References

  1. Jean-Paul Allouche & Jeffrey Shallit (2003): Automatic sequences — Theory, applications, generalizations. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511546563.
  2. S. V. Avgustinovich, S. Kitaev, A. Pyatkin & A. Valyuzhenich: On square-free permutations. Accepted to J. Autom. Lang. Comb..
  3. S.V. Avgustinovich, A. Frid, T. Kamae & P. Salimov (2011): Infinite permutations of lowest maximal pattern complexity. Theoretical Computer Science 412(27), pp. 2911 – 2921, doi:10.1016/j.tcs.2010.12.062.
  4. J. A. Davis, R. C. Entringer, R. L. Graham & G. J. Simmons (1977/78): On permutations containing no long arithmetic progressions. Acta Arith. 34(1), pp. 81–90.
  5. Michael Domaratzki, Derek Kisman & Jeffrey Shallit (2002): On the number of distinct languages accepted by finite automata with n states. J. Autom. Lang. Comb. 7(4), pp. 469–486.
  6. D. G. Fon-Der-Flaass & A. E. Frid (2007): On periodicity and low complexity of infinite permutations. European J. Combin. 28(8), pp. 2106–2114, doi:10.1016/j.ejc.2007.04.017.
  7. A. Frid & L. Zamboni: On automatic infinite permutations. Accepted to RAIRO – Theoretical Informatics and Applications.
  8. Teturo Kamae & Luca Zamboni (2002): Maximal pattern complexity for discrete systems. Ergodic Theory Dynam. Systems 22(4), pp. 1201–1214, doi:10.1017/S0143385702000585.
  9. Teturo Kamae & Luca Zamboni (2002): Sequence entropy and the maximal pattern complexity of infinite words. Ergodic Theory Dynam. Systems 22(4), pp. 1191–1199, doi:10.1017/S0143385702000585.
  10. M. Makarov (2010): On the infinite permutation generated by the period doubling word. European J. Combin. 31(1), pp. 368–378, doi:10.1016/j.ejc.2009.03.038.
  11. M. A. Makarov (2006): On permutations generated by infinite binary words. Sib. Èlektron. Mat. Izv. 3, pp. 304–311 (electronic).
  12. M. A. Makarov (2009): On an infinite permutation similar to the Thue-Morse word. Discrete Math. 309(23-24), pp. 6641–6643, doi:10.1016/j.disc.2009.06.030.
  13. M. A. Makarov (2009): On permutations generated by Sturmian words. Sibirsk. Mat. Zh. 50(4), pp. 850–857, doi:10.1007/s11202-009-0076-6.
  14. A. Valyuzhenich (2011): Permutation complexity of the fixed points of some uniform binary morphisms. To appear in Proceedings of WORDS 2011.
  15. A. Widmer (2011): Permutation complexity related to the letter doubling map. To appear in Proceedings of WORDS 2011.
  16. Steven Widmer (2011): Permutation complexity of the Thue-Morse word. Advances in Applied Mathematics 47(2), pp. 309 – 329, doi:10.1016/j.aam.2010.08.002.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org