J.-P. Allouche & J. Shallit (1999):
The Ubiquitous Prouhet-Thue-Morse Sequence.
In: Sequences and Their Applications, Proc. SETA'98.
Springer-Verlag,
pp. 1–16.
S.V. Avgustinovich, A.E. Frid, T. Kamae & P.V. Salimov (2009):
Infinite permutations of lowest maximal pattern complexity.
Available at http://arxiv.org/abs/0910.5696v2.
J. Berstel (1995):
Recent Results In Sturmian Words.
In: J. Dassaw: Developments in Language Theory.
World Scientific, Singapore.
S. Brlek (1989):
Enumeration of factors in the Thue-Morse word.
Discrete Appl. Math 24,
pp. 83–96,
doi:10.1016/0166-218X(92)90274-E.
E.M. Coven & G.A. Hedlund (1973):
Sequences with minimal block growth.
Math. Systems Theory 7(2),
pp. 138–153,
doi:10.1007/BF01762232.
D.G. Fon-Der-Flaass & A.E. Frid (2007):
On periodicity and low complexity of infinite permutations.
European J. Combin. 28(8),
pp. 2106–2114,
doi:10.1016/j.ejc.2007.04.017.
M. Lothaire (2002):
Algebraic Combinatorics on Words.
Encyclopedia of Mathematics and its Applications 90.
Cambridge University Press.
A.de Luca & S. Varricchio (1989):
Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups.
Theoret. Comput. Sci. 63,
pp. 333–348,
doi:10.1016/0304-3975(89)90013-3.
M.A. Makarov (2006):
On permutations generated by infinite binary words.
Sib. Èlektron. Mat. Izv. 3,
pp. 304–311.
(in Russian).
M.A. Makarov (2009):
On the permutations generated by the Sturmian Words.
Sib. Math. J. 50(3),
pp. 674–680,
doi:10.1007/s11202-009-0076-6.
M.A. Makarov (2010):
On the infinite permutation generated by the period doubling word.
European J. Combin. 31(1),
pp. 368–378,
doi:10.1016/j.ejc.2009.03.038.
A. Thue (1912):
Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen.
Norske vid. Selsk. Skr. Mat. Nat. Kl. 1,
pp. 1–67.
S. Widmer (2011):
Permutation Complexity of the Thue-Morse Word.
Adv. in Appl. Math. 47(2),
pp. 309 – 329,
doi:10.1016/j.aam.2010.08.002.