & Sébastien Ferenczi (1999): Covering numbers: arithmetics and dynamics for rotations and interval exchanges. J. Anal. Math. 79, pp. 1–31, doi:10.1007/BF02788235.
  6. Michael Boshernitzan (1984/85): A unique ergodicity of minimal symbolic flows with linear block growth. J. Analyse Math. 44, pp. 77–96.
  7. Michael Boshernitzan (1985): A condition for minimal interval exchange maps to be uniquely ergodic. Duke Math. J. 52(3), pp. 723–752, doi:10.1215/S0012-7094-85-05238-X.
  8. Michael D. Boshernitzan (1992): A condition for unique ergodicity of minimal symbolic flows. Ergodic Theory Dynam. Systems 12(3), pp. 425–428, doi:10.1017/S0143385700006866.
  9. Julien Cassaigne (1999): Limit values of the recurrence quotient of Sturmian sequences. Theoret. Comput. Sci. 218(1), pp. 3–12, doi:10.1016/S0304-3975(98)00247-3. WORDS (Rouen, 1997).
  10. Julien Cassaigne, Sébastien Ferenczi & Ali Messaoudi (2008): Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier (Grenoble) 58(6), pp. 1983–2005. Available at http://aif.cedram.org/item?id=AIF_2008__58_6_1983_0.
  11. Nataliya Chekhova (2000): Covering numbers of rotations. Theoret. Comput. Sci. 230(1-2), pp. 97–116, doi:10.1016/S0304-3975(97)00256-9.
  12. Thomas W. Cusick & Mary E. Flahive (1989): The Markoff and Lagrange spectra. Mathematical Surveys and Monographs 30. American Mathematical Society, Providence, RI.
  13. Sébastien Ferenczi, Charles Holton & Luca Q. Zamboni (2003): Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J. Anal. Math. 89, pp. 239–276, doi:10.1007/BF02893083.
  14. Sébastien Ferenczi & Luca Q. Zamboni (2010): Structure of k-interval exchange transformations: induction, trajectories, and distance theorems. J. Anal. Math. 112, pp. 289–328, doi:10.1007/s11854-010-0031-2.
  15. Christian Grillenberger (1972/73): Constructions of strictly ergodic systems. I. Given entropy. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25, pp. 323–334.
  16. G. Rauzy (1982): Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2), pp. 147–178. Available at http://www.numdam.org/item?id=BSMF_1982__110__147_0.
  17. William A. Veech (1987): Boshernitzan's criterion for unique ergodicity of an interval exchange transformation. Ergodic Theory Dynam. Systems 7(1), pp. 149–153, doi:10.1017/S0143385700003862.
  18. William A. Veech (1999): Measures supported on the set of uniquely ergodic directions of an arbitrary holomorphic 1-form. Ergodic Theory Dynam. Systems 19(4), pp. 1093–1109, doi:10.1017/S014338579913390X.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org