
ShortRead Lab: Working with Aligned Sequences

Martin Morgan

29 January 2010

This lab takes a quick tour through the ShortRead package.

Exercise 1
Load the ShortRead package.

The data we are intersted in is the output from the Bowtie alignment soft-
ware. It is located at

> bowtieFile <- system.file("extdata", "BYe9.head.map",

+ package = "day3")

Use the readAligned function in ShortRead to input the data. This function
can take two arguments, the file name, and an argument type specifying the
type of the file to be input. Use type="Bowtie". What class is this object?
How would you find help about it? How many reads are in this file?

> library(ShortRead)

> aln <- readAligned(bowtieFile, type = "Bowtie")

> class(aln)

[1] "AlignedRead"

attr(,"package")

[1] "ShortRead"

> aln

class: AlignedRead

length: 1000000 reads; width: 32 cycles

chromosome: chrmt_S288C chrmt_S288C ... chr12_S288C chr12_S288C

position: 7021 12161 ... 446999 461957

strand: - - ... + -

alignQuality: NumericQuality

alignData varLabels: similar mismatch

> `?`(class, AlignedRead)

1



Exercise 2
Let’s explore the data a little.

The command strand can be used to extract the strand information from
the AlignedRead object. However, we do not want to display all the strand
information to the screen. The function table tallys the number of times an
element occurs in a vector. Thus

> table(c("a", "a", "b", "a", "b", "c"))

a b c

3 2 1

Use strand and table to summarize which strands reads align to.
The read sequences and quality scores are available using the functions sread

and strand. Take a look at this information. What class is used to represent
the reads? What can you do with those reads?

> table(strand(aln), useNA = "always")

- + * <NA>

508233 491767 0 0

> reads <- sread(aln)

> reads

A DNAStringSet instance of length 1000000

width seq

[1] 32 GATTTTATTTTTAATCAATTTATATATATATA

[2] 32 TATGCCAAATACCAATTAATTAATTAATTAAA

[3] 32 GTATTTCGTTGATACCTATGTGGCTATATAGT

[4] 32 TAAAACATAAGGTTTAACTATAAAAGTACTGC

[5] 32 GAATCATACGTTTATTATTGATAAGATAATAA

[6] 32 GAAAAATTGTTGAGCACTATGCAAGAAAGATT

[7] 32 GCTTAAAGGGGAGACGGTTGTTGTATCATTAC

[8] 32 TATTTATATATTAAGCATGGAGCAGAGTTCAC

[9] 32 TTATTAAAATTAATATATAAAAAAAAAGTAAA

... ... ...

[999992] 32 TTCTTTGTAAAGTGCCTTCGAAGAGTCGAGTT

[999993] 32 TGGAGTGTGAGTGATGAGGAGCTTGCTCTTTT

[999994] 32 TCATTCGGCCGGTGAGTTGTTACACACTCCTT

[999995] 32 AAGGTAGTGGTATTTCACTGGCGCCGAAGCTC

[999996] 32 CTGCTGAAGGAAATATTATCAAATTAAATCTC

[999997] 32 CATCTAGACAGCCGGACGGTGGCCATGGAAGT

[999998] 32 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[999999] 32 GCGTCAACGACACGATCTTTCAACGAACCAGA

[1000000] 32 ACTGTCCCTATCTACTATCTAGCGAAACCACA

> qualities <- quality(aln)

> qualities

2



class: FastqQuality

quality:

A BStringSet instance of length 1000000

width seq

[1] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[2] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhghh

[3] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[4] 32 hhhhhhhhhhhhhhhZhhhhhhLhhhhhh]hh

[5] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[6] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[7] 32 hhhhhhhhhhhhhhhhhhhhhhJhGhUhhhhC

[8] 32 hhhhhhhhhhhhhhhhhhh[_hh]hdhhhhYh

[9] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

... ... ...

[999992] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhXhhh

[999993] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[999994] 32 hhbhhhhhhhhhhhhhhhdhhhhhhShhhhh^

[999995] 32 hhhh[hhhhh_hhhhhhfhhhhhhhhJ\hhhh

[999996] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[999997] 32 hhhhhhhhhhhShhhMPhhThh_NghehhV_D

[999998] 32 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[999999] 32 hhhhhhhShhVhhhhhUhhh[hdFhFhNS[^?

[1000000] 32 hhhhhhhhhhhhhhhhahhhhhhhhhhahhhh

> class(reads)

[1] "DNAStringSet"

attr(,"package")

[1] "Biostrings"

Exercise 3
The alphabetByCycle function takes a DNAStringSet object and returns a
matrix summarizing the number of times each letter in the DNA alphabet (the
IUPAC alphabet, which includes letters to represent redundancies) occurs at
each cycle. Use alphabetFrequency on the result of sread to summarize how
often each nucleotide occurs. Subset the result to include only those letters
corresponding to the nucleotides A, C, G, and T.

> abc <- alphabetByCycle(sread(aln))

> class(abc)

[1] "matrix"

> abc[1:6, 1:4]

3



cycle

alphabet [,1] [,2] [,3] [,4]

A 313699 323017 314371 319165

C 225143 177874 212925 206521

G 195988 216896 193575 196479

T 265170 282213 279129 277835

M 0 0 0 0

R 0 0 0 0

> abc <- abc[1:4, ]

Exercise 4
The matplot function takes a matrix and plots each column, using the row index
as the x-coordinate and the column as the y-coordinate. We want to see how
nucleotide use changes with cycle. To do this we need to transpose the matrix
returned by alphabetByCycle, and then use matplot. Set the type equal to
"l".

> matplot(t(abc), type = "l")

0 5 10 15 20 25 30

20
00

00
25

00
00

30
00

00

t(
ab

c)

4



Exercise 5
Fastq quality scores are an encoded representation of how confidently the baes
are called. ShortRead provides a coercion function to convert the quality scores
to a numerical matrix representation; for the quality scores that we have, it
makes sense to substract 33 from all elements of the matrix. Thus

> m <- as(quality(aln), "matrix") - 33

gives a matrix of quality scores. What are the dimensions of m? Can you guess
at what the rows and columns represent? Use colMeans to calculate the average
of the column means. What does this represent? Use plot with the results of
the colMeans to display your result.

The rows of m represent each read, the columns correspond to cycles. colMeans
returns a vector summarizing the mean of each column. A column represents a
single cycle, so the corresponding element of the result from colMeans represents
the average quality at that cycle.

> plot(colMeans(m), type = "b")

● ●
● ● ● ●

●
● ●

● ● ●

●
●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

28
30

32
34

36

Index

co
lM

ea
ns

(m
)

Exercise 6
The chromosomes information is presented differently from how it is represented
in other resources we will use later in the course. Use table and the accessor
chromosome to summarize how many reads align to each chromosome.

5



> table(chromosome(aln))

chr01_S288C chr02_S288C chr03_S288C chr04_S288C

7372 29844 9641 41084

chr05_S288C chr06_S288C chr07_S288C chr08_S288C

18322 7571 30037 16682

chr09_S288C chr10_S288C chr11_S288C chr12_S288C

8141 18056 17239 562222

chr13_S288C chr14_S288C chr15_S288C chr16_S288C

26811 24655 27330 26763

chrmt_S288C

128230

We do not want to include the mitochondrial chromosome in subsequent
analyses. Create a logical vector chromosome(aln) != "chrmt_S288C" and use
this to subset the AlignedRead object.

> aln <- aln[chromosome(aln) != "chrmt_S288C"]

Now some tricky stuff! The chromosome infomration is stored as a factor, and
the levels look like chr04_S288C. We want the levels to be like chrIV. The
first task is to extract the ’numbers’ 04 from the original levels. We’ll use the
sub function. The first argument to sub is a regular expression. The regular
expression we’ll use is "chr(.+)_S288C". The chr says ‘start matching when
the exact character sequence chr occurs’. Skipping the parentheses for a second,
The .+ says ’continue matching any character (the .) one or more times (the
+)’. Then we are required to match _S288C. So chr04_S288C is matched in
three steps: chr in the regular expression matching ‘chr’, .+ matching ‘04’, and
_S288C matching ‘ S288C’. The parentheses (.+) say to remember the string
matching the pattern inside the parentheses, i.e., remember ‘04’. The lines

> chrom <- factor(chromosome(aln))

> levels(chrom)

[1] "chr01_S288C" "chr02_S288C" "chr03_S288C"

[4] "chr04_S288C" "chr05_S288C" "chr06_S288C"

[7] "chr07_S288C" "chr08_S288C" "chr09_S288C"

[10] "chr10_S288C" "chr11_S288C" "chr12_S288C"

[13] "chr13_S288C" "chr14_S288C" "chr15_S288C"

[16] "chr16_S288C"

> i <- sub("chr(.+)_S288C", "\\1", levels(chrom))

> i

[1] "01" "02" "03" "04" "05" "06" "07" "08" "09" "10"

[11] "11" "12" "13" "14" "15" "16"

extract the chromosome from the AlignedRead, and then for each level, substi-
tutes any string matching "chr(.+)_S288C" with the second argument, "

6



1". In the second argument,
1 represents the first remembered (i.e., enclosed in parentheses) argument. Sur-
prisingly, R has a function as.roman which converts things that look like integers
into roman numerals. We can paste these together with chr to get the levels we
want, then update the levels on chromosome:

> lvls <- paste("chr", as.roman(i), sep = "")

> lvls

[1] "chrI" "chrII" "chrIII" "chrIV" "chrV"

[6] "chrVI" "chrVII" "chrVIII" "chrIX" "chrX"

[11] "chrXI" "chrXII" "chrXIII" "chrXIV" "chrXV"

[16] "chrXVI"

> levels(chrom) <- lvls

ShortRead allows the AlignedRead object to be updated by a call like

> aln <- initialize(aln, chromosome = chrom)

Put all these pieces together to recode the chromosome levels and update
the AlignedRead object

Here we subset the aligned reads to exclude the mitochondrial alignments.

> aln <- aln[chromosome(aln) != "chrmt_S288C"]

Now we recode the chromosome. . .

> chrom <- factor(chromosome(aln))

> i <- sub("chr(.+)_S288C", "\\1", levels(chrom))

> levels(chrom) <- paste("chr", as.roman(i),

+ sep = "")

update the AlignedRead object.

> aln <- initialize(aln, chromosome = chrom)

and view the results

> aln

class: AlignedRead

length: 871770 reads; width: 32 cycles

chromosome: chrXV chrIV ... chrXII chrXII

position: 94785 129953 ... 446999 461957

strand: - + ... + -

alignQuality: NumericQuality

alignData varLabels: similar mismatch

7



Exercise 7
ShortRead can produce a quality assessment report from a collectio n of files. The
report is produced in two stages. The first phase visits each file and accumulates
statistics. This is a long and memory-intensive phase, and we will not do this
in class. The basic commands are.

> bowtieDir <- "/path/to/alignments"

> qa <- qa(bowtieDir, ".*map$", type = "Bowtie")

The result of this operation for the four Bowtie files representing the complete
experiment is availabe in the day3 package, using.

> data("qa_caudy_28_jan_2009")

The second phase takes the accumulated statistics and produces an html report.
Do this with

> rpt <- report(qa)

> browseURL(rpt)

8


