References

  1. K. Culik, II (1978): The decidability of υ-local catenativity and of other properties of D0L systems. Information Processing Lett. 7(1), pp. 33–35, doi:10.1016/0020-0190(78)90035-2.
  2. A. Ehrenfeucht & G. Rozenberg (1978): Simplifications of homomorphisms. Inform. and Control 38(3), pp. 298–309, doi:10.1016/S0019-9958(78)90095-5.
  3. V. Halava, T. Harju, T. Kärki & M. Rigo (2010): On the periodicity of morphic words. In: Y. Gao, H. Lu, S. Seki & S. Yu: Developments in Language Theory, 14th International Conference, DLT 2010, London, ON, Canada, August 17-20, 2010. Proceedings, Lecture Notes in Comput. Sci. 6224. Springer, Berlin, pp. 209–217, doi:10.1007/978-3-642-14455-4_20.
  4. T. Harju & M. Linna (1986): On the periodicity of morphisms on free monoids. RAIRO Inform. Théor. Appl. 20(1), pp. 47–54.
  5. J. Honkala (2008): Cancellation and periodicity properties of iterated morphisms. Theoret. Comput. Sci. 391(1-2), pp. 61–64, doi:10.1016/j.tcs.2007.10.030.
  6. A. Lindenmayer (1968): Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theoret. Biol. 18, pp. 280–299, doi:10.1016/0022-5193(68)90079-9.
  7. A. Lindenmayer (1968): Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theoret. Biol. 18, pp. 300–315, doi:10.1016/0022-5193(68)90080-5.
  8. J.-J. Pansiot (1986): Decidability of periodicity for infinite words. RAIRO Inform. Théor. Appl. 20(1), pp. 43–46.
  9. G. Rozenberg & A. Salomaa (1986): The Book of L. Springer, Berlin.
  10. P. Séébold (1988): An effective solution to the D0L-periodicity problem in the binary case. EATCS Bull. 36, pp. 137–151.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org