References

  1. Golnaz Badkobeh (2011): Fewest repetitions vs maximal-exponent powers in infinite binary words. Theoret. Comput. Sci.. In press.
  2. Golnaz Badkobeh & Maxime Crochemore (2010): An infinite binary word containing only three distinct squares. Submitted.
  3. Golnaz Badkobeh & Maxime Crochemore (2011): Fewest repetitions in infinite binary words. RAIRO - Theoretical Informatics and Applications. DOI: 10.1051/ita/2011109. In press.
  4. James D. Currie & Narad Rampersad (2011): A proof of Dejean's conjecture. Math. Comput. 80(274), pp. 1063–1070. Available at http://dx.doi.org/10.1090/S0025-5718-2010-02407-X.
  5. Françoise Dejean (1972): Sur un Théorème de Thue. J. Comb. Theory, Ser. A 13(1), pp. 90–99.
  6. Aviezri S. Fraenkel & Jamie Simpson (1995): How Many Squares Must a Binary Sequence Contain?. Electr. J. Comb. 2.
  7. Tero Harju & Dirk Nowotka (2006): Binary Words with Few Squares. Bulletin of the EATCS 89, pp. 164–166.
  8. Lucian Ilie, Pascal Ochem & Jeffrey Shallit (2005): A generalization of repetition threshold. Theor. Comput. Sci. 345(2-3), pp. 359–369. Available at http://dx.doi.org/10.1016/j.tcs.2005.07.016.
  9. Juhani Karhumäki & Jeffrey Shallit (2004): Polynomial versus exponential growth in repetition-free binary words. J. Comb. Theory, Ser. A 105(2), pp. 335–347. Available at http://dx.doi.org/10.1016/j.jcta.2003.12.004.
  10. Pascal Ochem (2006): A generator of morphisms for infinite words. Theor. Inform. Appl. 40(3), pp. 427–441.
  11. Narad Rampersad, Jeffrey Shallit & Ming Wei Wang (2005): Avoiding large squares in infinite binary words. Theor. Comput. Sci. 339(1), pp. 19–34. Available at http://dx.doi.org/10.1016/j.tcs.2005.01.005.
  12. Michaël Rao (2011): Last cases of Dejean's conjecture. Theor. Comput. Sci. 412(27), pp. 3010–3018. Available at http://dx.doi.org/10.1016/j.tcs.2010.06.020.
  13. Jeffrey Shallit (2004): Simultaneous avoidance of large squares and fractional powers in infinite binary words. Intl. J. Found. Comput. Sci 15(2), pp. 317–327.
  14. Axel Thue (1906): Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7, pp. 1–22.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org