E. Andres (2003):
Discrete linear objects in dimension n: the standard model.
Graphical Models 65,
pp. 92–111.
P. Arnoux & V. Berthé (2002):
Some open problems.
In: Substitutions in dynamics, arithmetics and combinatorics,
Lecture Notes in Math. 1794.
Springer,
Berlin,
pp. 363–374.
P. Arnoux, C. Mauduit, I. Shiokawa & J. i. Tamura (1994):
Complexity of sequences defined by billiard in the cube.
Bull. Soc. Math. France 122(1),
pp. 1–12.
Available at http://www.numdam.org/item?id=BSMF_1994__122_1_1_0.
P. Arnoux & G. Rauzy (1991):
Représentation géométrique de suites de complexité 2n+1.
Bull. Soc. Math. France 119(2),
pp. 199–215.
V. Berthé & S. Labbé (2011):
An Arithmetic and Combinatorial Approach to Three-Dimensional Discrete Lines.
In: I. Debled-Rennesson, E. Domenjoud, B. Kerautret & P. Even: DGCI,
Lecture Notes in Computer Science 6607.
Springer,
pp. 47–58.
Available at http://dx.doi.org/10.1007/978-3-642-19867-0_4.
V. Berthé & A. Siegel (2005):
Tilings associated with beta-numeration and substitutions.
Integers 5(3),
pp. A2, 46.
V. E. Brimkov, R. P. Barneva & B. Brimkov (2009):
Minimal Offsets That Guarantee Maximal or Minimal Connectivity of Digital Curves in nD..
In: S. Brlek, C. Reutenauer & X. Provençal: DGCI,
Lecture Notes in Computer Science 5810.
Springer,
pp. 337–349.
Available at http://dx.doi.org/10.1007/978-3-642-04397-0_29.
J. Cassaigne, S. Ferenczi & A. Messaoudi (2008):
Weak mixing and eigenvalues for Arnoux-Rauzy sequences.
Ann. Inst. Fourier (Grenoble) 58(6),
pp. 1983–2005.
Available at http://aif.cedram.org/item?id=AIF_2008__58_6_1983_0.
J. Cassaigne, S. Ferenczi & L. Q. Zamboni (2000):
Imbalances in Arnoux-Rauzy sequences.
Ann. Inst. Fourier (Grenoble) 50(4),
pp. 1265–1276.
Available at http://www.numdam.org/item?id=AIF_2000__50_4_1265_0.
F. Durand (2003):
Corrigendum and addendum to: ``Linearly recurrent subshifts have a finite number of non-periodic subshift factors'' [Ergodic Theory Dynam. Systems 20 (2000) 1061–1078].
Ergodic Theory Dynam. Systems 23(2),
pp. 663–669.
Available at http://dx.doi.org/10.1017/S0143385702001293.
O. Figueiredo & J.-P. Reveillès (1996):
New results about 3D digital lines.
In: Proc. Internat. Conference Vision Geometry V , Proc. SPIE, 2826,
pp. 98–108.
R. Fischer & F. Schweiger (1975):
The number of steps in a finite Jacobi algorithm.
Manuscripta Math. 17(3),
pp. 291–308.
A. S. Fraenkel (1973):
Complementing and exactly covering sequences.
J. Combinatorial Theory Ser. A 14,
pp. 8–20.
R. L. Graham (1973):
Covering the positive integers by disjoint sets of the form {[nα+β]: n=1,+.1667em2,+.1667em}.
J. Combinatorial Theory Ser. A 15,
pp. 354–358.
J.-L. Toutant (2006):
Characterization of the Closest Discrete Approximation of a Line in the 3-Dimensional Space.
In: ISVC (1),
Lecture Notes in Computer Science 4291.
Springer,
pp. 618–627.
Available at http://dx.doi.org/10.1007/11919476_62.
N. Wozny & L. Q. Zamboni (2001):
Frequencies of factors in Arnoux-Rauzy sequences.
Acta Arith. 96(3),
pp. 261–278.
Available at http://dx.doi.org/10.4064/aa96-3-6.