
ShortRead Lab: Working with Aligned Sequences

Martin Morgan

29 January 2010

This lab takes a quick tour through the ShortRead package.

Exercise 1
Load the ShortRead package.

The data we are intersted in is the output from the Bowtie alignment soft-
ware. It is located at

> bowtieFile <- system.file("extdata", "BYe9.head.map",

+ package = "day3")

Use the readAligned function in ShortRead to input the data. This function
can take two arguments, the file name, and an argument type specifying the
type of the file to be input. Use type="Bowtie". What class is this object?
How would you find help about it? How many reads are in this file?

Exercise 2
Let’s explore the data a little.

The command strand can be used to extract the strand information from
the AlignedRead object. However, we do not want to display all the strand
information to the screen. The function table tallys the number of times an
element occurs in a vector. Thus

> table(c("a", "a", "b", "a", "b", "c"))

a b c

3 2 1

Use strand and table to summarize which strands reads align to.
The read sequences and quality scores are available using the functions sread

and strand. Take a look at this information. What class is used to represent
the reads? What can you do with those reads?

Exercise 3
The alphabetByCycle function takes a DNAStringSet object and returns a
matrix summarizing the number of times each letter in the DNA alphabet (the
IUPAC alphabet, which includes letters to represent redundancies) occurs at
each cycle. Use alphabetFrequency on the result of sread to summarize how
often each nucleotide occurs. Subset the result to include only those letters
corresponding to the nucleotides A, C, G, and T.

1



Exercise 4
The matplot function takes a matrix and plots each column, using the row index
as the x-coordinate and the column as the y-coordinate. We want to see how
nucleotide use changes with cycle. To do this we need to transpose the matrix
returned by alphabetByCycle, and then use matplot. Set the type equal to
"l".

Exercise 5
Fastq quality scores are an encoded representation of how confidently the baes
are called. ShortRead provides a coercion function to convert the quality scores
to a numerical matrix representation; for the quality scores that we have, it
makes sense to substract 33 from all elements of the matrix. Thus

> m <- as(quality(aln), "matrix") - 33

gives a matrix of quality scores. What are the dimensions of m? Can you guess
at what the rows and columns represent? Use colMeans to calculate the average
of the column means. What does this represent? Use plot with the results of
the colMeans to display your result.

Exercise 6
The chromosomes information is presented differently from how it is represented
in other resources we will use later in the course. Use table and the accessor
chromosome to summarize how many reads align to each chromosome.

> table(chromosome(aln))

chrI chrII chrIII chrIV chrV chrVI

7372 29844 9641 41084 18322 7571

chrVII chrVIII chrIX chrX chrXI chrXII

30037 16682 8141 18056 17239 562222

chrXIII chrXIV chrXV chrXVI

26811 24655 27330 26763

We do not want to include the mitochondrial chromosome in subsequent
analyses. Create a logical vector chromosome(aln) != "chrmt_S288C" and use
this to subset the AlignedRead object.

> aln <- aln[chromosome(aln) != "chrmt_S288C"]

Now some tricky stuff! The chromosome infomration is stored as a factor, and
the levels look like chr04_S288C. We want the levels to be like chrIV. The
first task is to extract the ’numbers’ 04 from the original levels. We’ll use the
sub function. The first argument to sub is a regular expression. The regular
expression we’ll use is "chr(.+)_S288C". The chr says ‘start matching when
the exact character sequence chr occurs’. Skipping the parentheses for a second,
The .+ says ’continue matching any character (the .) one or more times (the
+)’. Then we are required to match _S288C. So chr04_S288C is matched in
three steps: chr in the regular expression matching ‘chr’, .+ matching ‘04’, and
_S288C matching ‘ S288C’. The parentheses (.+) say to remember the string
matching the pattern inside the parentheses, i.e., remember ‘04’. The lines

2



> chrom <- factor(chromosome(aln))

> levels(chrom)

[1] "chrI" "chrII" "chrIII" "chrIV" "chrV"

[6] "chrVI" "chrVII" "chrVIII" "chrIX" "chrX"

[11] "chrXI" "chrXII" "chrXIII" "chrXIV" "chrXV"

[16] "chrXVI"

> i <- sub("chr(.+)_S288C", "\\1", levels(chrom))

> i

[1] "chrI" "chrII" "chrIII" "chrIV" "chrV"

[6] "chrVI" "chrVII" "chrVIII" "chrIX" "chrX"

[11] "chrXI" "chrXII" "chrXIII" "chrXIV" "chrXV"

[16] "chrXVI"

extract the chromosome from the AlignedRead, and then for each level, substi-
tutes any string matching "chr(.+)_S288C" with the second argument, "
1". In the second argument,
1 represents the first remembered (i.e., enclosed in parentheses) argument. Sur-
prisingly, R has a function as.roman which converts things that look like integers
into roman numerals. We can paste these together with chr to get the levels we
want, then update the levels on chromosome:

> lvls <- paste("chr", as.roman(i), sep = "")

> lvls

[1] "chrNA" "chrNA" "chrNA" "chrNA" "chrNA" "chrNA"

[7] "chrNA" "chrNA" "chrNA" "chrNA" "chrNA" "chrNA"

[13] "chrNA" "chrNA" "chrNA" "chrNA"

> levels(chrom) <- lvls

ShortRead allows the AlignedRead object to be updated by a call like

> aln <- initialize(aln, chromosome = chrom)

Put all these pieces together to recode the chromosome levels and update
the AlignedRead object

Exercise 7
ShortRead can produce a quality assessment report from a collectio n of files. The
report is produced in two stages. The first phase visits each file and accumulates
statistics. This is a long and memory-intensive phase, and we will not do this
in class. The basic commands are.

> bowtieDir <- "/path/to/alignments"

> qa <- qa(bowtieDir, ".*map$", type = "Bowtie")

3



The result of this operation for the four Bowtie files representing the complete
experiment is availabe in the day3 package, using.

> data("qa_caudy_28_jan_2009")

The second phase takes the accumulated statistics and produces an html report.
Do this with

> rpt <- report(qa)

> browseURL(rpt)

4


