
HES 703/STAT 301/STAT 501:
STATISTICAL COMPUTING AND GRAPHICS

Frank E Harrell Jr
Division of Biostatistics and Epidemiology

Department of Health Evaluation Sciences
University of Virginia School of Medicine

Department of Statistics
Graduate School of Arts & Sciences

fharrell@virginia.edu

hesweb1.med.virginia.edu/biostat/teaching/statcomp

December 31, 2002

Copyright 2000-2002 FE Harrell All Rights Reserved

Contents

1 Overview of Computer Languages and User Interfaces 2

1.1 Types of Products . 2

1.2 User Interfaces . 3

1.3 Command Languages . 4

1.4 How to Learn Functional Languages . 6

1.5 Types of Variables . 7

1.6 Complex Data Types . 7

1.7 Variables . 8

1.8 Types of User Files . 8

2 LATEX 10

2.1 The Language . 10

2.1.1 Commonly Used LATEX Commands . 13

2.1.2 Using LATEX and PSTricks for Drawing Diagrams . 13

2.1.3 Benefits of LATEX for Statistical Reports . 14

2.2 Biostatistics LATEX Web Server . 17

3 Introduction to S 19

3.1 Statistical Languages and Packages . 19

3.2 Why S? . 20

ii

3.3 History and Background of S-PLUS . 21

3.4 R . 22

3.5 Starting and Using S-PLUS on Windows . 23

3.5.1 Starting S-PLUS . 23

3.5.2 Command Window . 23

3.5.3 Script Window . 24

4 S Language 25

4.1 General Rules . 25

4.2 Types of Basic Data in S . 26

4.3 S As a Calculator: Arithmetic Expressions . 27

4.4 Assignment Operator . 28

4.5 Two Frequently Used Functions . 29

4.6 Making Vectors . 29

4.7 Logical Values . 30

4.8 Missing Values . 31

4.9 Summary: S Cheatsheet . 32

4.9.1 S Expressions . 32

4.9.2 Arithmetic Operators . 33

4.9.3 Relational Operators . 33

4.9.4 Logical Operators . 34

4.9.5 Subscripts . 34

4.9.6 Sequence and Repetition . 34

4.9.7 Arithmetic Operators and Functions . 35

4.9.8 Types . 35

4.9.9 In and Out of S . 36

iii

4.9.10 Reduction Operators . 37

4.9.11 Statistical Distributions . 37

4.9.12 Plotting . 37

5 Objects, Getting Help, Functions, Subsetting, Attributes, and Libraries 40

5.1 Objects—General . 40

5.2 Functions . 40

5.2.1 Getting Help . 40

5.2.2 Using Functions . 42

5.3 Subsetting Vectors . 44

5.4 Matrices, Lists, Data Frames . 45

5.4.1 Matrices . 45

5.4.2 Lists . 46

5.4.3 Data Frames . 47

5.5 Attributes . 49

5.6 Factor Variables . 51

5.7 When to Quote Names . 52

5.8 Hmisc Add-on Function Library . 53

6 Turning S Output into a L ATEX PDF Report 56

6.1 Example S Output . 59

6.2 Common Errors . 63

6.3 Saving and Printing the PDF Report . 64

7 Data in S 65

7.1 Importing Datasets . 65

7.1.1 Functions . 65

iv

7.1.2 File ... Import . 66

7.2 Listing Data Characteristics . 67

7.3 Adjustment to Variables after Import . 69

7.4 Writing Data . 69

7.5 Inspecting Data after Import and Cleanup . 70

8 Operating in S 73

8.1 The search List and attach . 73

8.1.1 Attaching Data Frames . 74

8.1.2 Detaching Data Frames . 75

8.2 Subsetting Data Frames . 75

8.3 Adding and Deleting Variables from a Data Frame . 77

8.4 upData Function for Updating Data Frames . 77

8.5 Manipulating and Summarizing Data . 79

8.5.1 Sorting Data . 79

8.5.2 By Processing . 80

8.6 Data Manipulation and Management . 81

8.7 Advanced Data Manipulation Examples . 83

8.8 Recoding Variables and Creating Derived Variables . 83

8.8.1 Recoding One Variable . 83

8.8.2 Combining Multiple Variables into One . 85

8.8.3 Where to Derive Variables . 85

8.9 Review of Data Creation, Annotation, and Analysis Steps . 86

8.10 Simple Missing Value Imputation . 86

9 Probability and Statistical Functions 88

v

9.1 Statistical Summaries . 88

9.1.1 Basic . 88

9.1.2 Inferential . 88

9.2 Probability Distributions . 89

9.2.1 Distributions of Sampled Data . 89

9.2.2 Theoretical Distributions . 90

9.2.3 Confidence Limits for Binomial Proportions . 90

9.3 Hmisc Functions for Power and Sample Size Calculations . 91

9.4 Statistical Tests . 91

9.4.1 Nonparametric Tests . 91

9.4.2 Parametric Tests . 92

10 Making Tables 93

10.1 Frequency Tabulations . 93

10.2 Hmisc summary.formula Function . 93

10.2.1 Introduction . 93

10.2.2 Automatic Stratification of Continuous Variables . 97

10.2.3 Three Types of Summaries with summary.formula . 97

10.3 summarize Function . 99

11 Inserting Plots into L ATEX Reports 102

11.1 Background . 102

11.2 Producing Postscript Graphics in S-PLUS . 103

11.2.1 Making Postscript Graphs for Certain Graph Types . 104

11.3 Preparing S Commands for Graphs in LATEX . 105

11.4 Symbolic References to Figures . 106

vi

11.5 Using the LATEX Server . 106

12 Principles of Graph Construction 108

12.1 Graphical Perception . 108

12.2 General Suggestions . 110

12.3 Tufte on “Chartjunk” . 110

12.4 Tufte’s Views on Graphical Excellence . 111

12.5 Formatting . 111

12.6 Color, Symbols, and Line Styles . 112

12.7 Scaling . 112

12.8 Displaying Estimates Stratified by Categories . 112

12.9 Displaying Distribution Characteristics . 113

12.10Showing Differences . 113

12.11Choosing the Best Graph Type . 114

12.11.1Single Categorical Variable . 114

12.11.2Single Continuous Numeric Variable . 114

12.11.3Categorical Response Variable vs. Categorical Ind. Var. 115

12.11.4Categorical Response vs. a Continuous Ind. Var. 115

12.11.5Continuous Response Variable vs. Categorical Ind. Var. 115

12.11.6Continuous Response vs. Continuous Ind. Var. 115

12.12Conditioning Variables . 116

13 Graphics for One or Two Variables 117

13.1 One-Dimensional Scatterplot . 117

13.2 Histogram . 118

13.3 Density Plot . 119

vii

13.4 Empirical Cumulative Distribution Plot . 119

13.5 Box Plot . 120

13.6 Scatter Plots . 121

13.7 Optional Commands to Embellish Non-Trellis Plots . 121

13.7.1 Titles . 121

13.7.2 Adding Lines, Symbols, Text, and Axes . 122

13.7.3 Reference Lines . 122

13.8 Choosing Symbols, Colors, and Line Types . 122

14 Conditioning and Plotting Three or More Variables 123

14.1 Conditioning . 123

14.2 Dot Plots . 124

14.3 Thermometer Plots . 125

14.4 Extensions of Scatterplots . 125

14.4.1 Single Plots . 125

14.4.2 Scatterplot Matrices . 126

14.5 3-D Plots for Almost Smooth Surfaces . 126

14.6 Dynamic Graphics . 127

14.6.1 Interactively Identifying Points . 127

14.6.2 Wireframe and Perspective Plots . 127

14.6.3 Brushing and Spinning . 127

14.6.4 “Live” Graphics on Web Sites . 128

14.7 Trellis Graphics . 129

14.7.1 Appropriate Paneling/Grouping Variables . 129

14.7.2 Classes of Trellis Function . 130

14.7.3 Panel Functions . 132

viii

1

14.7.4 Layout and Style Specification . 134

14.7.5 Creating Postscript Graphics Files . 135

14.7.6 Controlling Trellis Graphical Parameters . 136

14.7.7 Summarizing Data for Input to Trellis Functions . 137

14.7.8 Error Bars and Bands . 139

14.7.9 Summary of Functions for Aggregating Data for Plotting . 152

15 Nonparametric Trend Lines 155

16 Reproducible Analysis, File and Script Management 158

16.1 File Management . 158

16.2 Script Management and Reproducible Analyses . 159

16.3 Reproducible Research . 162

16.3.1 Reproducible Reports . 163

Chapter 1

Overview of Computer Languages and
User Interfaces

1.1 Types of Products

· Operating systems: Windows, Unix, Linux, MacOS

· Applications: Word, Excel, S-PLUS

· Commercial systems (Microsoft Windows and Office, S-PLUS, SAS, SPSS,
Mac)

– Code, bug list secret

– Expensive unless your institution has a site license

– Upgrades increase cost even though don’t always add useful features

· Free open-source systems (Linux, LATEX, StarOffice, R)

– Revolution in software availability and function from the open source

2

CHAPTER 1. OVERVIEW OF COMPUTER LANGUAGES AND USER INTERFACES 3

movement

– Acceptance of free open-source APACHE Web Server by the commercial
world and maturity of Linux has spearheaded this movementa

– Can see all code, change it, learn from it

– Quality generally quite good

– More rapid updates

– No one obligated to assist users but most products have an active and
helpful user news group

– Lacks some bells and whistles such as extensive GUI

1.2 User Interfaces

· Graphical (GUI, mouse, menus)

– Easier to learn

– Less flexible

– Becomes repetitive when tasks repeated

– Hard to reproduce results

· Command languages

– Harder to learn
aAPACHE is the number one Web server in the world in terms of popularity, soon outdistancing Microsoft servers by a 2:1 margin. APACHE is

used by major corporations for critical Web applications. See Rebel Code by Glyn Moody; Cambridge MS: Perseus Publishing, 2001.

CHAPTER 1. OVERVIEW OF COMPUTER LANGUAGES AND USER INTERFACES 4

– More flexible and powerful

– Can save commands in scripts to replay when data updated or corrected,
or to do similar analyses

– Can write generic commands (macros, functions) to make it easy to run
different analyses that have same structure

1.3 Command Languages

· Specific purpose (e.g., draw a tree diagram, HTML)

– Example: graphviz from www.research.att.com/sw/tools/

– dot program for drawing directed graphs (Emden Gansner, AT&T Re-
search)

– Example code (in file clust1.dot):

digraph G {

subgraph cluster_c0 {a0 -> a1 -> a2 -> a3;}

subgraph cluster_c1 {b0 -> b1 -> b2 -> b3;}

x -> a0;

x -> b0;

a1 -> a3;

a3 -> a0;

}

– Program run with the following DOS/Unix/Linux command line to produce
PostScript graphic file clust1.ps

dot -Tps clust1.dot -o clust1.ps

CHAPTER 1. OVERVIEW OF COMPUTER LANGUAGES AND USER INTERFACES 5

a0

a1

a2

a3

b0

b1

b2

b3

x

Figure 1.1: A directed graph produced by the dot program from the graphviz package.

See Section 2.1.2 for an example in which LATEX is used to draw a dia-
gram.

· Other specific-purpose languages include HTML, TEX, LATEX for web presen-
tation or typesetting

· General purpose (C, C++, Python, Perl, Fortran, Java, S, Basic)

– Compiled into machine code for fastest execution

∗ C, C++, Fortran

– Interpreted - run each statement as it’s encountered

∗ Allows executing statement by statement, selective execution of parts
of code, very fast bug correction

∗ Examples: Perl, Python, Java, S, Basic

· Procedural vs. functional languages

CHAPTER 1. OVERVIEW OF COMPUTER LANGUAGES AND USER INTERFACES 6

– Procedural: SAS

DATA new; SET old;

htcm=htinches*2.54;

PROC means; VAR htcm;

– Functional: Fortran, C, C++, Python, Perl, Java, S, Basic

2.54*mean(htinches)

mean(htinches*2.54)

round(quantile((2*diastolic.bp+systolic.bp)/3))

· Common Functions:

Algebraic Form Computer Language
|x| abs(x)

ln x log(x)

ex exp(x)√
x sqrt(x)

min(x1, x2, x3) min(x1,x2,x3) or
min(x), x a vector

1.4 How to Learn Functional Languages

· Learn the syntax, especially how arguments (parameters, options) are passed
to functions

· Finding the right function for the job is the most difficult task

· Find functions by key words or phrases

– Search S-PLUS and R functions: http://hesweb1.med.virginia.edu/

biostat/s/splus.htmlb

bThis web page also has a link to one set of examples organized by type of task.

CHAPTER 1. OVERVIEW OF COMPUTER LANGUAGES AND USER INTERFACES 7

– Search S-PLUS functions by keywords: Contents button in Help GUI for
S-PLUS Language

· S Cheatsheet

1.5 Types of Variables

· integer

· floating point (scientific notation, e.g. 1.2e5 = 1.2× 105)

– single precision (7 significant digits)

– double precision (15 digits)

· character string, e.g. ‘Jim’

· categorical (“choice”), e.g., 1=good 2=better 3=best

· logical: TRUE, FALSE, T, F, 1, 0

· missing values: blank, ?, NA, .

1.6 Complex Data Types

· vector

· matrix: r × c

· multi-dimensional array: r × c× p, p = pages

CHAPTER 1. OVERVIEW OF COMPUTER LANGUAGES AND USER INTERFACES 8

· irregular structure (“list” or “tree”) e.g. states having variable number of coun-
ties having varying number of cities, data = population of city in 2000, popu-
lation in 1990.

1.7 Variables

· Name of variable can be more than one letter; rules for names depend on
language being used, e.g. age.yrs, X2, cholesterol, Age; may be case-
sensitive

· Depending on language, variable name may stand for only one value of the
variable at a time or it may stand for complex objects such as vectors, matri-
ces, lists

· Variables vs. literals: ‘Jim’ is a particular value. Jim might be a variable
containing a series of values.

· Examples

sex <- ’female’

x <- 7+2

age.yrs <- age.days / 365.25

1.8 Types of User Files

· Text — documents, simple data, commandsc

· Binary — Word documents, pdf files, datasets
cCompiled languages require all the commands to be in a file. This is allowed in interpreted languages but such languages also allow you to

enter one command at a time.

CHAPTER 1. OVERVIEW OF COMPUTER LANGUAGES AND USER INTERFACES 9

· Graphics files — PostScript, Windows MetaFiles, jpeg, gif, tiff

Chapter 2

LATEX

2.1 The Language

· Text processing markup language by Leslie Lamport based on Knuth’s TEX
language

· Used for compiling reports, books, articles

· Handles all details (microjustification, etc.) and is wonderful for math, chem-
istry, and other symbols

· Interpreted command language

· Input is plain ASCII text, not binary, so can edit with any editora

· Example 1: Article style using enumerated list (auto-numbered); this is the
“Bare bones plain LATEX example” at biostat.virginia.edu/latex

aEditors such as Emacs have special modes to make editing LATEX code easier, and near-WYSIWYG systems such as texmacs, lyx, and
Scientific Word take this idea further.

10

CHAPTER 2. LATEX 11

\documentclass{article} % or report, book, ...

\begin{document}

\title{Project 3}

\author{Jane Q. Public}

\date{\today} % or \date{2Jan01} for example

\maketitle % the \thanks line following is optional

\thanks{I neither gave nor received help on this project --- J.Q.P.}

\begin{enumerate}

\item My answer to this question is unclear.

\item Problem two was harder than problem 1.

The more I thought about it the less I knew.

\item % skip third problem

\item % stuff for 4th problem

\end{enumerate}

\end{document}

To use bullet items substitute itemize for enumerate

· Here is an example where \section commands are used to automatically
number (and optionally title) sections of the report.

\documentclass{article} % or report, book, ...

\begin{document}

\title{Project 3}

\author{Jane Q. Public}

\date{\today} % or \date{2Jan01} for example

\maketitle

\section{} % Section 1, no title

\section{Second Part}

My answer to this question is unclear.

\section{Third Part}

Problem three was harder than problem 2.

The more I thought about it the less I knew.

\end{document}

CHAPTER 2. LATEX 12

· To use Greek letters or other math symbols, go into math mode

– Use $ $ within a line:

The result was $\tau=0.34$ and $R^{2}=0.65$, with $\alpha\geq 0.1$.

Compare with $\frac{\gamma}{\gamma+\sqrt{\delta}}$.

This prints

The result was τ = 0.34 and R2 = 0.65, with α ≥ 0.1. Compare with
γ

γ+
√

δ
.

– Or set off equations:

\begin{equation}

f(\gamma) = \sin^{-1}(\gamma)

\end{equation}

The result is
f(γ) = sin−1(γ) (2.1)

Note that \sin is special to LATEX, preventing sin from being italicized.

· Make sure that any characters that are special to LATEX are “escaped” by
prefixing them with \. For example, to print & % $ or # as regular characters
change them to \& \% \$ \# in LATEX. If you leave % alone it will serve as the
comment character for LATEX, causing the text to the right of it not to print.

· Make sure that any characters that LATEX needs to see only in math mode
are somewhere surrounded by $ $. This pertains especially to < > _ ^ if by
the latter two you mean subscript and superscript. For example, replace R^2

with R^2, a < 10 with $a < 10$, b > 10 with $b > 10$. For <= and >= use
\leq and \gte but with the whole expression surrounded by $ $.

· To subscript or superscript an expression be in math mode and enclose the
expression in { } and use ^ for superscript, _ for subscript:

CHAPTER 2. LATEX 13

β_{1} is the coefficient of X_{1}; $F_{1,11}=1.2$.

results in

β1 is the cofficient of X1; F1,11 = 1.2.

· Online help resources at biostat.virginia.edu/latex/

2.1.1 Commonly Used L ATEX Commands

Typed by User Result
\textbf{this} this is boldface
\emph{this} this is emphasized
$whatever$ Typeset whatever in math mode
$\chi \tau \gamma \sigma \alpha$ χτγσα

$\hat{Y} \neq 2 \times X\hat{\beta}$ Ŷ 6= 2×Xβ̂
$a \leq X \leq b, W < c, Z \geq a$ a ≤ X ≤ b, W < c, Z ≥ a
χ^2 χ2

X^{i+j} Xi+j to control which text is superscripted
X_3 X3 subscript only one letter/number
X_{i+1} Xi+1 control what is subscripted
$\bar{X} = \sum_{i=1}^{n} X_{i}$ X̄ =

∑n

i=1
Xi

\$100 $100 use $ without meaning math mode
\& \% \# \{ \} & % # { } other special character escapes
\begin{enumerate} ... \end{enumerate} sequentially numbered list
\begin{itemize} ... \end{itemize} bullet list
\item text . . . entries for numbered or bullet items
~ force a blank character
\\ force a new line
\newpage force a new page
\section{text} start a new section, with title

2.1.2 Using LATEX and PSTricks for Drawing Diagrams

· Section 1.3 showed how a powerful standalone command language graphviz

can produce complex diagrams

· LATEX has a number of macro packages for composing special diagrams,
including electronic circuits and music [1]

CHAPTER 2. LATEX 14

· LATEX can be faster to use than drawing programs in many cases, with easier
alignment of elements of a diagram, by thinking of the diagram as a matrix

· Example: The PSTricks LATEX package

\usepackage{pstricks,pst-node}

% Define shorthand for a 20 character-wide centered-text parbox

% This automatically formats multi-line boxes of text

\newcommand{\pb}[1]{\parbox[c]{20ex}{#1}}

\centerline{\begin{psmatrix}

[name=A]\psframebox{This is a box of text} &

[name=C]And some more text \\

\psovalbox{This is yet another bunch of text} &

[name=B]\psframebox{\pb{Hello there and how are you today?}} \\

\pscirclebox{A single line} &

\psovalbox{Another single line} \\

\psovalbox{\pb{A lot of text that does not mean very much, but I am

putting it here anyway}} &

[name=E]\psframebox{\pb{

\begin{itemize}

\item Point one

\item Point two

\end{itemize}}}

\psset{arrows=->}

\ncline{A}{B}

\ncline{C}{B}

\nccurve{C}{E}

\end{psmatrix}}

· See Figure 2.1

2.1.3 Benefits of L ATEX for Statistical Reports

· Automatic symbolic cross-referencing

\section{Introduction}

CHAPTER 2. LATEX 15

This is a box of text And some more text

This is yet another bunch of text
Hello there and how
are you today?

A single line Another single line

A lot of text that
does not mean very
much, but I am
putting it here any-
way

• Point one

• Point two

1

Figure 2.1: A diagram produced by PSTricks

The theory behind this project can be summarized in the equation

\begin{equation}

e = m c^{2}

\end{equation}

\label{mc2}

\section{Results} \label{results}

....

\section{Conclusion}

As seen in Section \ref{results}, Equation \ref{mc2} has

far-reaching implications. Figure \ref{myfigure} shows an example.

· The \input{filename} and \includegraphics{filename} commands in LATEX
can insert tables and graphs created by statistical programs.

· Adobe PostScript format is recommended for creating graphics files; LATEX
renders these much better than Word renders Microsoft format graphics

· Entire document can be regenerated (with pages and section numbers re-

CHAPTER 2. LATEX 16

computed) using latest versions of tables and graphs

· There are functions in S-PLUS and R for automatically creating LATEX code
for complex tables

· There is an option to make all references within the document clickable hy-
perlinks in the final pdf file; these can be driven by automatically created
tables of contents, figures, and tables, which is ideal for navigating long sta-
tistical reportsb

· Excellent facility for handling bibliographic database and citing references in
various styles

· Typical sequence:

– Run S-PLUS to create or recreate tables and graphics files

– Run the latex system command on the LATEX master document to com-
pile it

– Print the result or create a pdf file from it

– No manual operations such as menu selections for importing files into a
Word document

· Can construct batch programs for executing dataset operations, statistical
analysis, and report building to make report reproducible when any compo-
nent data change

· See hesweb1.med.virginia.edu/biostat/s/doc/summary.pdf for a detailed
how-to document

bSuch hyperlinked pdf reports are preferred by FDA reviewers of New Drug Applications.

CHAPTER 2. LATEX 17

2.2 Biostatistics L ATEX Web Server

· You can install LATEX yourself but requires some effort and requires 100MB
of disk space

· Can execute LATEX on a Linux server that has all the tools installed, including
Ghostscript to convert to Adobe Acrobat Portable Document Format (PDF),
a nearly-universal format for transmitting electronic documents

· The server can accept S-PLUS output with text to be sent to LATEX specified
as S-PLUS comment lines. The server runs a reformatting program to create
the LATEX source code for a report.

· Access the server at biostat.virginia.edu/latex or through the course
web page

· In-class exercise:

– Right click on the “Bare bones LATEX example” on the latex web page
and save it to a temporary directory (in Wilson 308 a good area to use
is \temp on C:) under any name you wishc

– Click on the link to the server and hit Browse to find the file you saved.
Right click on this file to rename it to have a suffix of .tex. Get under
Browse again to select this file to upload it for processing.
NOTE: For all LATEX applications after this exercise and after Homework 1,
you will not need to rename the file to upload to have a suffix of .tex. You
only need to use this suffix to tell the server that you have a plain LATEX
file. Ordinarily you will be uploading S-PLUS output, which can have any
file extension other than .tex.

– When LATEX compilation finishes, left click on the resulting pdf file to view
it

cA problem with Microsoft Windows prevents you from saving it with the extension that is really needed, .tex.

CHAPTER 2. LATEX 18

– Right click on the pdf file and save it to a temporary area , then invoke
Acrobat Reader manually and look at this file (this method sometimes
fixes problems with printing pdf documents)

Chapter 3

Introduction to S

3.1 Statistical Languages and Packages

· Procedure-oriented statistical packages

– SAS, SPSS

– Lack of good interactive graphics

– Difficult to implement new methods

– Closed source — sometimes can’t find out how calculations done

· Statistical language

– S — object oriented

– Perl Data Language, MATLAB, Gauss

– Interactive graphics

19

CHAPTER 3. INTRODUCTION TO S 20

– Easy to implement new methods and distribute to others

– An open source version of S exists: R

3.2 Why S?
AH 1.1

· S: a language for interactive data analysis and graphics

· Early on S was planned to be extendible

– Users write new functions in the S language, same as developers

– Documentation for adding functions to the system is excellent

– User-added functions are invoked in same way as built-ins

– Users can create their own data types and add attributes such as com-
ments to any piece of data in S

– Most users adding to a procedural system such as SAS write in a lan-
guage (SAS macro or IML language) not used by SAS developers

– Very hard to write new SAS procedures

· S data elements may be complex and asymmetric (e.g., trees)

· Huge international community of users adding new capabilities to S

· High-level language: a few commands do a lot of work

CHAPTER 3. INTRODUCTION TO S 21

· Unlike macros, language is “live”, i.e., connected to the data while com-
mands are running

if(is.category(x) | is.character(x) |

(is.numeric(x) & length(unique(x)) < 20))

table(x) else quantile(x)

Computes quantiles of a variable x if x is numeric and fairly continuous (at
least 20 unique values), frequency tabulation otherwise

· Object orientation means fewer commands to learn

· Second-order analyses easy; e.g. repeat a multi-step analysis multiple times
perturbing the data slightly to see if results are unstable

· Best scientific graphics available
SAS graphics are ugly, inflexible, have poor defaults, difficult to program

3.3 History and Background of S-P LUS

KO pp. 1-4

· S language developed at AT&T–Bell Labs, where C and UNIX were devel-
oped

· Initial version 1976

· Usage increased rapidly after John Tukey’s book on exploratory data analy-
sis published

· S-PLUS a commercial version of S, began 1987, popularity increased dra-
matically after 1990

· S-PLUS runs on Microsoft Windows, UNIX, Linux

CHAPTER 3. INTRODUCTION TO S 22

· Provided and supported by Insightful Corporation (formally MathSoft)

· GUI, many formats supported for data import/export and graphics export
(including Powerpoint and Windows metafiles)

· UVa has the most comprehensive site license available for S-PLUS

3.4 R
AH 1.1.1

· Statisticians around the world started developing R in early 1990s as an
open source alternative to S-PLUS, partly to have a system on open source
Linux which at the time was not supported by S-PLUS

· Based on the same language used in S-PLUS 2000 with some minor excep-
tions

· Well documented, easy to download and install from Internet; easy to update
add-on libraries (“packages”) from Internet interactively

· Unlike S-PLUS can run on Macs

· No GUI on most platforms; rudimentary one on Windows

· Fewer data import/export capabilities than S-PLUS

· No explicit Powerpoint export capability

· Keep R in mind if your workplace does not wish to buy S-PLUS after you
leave UVa—you can use everything you learn in this class on R

CHAPTER 3. INTRODUCTION TO S 23

· Harrell’s S-PLUS libraries have been ported to R

· R’s web page is www.r-project.org

3.5 Starting and Using S-P LUS on Windows

3.5.1 Starting S-P LUS
AH 1.2.2, KO 2.2

· Lab computers: Run ... Program Files or desktop icon; may have to put
S data objects in a public areaa

· On your own computer: make a desktop shortcut or better make a project
directory and make a shortcut to splus.exe from that project area

· If you put a shortcut to S-PLUS from your project area, carefully follow steps
in A&H 1.2.2 for modifying the shortcut properties to point to the project area
for storing data and scripts instead of using the central system area

3.5.2 Command Window

· Good for initial learning - results appear under your command

· Use ↑ and ↓ keys to replay previously entered commands

· Use End key to go to end of line, Home key to go to start of line

· To exit S-PLUS enter the command q() or use File ... Exit
aWith a little work you can keep these on your ITC Home Directory or on a floppy or Zip disk.

CHAPTER 3. INTRODUCTION TO S 24

3.5.3 Script Window
KO 2.16, AH 1.5, UG 8

· Recommended when the task involves more than a few commands

· Script editor has nice features

· Can fit F10 to submit all commands in script editor window (if none high-
lighted) or just the highlighted ones

· Depending on system option settings, output from those commands will be
at the bottom of the script window

· Can use a system option to divert output to a cumulative Report Window

· Click on the script editor window then do File ... Save to save your script
in a logical place (which may be a floppy disk); by default it will have a suffix
of .ssc

Chapter 4

S Language

KO 3, AH 1.4, UG 9, PG 1

4.1 General Rules
KO 1.3

· Prompt for commands in command window: >

· Continuation prompt when command incomplete: +

· Neither of these ever typed by user

· Command can be any length

· If you want to break a long command into multiple lines for readability, make
sure S-PLUS knows that more is to come by making the current line incom-
plete

– Example: end the line with one of the three characters ({,

· Multiple commands may appear on one line if separated by ;

25

CHAPTER 4. S LANGUAGE 26

· Text after # considered comment and ignored

· Spaces and tabs in commands are ignored except when in quotes

· Doesn’t matter if use single or double quotes as long as

– you use the same type of quote to close as you used to open

– no quote of same type within a string being quoted (in that case quote
with the unused character)

· On Windows systems (but not Linux/UNIX), file names in quotes are not
case-sensitive

· Indent most continuation lines for readability

· In the Command Window you can use the Home and End keys to move to the
start or end of a line to make corrections. You can submit the command for
execution by hitting Enter without moving the pointer to the end of the line.

· Use ↑ and ↓ keys to replay previously entered commands; these may be
modified and then submitted

· Use the Command History window to resubmit blocks of lines at one time

4.2 Types of Basic Data in S

· numeric

– integer

– floating point

CHAPTER 4. S LANGUAGE 27

∗ default: double precision—15 sig. digits

∗ single precision—7 digits of precision a

· character string

· logical

· list: collection of several objects of any types

· function

4.3 S As a Calculator: Arithmetic Expressions

· Try examples such as the following

17 # nothing to do but print 17

17/2 # division

1+1 # evaluated left to right

1+2*3+10 # multiplication (*) takes priority over addition

1+2^3 # exponentiation (2 to the 3rd power) done first

1+2^3*7 # exponentiation, then multiplication, then addition

sqrt(4) # square root function

1+2*sqrt(9*9) # everything inside () finished first, then sqrt, *, +

3+ # S will wait for more

4 # 7

· Note that when you submit a command to S that is not inside { } the result
of the command will be printed automatically

· Use () to group expressions so that order of evaluation is obvious

2*(3+4)

2*(3+4)^2
aSingle precision is not available in R.

CHAPTER 4. S LANGUAGE 28

4.4 Assignment Operator

· Used to create a variable or other S object

· Variable names may contain the symbols a-z,A-Z,0-9 and . but may not
start with a number AH 2.1

– They may not contain the underscore character or a blank

– When importing data containing illegal field names, S will often convert
these to legal S names but it’s best to change these names to legal S
names yourself during the import

· Names are case-sensitive

· Recommended that you surround the assignment operator (<-) by spaces

· Examples:

x ← 4

x # prints value of x, 4

sqrt(x)-3/2

x ← x*2

x

1/x

x-1

y ← (x+11*2)/2

y

description ← ’This analysis is revealing’

description

· You can use the command objects() or ls() to list names of variables you
have created

CHAPTER 4. S LANGUAGE 29

4.5 Two Frequently Used Functions

· Type print(expression) or print(variablename) to print the result of expression
or contents of variablename

– This is only necessary if you want to control formatting of printing or are
printing from within a function or other expression enclosed by { }

· Type rm(x), remove(’x’), rm(x,y), remove(c(’x’,’y’)) to remove ob-
ject x or objects x and y from storage

4.6 Making Vectors
AH 2.4

· The S function named c combines elements into a vector

z ← c(’cat’,’dog’) # character string vector

z # note [1] in output - refers to element 1

c(description, description)

c(1,x)

c(1,x)*2 # arithmetic on vector does same thing many times

2*c(1,x)

c(1,2,7)

x ← c(1,2,7)

length(x) # returns number of scalar elements

x/2

c(c(1,4),c(2,5))

· When the values are from a systematic sequence you can save coding

rep(2.1, 30)

rep(’garbage’,5)

rep(c(1,3),2)

1:10 # generates a sequence with increment 1.0

10:1 # decrement 1

seq(1,10) # same thing

seq(1,10,1) # same thing

seq(1,10,by=1) # same thing

seq(1,10,by=2) # increments by 2 but not to exceed 10

seq(1,10,by=-2) # illegal increment

seq(5,1)

CHAPTER 4. S LANGUAGE 30

seq(5,1,by=-1)

4.7 Logical Values

· Values of TRUE or FALSE (abbreviated T,F)

· Treat TRUE like 1, FALSE like 0

· Logical negation operator: !

x ← T # or TRUE

x

y ← !x

y

2 < 3

2 > 3

!(2 > 3) # watch out on some systems: ! as first character

can mean ’send rest of line to operating system’

to be safe can do (!(2 > 3))

· Logical union (or), intersection (and): | &

F | F

T | F

T & F

T & T

2 > 3 | 5 > 3 # | evaluated last

(2>3)|(5>3) # same thing

x ← 11

x > 6

x ← c(5,11,22)

x > 6

(1:10) < 5

· To compute a TRUE,FALSE on the basis of an equality use ==

x ← 6

x==6

x==7

CHAPTER 4. S LANGUAGE 31

!(x==7)

x ← c(1,6,11)

x==6

4.8 Missing Values
KO 4.3

· A missing numeric or character value may begin as a blank in a spreadsheet

· Symbol for missing numeric value in S: NA

x ← NA

x

x ← c(1,2,NA,4)

x

sqrt(x)

sqrt(-1)

· To sense that a value is missing never use ==, use the is.na function:

is.na(x)

x.present ← !is.na(x)

x.present

· Unlike SAS, S determines inequalities correctly when NAs present

x < 2

x==2

F | NA

T | NA

F & NA

T & NA

· Logical values will be used later for deciding which observations qualify to
be analyzed

CHAPTER 4. S LANGUAGE 32

4.9 Summary: S Cheatsheet

Compiled by Barry W. Brownb

Department of Biomathematics
University of Texas M. D. Anderson Cancer Center
Houston, TX 77030
bwb@mdaali.cancer.utexas.edu

4.9.1 S Expressions

Literals

number 1 1.1 1.1e10
string ’string’ or "string"
name
comment # string.
function (formals) expr function(args){defn}

Calls

expr infix expr
expr %anything% expr
unary expr
expr (arglist)
expr [arglist]
expr [[arglist]]
expr $ fname

Assignment

expr <- expr
expr_expr
expr -> expr

Conditional

if (expr) expr
if (expr) expr else expr

bModified slightly by FE Harrell

CHAPTER 4. S LANGUAGE 33

Iteration

repeat expr
while (expr) expr
for (Name in expr) expr

Flow

break
next
return (expr)
(expr)
{ exprlist }

4.9.2 Arithmetic Operators

* Multiply

+ Add

- Subtract

/ Divide

^ Exponentiation

%% Remainder or modulo operator

%*% Matrix multiplication operator

%/% Integer divide

%c% crossproduct m1 %c% m2 is t(m1) %*% m2

%o% Outer Product

4.9.3 Relational Operators

!= Not-equal-to

< Less-than

<= Less-than-or-equal-to

== Equal

CHAPTER 4. S LANGUAGE 34

> Greater-than

>= Greater-than-or-equal-to

4.9.4 Logical Operators

! Not

| Or (Use with arrays or matrices)

|| Shortcut Or (Don’t use with arrays or matrices)

& And (Use with arrays or matrices)

&& Shortcut And (Don’t use with arrays or matrices)

Above “shortcut” means that if the condition is not satisfied, the remaining parts of the expression are not even
evaluated. This is very useful if these parts don’t even make sense then, or are slow to execute.

4.9.5 Subscripts

[] Vector subscript

[[]] list subscript - can only identify a single element

$ Named component selection from a list

Subscript Forms

logical extracts or selects T component

positive numbers extracts or selects specified indices

negative numbers deletes specified indices

NA or out of range extends dimensions gives value NA

4.9.6 Sequence and Repetition

seq (from, to, by, length, along)
also : as in 1:10
rep(x, times, length)

CHAPTER 4. S LANGUAGE 35

4.9.7 Arithmetic Operators and Functions

abs(x)
acos(x)
acosh(x)
asin(x)
asinh(x)
atan(x)
atan(x, y)
atanh(x)
ceiling(x)
cos(x)
cosh(x)
exp(x)
floor(x)
gamma(x)
lgamma(x)
log(x, base=exp(1))
log10(x)
max(...) elementwise
min(...) elementwise
pmax(...) parallel
pmin(...) parallel
sin(x)
sinh(x)
sqrt(x)
tan(x)
tanh(x)
trunc(x)

4.9.8 Types

Can be used in as.<type> and is.<type> and <type>(length)

array
category is, as only
character
complex
double
integer
list
logical
matrix
null is, as only
numeric

CHAPTER 4. S LANGUAGE 36

4.9.9 In and Out of S

Data In

scan(file="", what=numeric(), n, sep,
multi.line = F, flush = F, append = F)

Example: data <- matrix(scan("data.file"),ncol=5,byrow=T)

Command File In

source(file, local = F)

Screen Output to File

sink(file)
sink() restores output to screen

Write and Read Objects

dput(x, file) writes out object in S notation
dget(file)

write(t(matrix),file,ncol=ncol(matrix),append=FALSE)

data.dump(objnames, file=’filename’) objnames may be ’obj name’
or c(’name1’,’name2’,...)

data.restore(’filename’)

Make Things (Including Help) Available or Unavailable

assign("name", value, frame, where)

attach(file, pos=2)
detach(2)

library()
library(help=section)

library(section, first=TRUE) make library’s functions take precedence

help(name="help", offline=F)
args(name="help")

CHAPTER 4. S LANGUAGE 37

4.9.10 Reduction Operators

all(...)
any(...)
length(x)
max(...)
mean(x, trim=0)
median(x)
min(...)
mode(x)
prod(...)
quantile(x, probs=c(0,.25,.5,.75,1))
sum(...)
var(x,y)
cor(x,y,trim=0)

4.9.11 Statistical Distributions

d<dist>(x,<parameters>) density at x

p<dist>(x,<parameters>) cumulative distn fn to x

q<dist>(p,<parameters>) inverse cdf

r<dist>(n,<parameters>) generates n random numbers from distn

<dist> Distribution Parameters Defaults
beta beta shape1, shape2 -, -
cauchy Cauchy loc, scale 0, 1
chisq chi-square df -
exp exponential - -
f F df1, df2 -, -
gamma Gamma shape -
lnorm log-normal mean, sd (of log) 0, 1
logis logistic loc, scale 0, 1
norm normal mean, sd 0, 1
stab stable index, skew -, 0
t Student’s t df -
unif uniform min, max 0, 1

4.9.12 Plotting

Starting and Stopping Plotting

<device-specification function>
graphics.off()

CHAPTER 4. S LANGUAGE 38

Device-Specification Functions

postscript(file, command, horizontal=F, width,
height, rasters, pointsize=14, font=1,
preamble=ps.preamble, fonts=ps.fonts)

Some Plot Parameters

log=’<x|y|xy>’ Logarithmic axes

main=’title’

new=<logical> T forces addition to current plot

sub=’bottom title’

type=’<l|p|b|n>’ Line, points, both, none
lty=n Line type
pch=’.’ Plot character

xlab=’x-axis label’
ylab=’y-axis label’

xlim=c(xlo.value,xhi.value)
ylim=c(ylo.value,yhi.value)

One-Dimension Plots

barplot(height) #simple form
barplot(height, width, names, space=.2, inside=TRUE,

beside=FALSE, horiz=FALSE, legend, angle,
density, col, blocks=TRUE)

boxplot(..., range, width, varwidth=FALSE,
notch=FALSE, names, plot=TRUE)

hist(x, nclass, breaks, plot=TRUE, angle,
density, col, inside)

Two-Dimension Plots

lines(x, y, type="l")
points(x, y, type="p"))

matplot(x, y, type="p", lty=1:5, pch=, col=1:4)
matpoints(x, y, type="p", lty=1:5, pch=, col=1:4)

CHAPTER 4. S LANGUAGE 39

matlines(x, y, type="l", lty=1:5, pch=, col=1:4)

plot(x, y, type="p", log="")

abline(coef)
abline(a, b)
abline(reg)
abline(h=)
abline(v=)

qqplot(x, y, plot=TRUE)
qqnorm(x, datax=FALSE, plot=TRUE)

Three-Dimension Plots

contour(x, y, z, v, nint=5, add=FALSE, labex)

interp(x, y, z, xo, yo, ncp=0, extrap=FALSE)

persp(z, eye=c(-6,-8,5), ar=1)

Multiple Plots Per Page (Example)

par(mfrow=(nrow, ncol), oma=c(0, 0, 4, 0))
mtext(side=3, line=0, cex=2, outer=T,

"This is an Overall Title For the Page")

Chapter 5

Objects, Getting Help, Functions,
Subsetting, Attributes, and Libraries

5.1 Objects—General
AH 2.1, KO p. 70

· Everything in S is an object

· Work on objects by applying functions to them

· Usually an object is ultimately committed to a disk file with the same name
as the S objecta

5.2 Functions
KO 4.2, AH 2.3

5.2.1 Getting Help
AH 2.2, KO 3.1.2

· To find out how to use a function
aIn Windows, disk file names do not correspond to object names if the object name is longer than 8 characters.

40

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 41

· At command line (or submit run using F10 if using Script window) type
?functionname if you know its name

· May want to look at examples first then work backwards to details

· Specifications and data are passed to functions as arguments

· If you know what a function does and just need to know the names and order
of its arguments type args(functionname)

This also shows the default values of the arguments that are used when you
do not provide a value for the function.
Note : When the default value for an argument is a vector like
c(value1,value2,value3), and the argument really takes a scalar value,
the default value for the argument is value1 and the other values are the
only other possible values for that argument.

· Sometimes you need to find out exactly what a function does. You can often
print its full definition by running the command functionname, which runs
print(functionname).

· For Windows S-PLUS there are good ways to find which function to use by
using the Language Reference submenu on the Help menu:

– tell you which functions contain a word or phrase you specify anywhere
in its help file, and let you click on one of those functions to see its help
file if you click on Search

– put of a list of keywords around which functions are organized and let you
click on a keyword to list all the functions related to that area if you click
on Contents; then you can go to help files for individual functions AH 2.2

· There is also a nice keyword-organized function guide at http://insightful.
com/resources/fguide.html although this web site does not contain individ-
ual help files

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 42

5.2.2 Using Functions

· An S command line can look like

functionname(argument1, argument2, argument3)

which will run function functionname on the values given by the arguments
argument1, argument2, argument2 and will print the result returned by the
function

· Arguments are frequently called parameters, especially when you are look-
ing inside the body of a function definition

· Some functions which only do things such as make a plot in a graphics
window or to a graphics device do not have any results printed

· Often functions are invoked using a format such as

functionname(major.data.object, otherarguments)

where otherarguments are variables or constants whose values tell the func-
tion how to operate on the main data given by major.data.object or they
tell the function exactly what the function should compute

· We often think of such other arguments as options

· For many functions, we pass the first argument by position, which means
that the function will know what to do with that object by virtue of it being the
first argument

· This first argument is often a variable to analyze

· Other arguments may also be specified by position, but functions have to
give their own internal names for arguments and we can match arguments
to values we defined by specifying argument names in the form
argumentname=our.value

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 43

· Don’t need to give values to all arguments to a function because some may
not be needed for a particular analysis and others may have default values
we like

· Passing arguments by name does away with need to remember order of
arguments

· Example: mean has arguments x, trim, na.rm:

> args(mean)

function(x, trim = 0, na.rm = F)

– 1st argument: x (vector to analyze), no default value

– 2nd: trim—amount of trimming of outer values to use
default is zero (compute ordinary mean)

– 3rd: na.rm—defaults to F (false), which means that NAs are not automat-
ically removed from x before computing the mean; if NAs are present, the
resulting mean would be NA

Set na.rm=T to make the mean function remove NAs before computing the
mean
This results in the mean of all non-missing values

· To compute the mean of age while ignoring NAs, we could use the S com-
mand mean(age, , T)

· Interpret as passing T as the value of the 3rd argument na.rm

· Usually safer to say mean(age, na.rm=T), and is easier to read your code

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 44

5.3 Subsetting Vectors
AH 2.4.3, KO 3.2

· [] after an object name subsets the object

· Different objects use different subsetting methods

– For a tree (hierarchical list object) a subset may be a subtree

– For a vector it may be a subvector

– For a matrix it may be a submatrix or a row or column

· To subset to an individual element use e.g.

x2 ← x[2] # retrieve the second element of vector x

· To get a subset that is more than one element:

x.small ← x[3:5] # get x[3], x[4], x[5] and put in x.small

y ← x[c(2,5)] # get x[2] and x[5]

z ← x[-3] # get all but x[3]

z ← x[-c(2,5)] # get all but x[2] and x[5]

· x[3:5] uses an index vector 3:5 to select elements

· Can also use logical vectors to select elements

– T means to select element

– F means to ignore element

· For example if x is of length 5, x[c(F,T,T,F,F)] is the same as x[2:3]

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 45

· Very often we use logical expressions to get subvectors to analyze:

> sex ← c(’m’,’f’,’m’,’m’)

> x ← 1:4

> x[sex==’m’]

[1] 1 3 4

· Other common examples are x[!is.na(x)] and x[y>3 & w < 2]

5.4 Matrices, Lists, Data Frames
KO 4.1, AH 2.5, PG 3

5.4.1 Matrices
AH 2.5.1

· Two-dimensional arrays—rows and columns

· All elements of same type (numeric or character)

· Built by using the matrix function or by combining vectors assuming they
represent rows (rbind()) or columns (cbind()) of the new matrix

· One way to subset matrices is to specify either vectors of row and column
numbers (or both)

· Can define row and column names; dimnames contain both of these

· When a matrix has dimnames you can also subset the matrix using vectors
containing row and/or column names

· Example:

> a ← 1:3

> b ← 4:6

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 46

> x ← cbind(a,b) # row names not defined

> x

a b

[1,] 1 4

[2,] 2 5

[3,] 3 6

> x[2:3,]

a b

[1,] 2 5

[2,] 3 6

> x[,2]

[1] 4 5 6

> x[,’b’]

[1] 4 5 6

· The apply function will compute arbitrary statistics over either the rows or
the columns of the matrix

5.4.2 Lists
AH 2.5.2

· Lists are hierarchical collections of objects with no symmetry requirement

· Can be a collection of vectors of different lengths

· Often a collection of scalars and vectors or matrices

· Lists are incredibly flexible—can contain other lists

· Good way to store a tree

· A list can represent a rectangular dataset, i.e., a collection of vectors all

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 47

having the same length

· A list is created using the list function.
The names of its arguments specify the names of the elements of the list.

· See AH 2.5.2 for an example showing the flexibility of lists:

us ← list(Alabama=list(counties=c(Autauga=40061,Baldwin=123023,...),

pop=4273084,capital=’Montgomery’),

Alaska=list(counties=c(’Aleutians East’=2305,...),

pop=602545,capital=’Juneau’),

...)

us$Alabama # retrieve all info about Alabama

us$Alabama$counties # retrieve all county names and pop.

us$Alabama$counties[1:5] # first 5 counties

us$Alabama$capital # scalar character value

us[c(’Alabama’,’Alaska’)] # sub list with only 2 states

Ak ← us$Alaska # new list with only Alaska data

Ak$counties # fetch counties for Alaska

In the definition of the us list, the counties vectors were named vectors. The
values of these vectors are the county populations but these will be labeled,
and the population for a given county may be obtained using the county
name in addition to using the county position (if known). For example:

us$Alabama$counties[’Baldwin’]

retrieves the population of Baldwin county in Alabama.

· One of the most common uses of lists is to hold the results of fitting a regres-
sion model. These results may consist of a vector of regression coefficients,
a matrix of variances and covariances for these coefficients, and scalars
such as R2.

5.4.3 Data Frames
AH 2.5.3

· A special case of a list

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 48

· A list made up of one or more vectors of the same length

· Unlike a matrix, these vectors may have differing types

· Unlike a generic list, data frames have special subscripting methods ([]
methods) that allows one to easily subset all of its component vectors

· Data frames are created when datasets are imported, or using the data.frame

function:

mydata ← data.frame(age=c(10,20,30), sex=c(’female’,’male’,’male’))

This is the same as doing

mydata ← list(age=c(10,20,30), sex=c(’female’,’male’,’male’))

except that a data frame has attributes that lists do not have:

dim : a 2-element vector containing number of rows and columnsb

rownames : a character vector containing row names (often this is a subject
ID)

class : the class of a data frame is ’data.frame’; this insures that spe-
cial methods (print.data.frame and [.data.frame respectively) will be
used to print and to subset the object

– print(mydata) invokes print.data.frame(mydata) to print the data
in columns

– [.data.frame] allows you to easily extract a sub-data frame by spec-
ifying the rows and columns of interest

· To specify the row.names to use when creating the data frame, tell a data
import procedure to use a certain input column as the observation IDs, or do
something like

mydata ← data.frame(age=c(10,20,30), sex=c(’f’,’m’,’f’),

row.names=c(’A1’,’A2’,’B20’))

bThis attribute isn’t actually physically present on list objects but may still be retrieved using the dim function.

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 49

If row.names are not defined they will default to c(’1’,’2’,...). For the
above mydata data frame you can extract subsets using these examples:

mydata$sex # get the sex variable (vector)

mydata[,’sex’] # same

mydata[,c(’age’,’sex’)] # new data frame, 2 variables, but same as old

mydata[1:2,] # new data frame, only 2 obs.

mydata[1:2,’age’] # new vector, 2 obs.

mydata[’A1’,] # new data frame, 1 obs., all vars.

mydata[c(’A1’,’A2’),] # new data frame, 2 obs.

mydata[1:2,] # ditto

· One subtle difference between data frames and lists: when creating data
frames, character vectors such as sex are usually translated to S factor

variables

5.5 Attributes
AH 2.6

· Extra information tagged onto an object

· Not the value of the object used in computation

– matrices have dim and dimnames

– data frames have class, row.names, and names (the names of the vari-
ables) and effectively have dim

– lists have names: names of major elements

– factors have levels and class

· Attributes may be retrieved by

– attr(objectname,’attribute name’)

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 50

– attributes(objectname)$attributename

– extractor functions such as dim,names,class,row.names

· If a vector is given element names, the vector has these stored in the names

attribute

> x ← c(Alabama=23, Ohio=12)

> x

Alabama Ohio

23 12

> names(x)

[1] "Alabama" "Ohio"

· Users may add their own attributes on the fly:

> attr(age,’comment’) ← ’for children age was estimated’

> attr(age,’comment’)

[1] ’for children age was estimated’

· class is a very special attribute that allows S to be object-oriented

– Class of an object triggers methods to handle that object

– generic.function.name(object) will invoke
generic.function.name.class(object), where class is the object’s ma-
jor class

– Subclasses are allowed and these will invoke specific methods with no
special methods are present for handling major class

· Retrieve the class using class(object) or attr(object,’class’)

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 51

· Ex: class(mydata) may be ’data.frame’

class(mydata$sex) is ’factor’

5.6 Factor Variables
AH 2.6.1

· Vectors of categorical data

· Most useful when there are many fewer categories than there are subjects

· Label for each category (“value labels”)

· Internally factors are stored as positive integers

· Factors created during data import, by data.frame function, or by using the
factor function:

> sex ← c(1,2,1) # original coding on source database

> sex ← factor(sex, 1:2, c(’female’,’male’))

> class(sex)

[1] "factor"

> attributes(sex)

$levels

[1] "female" "male"

$class

[1] "factor"

> levels(sex)

[1] "female" "male"

> sex

[1] female male female

Levels: female male

> sex ← c(’f’,’m’,’f’)

> sex ← factor(sex, c(’f’,’m’), c(’female’,’male’))

> sex

[1] female male female

Levels: female male

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 52

· Note that data can originate as character or numeric

· If you always specify a 2nd argument to factor you will always make it clear
how factor levels correspond to the original values

· In programming usually treat factor variable as a character string:

age[sex==’female’] # get subvector of ages for females

age[sex!=’male’] # same thing

fem ← sex==’female’ # create new logical variable

females ← mydata[mydata$sex==’female’,] # females, all columns

sexc ← as.character(sex) # force into character vector

· The print.factor method for factors prints the formatted values, without
quotes

5.7 When to Quote Names
AH 2.7

· Always quote character string constants (literals)

· Quote variable names when they are used to specify which variables to re-
trieve from a list or data frame and $ is not used to do this

· Otherwise S will try to find variables whose names are the values of the
object you specified

· Quote names even when used with $ if names are not legal S names

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 53

5.8 Hmisc Add-on Function Library
AH 2.9

· Libraries (called packages in R)contain a bunch of related functions and all
their online help files; may contain test datasets also

· S has several libraries builtin

· Users adding more than one function to S usually put the functions in an
add-on library

· Huge number of add-on libraries available

· Hmisc library: variety of added functions for

– data analysis and data reduction

– high-level graphics

– utilities

– sample size, power

– converting SAS datasets to S data frames

– imputing missing data

– advanced table making

– conversion of S objects to LATEX code

– data manipulation such as recoding data

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 54

· Windows S-PLUS comes with Hmisc library builtin

· Get updates from hesweb1.med.virginia.edu/biostat/s/Hmisc.html which
also has a link to a page telling how to install the libraryc

· Installation on Windows systems just involves unzipping a file stored in a
temporary disk file into the correct subdirectory in the area where S-PLUS is
installed

· Libraries are “attached” using the library function or the File ... Load

Library menu

· Hmisc needs to override a few builtin S functions so it needs to be attached
in the search list (which will be covered later) before the system functionsd

· The main function redefined by Hmisc is the subsetting function for factors,
[.factor. [.factor in Hmisc by default will remove unused levels from a
factor variable if the resulting subset did not use that levele

· To make Hmisc automatically available every time S-PLUS is invoked, put
the following in the script or command window and run it:

.First ← function(...) {
library(Hmisc,T)

invisible()

}

· .First is a user-defined function that is executed when S-PLUS starts from
a project area whose Data directory contains the .First function

· If you don’t set up .First or use the File ... Load Library menu dur-
cAt present no updates are available for S-PLUS 6.
dIf using the File menu check the box marked “attached at top of search list.”
eFor example, sex[sex==’female’] will not keep a level for males.

CHAPTER 5. OBJECTS, GETTING HELP, FUNCTIONS, SUBSETTING, ATTRIBUTES, AND LIBRARIES 55

ing the session you can make the functions in the library available using
library(Hmisc,T) in your program

· On Windows platforms, Hmisc comes with a Microsoft Windows Help file that
is easy to navigate

· To navigate the library type help(library=’Hmisc’) or library(Hmisc,help=T)
(but not in R) or click on the special menu created for Hmisc the first time
library(Hmisc,T) is executed under S-PLUS.

Chapter 6

Turning S Output into a L ATEX PDF Report

· Used to typeset text in the bottom pane of the Script window or text saved
from a Report window into a report in Adobe Acrobat Portable Document
Format (pdf)

· The Report window is slightly preferred as it is cumulative (has all the com-
mands and output for the whole sessiona and File ... Save as works
when the Report window is active (unlike the bottom pane of the Script

window).

· To make output go to the Report window, select it after navigating the Options

... Text Output Routing menus

· If using a Report window do not save it as a binary .srp report file; save
files as plain text, i.e., .txt is a good suffix

· S-PLUS has an annoying habit of moving some comment lines when writing
to the Report window. When these comment lines contain text for LATEX to
process (see later) this can be a real problem.

aIf you have to run sections of code more than once to succeed, you will need to delete unneeded input and output from the Report
window.

56

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 57

· Also, it is good practice to be able to run the S-PLUS script from scratch.
Running a batch job will do this, once you have interactively debugged the
script. Using the commands below will also prevent S-PLUS from reposition-
ing comment lines. Use Notepad to create a file called s.bat in your project
area or in a folder in your system file path. s.bat should contain the following
commands.

set SHOME=’’c:\Program Files\splus61’’ or wherever S-Plus is

set S_PROJ=c:\temp or wherever project folder is

set S_CWD=%S_PROJ%

’’c:\Program Files\splus61\cmd\sqpe’’ < %1.s > %1.txt replace .s with .ssc if desired

This is a DOS batch file that when invoked with the DOS or Run ... Command

command of s myfile will run the script myfile.s (or myfile.ssc depending
on the prefix used above) and create a report file myfile.txt. Running sqpe

rather than the regular splus.exe command runs S-PLUS without the GUI
and makes it run faster while using less RAM. If you stored s.bat on a floppy
disk for use in the lab you can run it by typing the command a:\s myfile or
a:\s \projects\myproj\myfile, for example.

· But his method does not print the S-PLUS commands in the .txt file; do
make that happen put the following command at the top of the script:
options(echo=T)

· The server reformats S output such as the .txt file into LATEX code, running
the LATEX compiler stored on the server to create a PostScript document,
and running the Ghostscript command to convert the Postscript docu-
ment to pdf

· Helps greatly with incorporating high quality graphics in a report (to be cov-
ered later)

· Basic idea is to liberally sprinkle S comments (# lines) in your script (.ssc)
file which are ignored when S runs but will appear in the output. These
comments contain the purpose or methods of analysis (generally before the

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 58

S commands that carried this out) and interpretation of results (generally
appearing after the S code in the .ssc file).

· The server creates a LATEX article style document

· Always refer to the many documentation files on the server for more info

· When you upload a plain text ASCII file that does not have a suffix of .tex
to the biostatistics LATEX server, the server assumes that

– All text after # comprise LATEX code, sent to LATEX without change (except
for the #@caption directive used in plotting (later))
These are comments to S and are ignored by S

– Your file does not contain LATEX preamble and postamble material; these
are added automatically by the server

– Various commands are in certain formats when your program creates
graphics (later)

– Any text not preceded by # is assumed to be either S commands or S
output

∗ S output is included as-is in the report using a LATEX verbatim environ-
ment

∗ S commands are parsed so that
· <- is converted to← by replacing it with a macro \Gets used by the
S.sty package that the server calls to typeset S code neatly

· { } are converted to \{ \} so they will be typeset to print as { }

· A small ~ is replaced by ∼

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 59

· S comments after # are printed in a smaller font by wrapping that
text in a macro \scom{...text...}; it would be easy to define the
scom macro to typeset comments in different fonts or colors.

· Lines beginning with # are sent to LATEX with the following changes

– # symbol removed

– <= >= < > are changed to \leq \geq $<$ $>$ if the line does not
already have two $ in it

· As LATEX’s comment symbol is %, any text that you don’t want to typeset
should be in an S comment line (# ...) and that text should be preceeded
by %

· It is recommended that you include title and date information

· Most reports will have sections; homeworks will have sequentially numbered
problems

· For the latter, use a LATEX enumerate environment with each problem starting
with \item (or use \section{})

6.1 Example S Output

Suppose you save the following into a file test.txt in your project directory.

a

># b

> #c

>#d

> # e

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 60

##f

This is an example report. Line 2 is

continued here.

> # This should be treated as if the > weren’t there, as

S-Plus sometimes adds > in the bottom panel of a \texttt{Script}

window. Here we use math mode $x+y$.

x <- matrix(runif(9), nrow=3) # create a matrix

More text

if(1==2) {

y <- 3

}

The temporary LATEX code produced by the server would be

\documentclass{article}

\usepackage{graphicx}

\usepackage{ccapt2}

\usepackage{S} % S style macros for typesetting S code

\usepackage[bookmarks,pdfpagemode=UseOutlines]{hyperref}

%For commands at the right of S-Plus code lines:

\newcommand{\scom}[1]{{\rm\scriptsize \# #1}}

... commands to set up for making simple tables (not shown) ...

... commands to set up for graphics (not shown) ...

\begin{document}

\begin{Example} % environment for S code

a

\end{Example}

b

c

d

e

\begin{Example}

\scom{f}

\end{Example}

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 61

This is an example report. Line 2 is

continued here.

This should be treated as if the $>$ weren’t there, as

S-Plus sometimes adds $>$ in the bottom panel of a \texttt{Script}

window. Here we use math mode $x+y$.

\begin{Example}

x \Gets matrix(runif(9), nrow=3) \scom{create a matrix}

\end{Example}

More text

\begin{Example}

if(1==2) \{

y \Gets 3

\}

\end{Example}

\end{document}

Note that a lone > was translated to math mode ($>$) Here is a typical example,

starting the the S output file saved by the user.

#\title{Project 2}

#\author{Jane Q. Public}

#\date{\today} % or \date{2Jan01} for example

#\maketitle

#\thanks{I neither gave nor received help on this project --- J.Q.P.}

#\begin{enumerate}

#\item % first problem

#My approach to this problem involved ...

x <- rnorm(1000)

#You can see a Gaussian shape in the histogram.

#More conclusions.

#\item % skip second problem

#\item % third problem

#One can see that ...

#\end{enumerate}

The resulting LATEX code produced by the server is below.

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 62

\documentclass{article}

\usepackage{graphicx}

\usepackage{ccapt2}

\usepackage{S}

\usepackage[bookmarks,pdfpagemode=UseOutlines]{hyperref}

%For commands at the right of S-Plus code lines:

\newcommand{\scom}[1]{{\rm\scriptsize \# #1}}

\newcommand{\btable}[1]{

\begin{table}[!htbp]

\begin{center}

\vspace{1ex}

\begin{tabular}{#1} \hline\hline}

\newcommand{\etable}{

\hline

\end{tabular}

\end{center}

\end{table}}

\newcommand{\fig}[2]{\begin{figure}[htbp!]

\leavevmode

\centerline{\includegraphics{#1.ps}}

\small

\caption{#2}

\label{#1}

\end{figure}}

\newcommand{\fign}[1]{\begin{figure}[htbp!]

\leavevmode

\centerline{\includegraphics{#1.ps}}%

\small\captiondelim{}\caption{}%

\label{#1}

\end{figure}}

\begin{document}

\title{Project 2}

\author{Jane Q. Public}

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 63

\date{\today} % or \date{2Jan01} for example

\maketitle

\thanks{I neither gave nor received help on this project --- J.Q.P.}

\begin{enumerate}

\item % first problem

My approach to this problem involved ...

\begin{Example}

x \Gets rnorm(1000)

\end{Example}

You can see a Gaussian shape in the histogram.

More conclusions.

\item % skip second problem

\item % third problem

One can see that ...

\end{enumerate}

\end{document}

6.2 Common Errors

· Not putting things like R^2, x<y in math mode (but only inside S comment
lines that become open LATEX code)

· Not escaping % $ & # by typing \% \$ \& \# when used in S comment lines
to represent percent or dollars

· Not correcting S-PLUS’s reformatting of some comment lines. Often S-PLUS

will move a comment line to the end of the previous S command. This will run
things together. Edit such lines by hitting Enter to move the # ... comment

... back to the next line where it belongs (this is not a problem if using the
sqpe batch file method).

· Using blank lines or other devices for forcing text to appear on a new line,
instead of putting \\ at the end of a # line

CHAPTER 6. TURNING S OUTPUT INTO A LATEX PDF REPORT 64

6.3 Saving and Printing the PDF Report

· Sometimes you can left click on the web page to view and print the .pdf file
created by the server if Acrobat Reader is installed as a Mozilla, Netscape,
or IE plug-in

· Usually better to right click and save to a temporary file such as my.pdf

· This file can be E-mailed as an attachment or you can open Acrobat Reader

and read and/or print the file

· Alternatively, click on Save Link Location in your browser and paste the
URL for the .pdf file into an E-mail who needs to read the report; they can
load it on demand (this only works if they will view the .pdf file before user
files are periodically purged from the server)

Chapter 7

Data in S

AH 3

7.1 Importing Datasets
AH 3.1, KO 2.3.1,2.9,11.2.2

7.1.1 Functions

· Many functions for importing rectangular ASCII files, e.g., read.table (usu-
ally preferred), scan

· ASCII data commonly formatted so that fields are separated with commas
or tabs

· read.table will create a data frame

· In R, the read.csv function calls read.table with the correct options to easily
read a comma separated file

· sas.get function in Hmisc reads a SAS dataset to create a data frame

– Slower than other methods covered later, because sas.get actually runs
a SAS job to dump SAS data in ASCII format so S can read it

65

CHAPTER 7. DATA IN S 66

– sas.get has these advantages over using the builtin S-PLUS file import
facility

∗ transports SAS variable labels into S-PLUS ’label’ attributes on in-
dividual variables

∗ reads SAS PROC FORMAT catalog files to associate value labels with S
variables by turning them into factor variables

∗ preserves SAS special missing values

· You can also directly call the import functions that are called by the Import

menu

7.1.2 File ... Import

· Converts a large number of types of ASCII files as well as special binary
files created by database software and other statistical packages; output is
a data frame whose name you choose on the dialog

· If the data file does not contain field names, S-PLUS will assign default
names

· Better to use the Options tab on the import dialog to fill in variable names
before importing the data

– Can easily paste these names in from another source such as a data
codebook file

· R does not have a file import menu. Use R’s foreign package to read
SAS transport-format files and SPSS, EpiInfo, Minitab, and S-PLUS trans-
port (.sdd) files (the latter using foreign’s data.restore function).

· R cannot directly read Excel files. To read these, run Excel (Gnumeric or

CHAPTER 7. DATA IN S 67

OpenOffice under Linux/Unix) and create a comma separated file, and read
this in R using read.csv.

· Except when using sas.get, you should almost always run an imported data
frame through the Hmisc cleanup.import function to

– convert double precision variables (the default) to single precision aor to
integer (if there are no fractional values in the data); this often results in
halving the RAM and disk storage requirements for the data frame

– solve a few problems caused by strange characters in Excell spread-
sheets

– add variable labels to variables when these are imported into another
data frame whose structure is that of a SAS PROC CONTENTS CNTLOUT=

dataset

7.2 Listing Data Characteristics
AH 3.3

· Hmisc contents functions displays data about a data frame

– variable labels (if any)

– units (if any)

– storage modes

– number of NAs

– the number of levels for factors

> contents(pbc)

aR only handles double precision or integer.

CHAPTER 7. DATA IN S 68

418 observations and 19 variables Maximum # NAs:136

Labels Levels Storage NAs

bili Serum Bilirubin (mg/dl) single 0

albumin Albumin (gm/dl) single 0

stage Histologic Stage, Ludwig Criteria single 6

protime Prothrombin Time (sec.) single 2

sex Sex 2 integer 0

fu.days Time to Death or Liver Transplantation single 0

age Age single 0

spiders Spiders 2 integer 106

hepatom Hepatomagaly 2 integer 106

ascites Ascites 2 integer 106

alk.phos Alkaline Phosphatase (U/liter) single 106

sgot SGOT (U/ml) single 106

chol Cholesterol (mg/dl) single 134

trig Triglycerides (mg/dl) single 136

platelet Platelets (per cm^3/1000) single 110

drug Treatment 3 integer 0

status Follow-up Status single 0

edema Edema 3 integer 0

copper Urine Copper (ug/day) single 108

+--------+--+

|Variable|Levels |

+--------+--+

| sex |male,female |

+--------+--+

| spiders|absent,present |

+--------+--+

| hepatom|absent,present |

+--------+--+

| ascites|absent,present |

+--------+--+

| drug |D-penicillamine,placebo,not randomized |

+--------+--+

| edema |no edema,edema, no diuretic therapy,edema despite diuretic therapy|

+--------+--+

> con <- contents(pbc)

> print(con, sort=’names’) # or sort=’labels’,’NAs’

418 observations and 19 variables Maximum # NAs:136

Labels Levels Storage NAs

age Age single 0

CHAPTER 7. DATA IN S 69

albumin Albumin (gm/dl) single 0

alk.phos Alkaline Phosphatase (U/liter) single 106

ascites Ascites 2 integer 106

. . . .

Put contents output in a separate window that can be minimized

This is helpful for guiding later analysis

> page(con, multi=T)

The page function tells S-PLUS to put the output of the command in its own
window. multi=T tells the system that multiple windows may be opened
without locking up the system until the window is dismissed.

New versions of the Hmisc library have an html function that will convert the
output of contents to an .html file suitable for linking from a web page. This
.html file has hyperlinks embedded in it. To jump to the actual list of levels
for factor variables you click on the number of levels in the top part of the
output.

7.3 Adjustment to Variables after Import
AH 3.2.3, 4.1.5, KO 11.6

· Often need to change variable names, attributes of variables such as labels
(long names), create properly annotated factor labels, and other things af-
ter dataset imported

· Can change variable names during import or using the Object Browser

· Other things best done with Hmisc upData function to be covered later

7.4 Writing Data
AH 3.4.1-4

· cat function used to write out results with customized formatting (e.g., anal-
ysis results); print also used

CHAPTER 7. DATA IN S 70

· write.table function can be used to write out a data frame into an ASCII
file

· Can also call the export functions that are called by File ... Export

· To copy S objects to another computer (even on a different operating system)
use the data.dump function:

data.dump(’x’, ’/temp/x.sdd’) # output one object named x

data.dump(c(’x’,’y’), ’/temp/data.sdd’) # output 2 objects, 1 file

data.dump(objects(), ’a:/mydata.sdd’) # output all objects in

_Data, 1 file on floppy

data.dump converts the object to an ASCII form that can be read by all ver-
sions of S and Rb

· To import all the exported S objects into another project area use

data.restore(’a:/mydata.sdd’)

or data.restore(’whatever file name’)

7.5 Inspecting Data after Import and Cleanup

· As soon as possible it is a good idea to inspect the data for accuracy and
holes caused by NAs

· Accuracy best ensured by checking raw data

· Secondary statistical checks can also help

– ranges of continuous numeric variables—look for outliers that may be
typos

bTo read these in R you need to install the Rstreams package. To output .sdd files that are readable by R or by older versions of S-PLUS add
the argument oldStyle=T to data.dump().

CHAPTER 7. DATA IN S 71

– impossible values

– large gaps with no data

– too many values tied at some value

– frequency distribution of categorical/character variables

· First run Hmisc describe function on data frame

– frequencies and % for categorical variables

– prevalence for binary variables

– quartiles, mean, 5 highest and lowest values for continuous numerics

– also prints variable label (if defined), number of NAs, number of imputed
values, units of measurement (if definied)

– In Windows S-PLUS it is easy to put the results of describe in its own
window:

page(describe(mydataframe), multi=T)

– You can minimize this window and bring it back any time, even after the
S-PLUS session is over; very useful for driving analyses—reminds you
of variable names and which levels of categorical variables are too infre-
quent to use

– You can also save the results of describe in a permanent object and
replay it in later sessions, or replay the output for only one variable:

desc.mydata ← describe(mydata)

desc.mydata # print all results again

page(desc.mydata, multi=T) # put in window

CHAPTER 7. DATA IN S 72

desc.mydata$age # show stats for age

· Run the datadensity function to make a “strip chart” of all variables on one
plot; frequency bar charts for categorical vars; also shows # NAs

datadensity(mydataframe)

· Another graphics function for inspecting data in a data frame is hist.data.frame;
this ignores binary or categorical variables

· To see holes (location and extent of NAs) do the following (naclus and naplot

are in Hmisc)

nac ← naclus(mydata)

plot(nac) # tree showing clustering of missingness

across variables

naplot(nac) # gives many plots describing NAs

na.pattern(mydata) # tabular frequency table of NA patterns

Chapter 8

Operating in S

8.1 The search List and attach

AH 4.1.1,KO 4.1.3

· The search list tells where S searches for objects (data, functions) and in
what ordera

> library(Hmisc,T)

> search()

[1] "_Data" "Hmisc" "splus" "stat" "data" "trellis" "nlme3"

[8] "main"

Position 1 : place where objects and functions are first sought; also, in
distinction from all other search positions, the location where objects cre-
ated by users are stored. By default, the _Data directory is in search
position 1.

Position 2 : Hmisc in this example, because of the library command. If
_Data contains no functions, Hmisc will then be the first place where the
system will find functions. If other functions by the same names as those
in Hmisc are found in higher positions, these will be ignored.

Positions 3-8 : other libraries of functions and data objects; data contains
example data frames and matrices

aNote that in S-PLUS 6.x which was used here, full path names are not listed in search’s output.

73

CHAPTER 8. OPERATING IN S 74

· You can use the attach function to place any directory or data frame in
the search list. By default these go in search position 2, pushing objects
previously in positions 2, . . . down.

· To list names of all objects in search position n type objects(n)

· To list more information about all the objects in position n type
objects.summary(where=n)

8.1.1 Attaching Data Frames

· Special use—puts data frame in search list (position 2 by default)

· Also makes the data frame’s variables available without the dataframe$ pre-
fix

> d ← data.frame(x=1:10, y=11:20)

> attach(d)

> search()

[1] ".Data" "d" "Hmisc" "splus" "stat" "data" "trellis"

[8] "nlme3" "main"

> objects(2)

[1] "x" "y"

· Note that x, y are found in position 2 where d is attached

· The find function is useful for finding where objects are stored

> find(’x’)

[1] "d"

x is found inside data frame d

> range(x)

[1] 1 10

CHAPTER 8. OPERATING IN S 75

You can access the value of x by typing x in addition to d$x after d is attached

8.1.2 Detaching Data Frames

· Important : Be sure to detach data frames as soon as you are finished work-
ing with its variables if you go on to work on other data, e.g., if you start
dealing with a different data frame or a different subset of the observations

· detach(2) will detach the last thing attached if it was attached in the default
second search position

8.2 Subsetting Data Frames
AH 4.1.2

· You can create new data frames that are subsets of old ones

df.males ← df[df$sex==’male’,]

To avoid confusion, don’t run such commands with any data frame attached.

· attach is often a better way to begin a long analysis of a subset of a data
frame because it doesn’t require storing the subset on disk

attach(df[,c(’age’,’sex’)]) # all rows, 2 vars

attach(df[c(’age’,’sex’)]) # same, using list notation

attach(df[,Cs(age,sex)]) # same, using shorthand quoting function

attach(df[df$sex==’male’,]) # all vars, males

attach(df[1:100,c(1:2,4:7)]) # rows 1-100, cols 1-2,4-7

attach(df[,-4]) # all but 4th variable

attach(df[df$treat %in% c(’a’,’b’,’c’),]) # obs. for treat a-c

attach(df[!is.na(df$age) & !is.na(df$sex),]) # exclude obs with NAs

After running such commands, referencing a variable from the attached data
frame (e.g., just typing age) references the appropriate subset of the vector

CHAPTER 8. OPERATING IN S 76

· If only analyzing a small subset of variables, attaching only those columns
can speed up the program

· A more elegant approach may be achieved using R’s subset function which
is implemented in Hmisc

– Variable names do not need prefixing by dataframe$

– subset provides an elegant notation for subsetting variables by looking
up column numbers corresponding to column names

∗ allows consecutive variables to keep or drop to be specified

· Examples:

> # Subset a simple vector

> x1 <- 1:4

> sex <- rep(c(’male’,’female’),2)

> subset(x1, sex==’male’)

[1] 1 3

> # Subset a data frame

> d <- data.frame(x1=x1, x2=(1:4)/10, x3=(11:14), sex=sex)

> d

x1 x2 x3 sex

1 1 0.1 11 male

2 2 0.2 12 female

3 3 0.3 13 male

4 4 0.4 14 female

> subset(d, sex==’male’)

x1 x2 x3 sex

1 1 0.1 11 male

3 3 0.3 13 male

> subset(d, sex==’male’ & x2>0.2)

x1 x2 x3 sex

3 3 0.3 13 male

> subset(d, x1>1, select=-x1)

x2 x3 sex

2 0.2 12 female

3 0.3 13 male

CHAPTER 8. OPERATING IN S 77

4 0.4 14 female

> subset(d, select=c(x1,sex))

x1 sex

1 1 male

2 2 female

3 3 male

4 4 female

> subset(d, x2<0.3, select=x2:sex)

x2 x3 sex

1 0.1 11 male

2 0.2 12 female

> subset(d, x2<0.3, -(x3:sex))

x1 x2

1 1 0.1

2 2 0.2

> attach(subset(d, sex==’male’ & x3==11, x1:x3))

8.3 Adding and Deleting Variables from a Data Frame
AH 4.1.3

· Done without attaching the data frame by setting element to NULL

df$x1 ← 1:20 # add completely new variable

df$x1 ← df$x2+df$x3 # add new variable computed on old ones

df$x4 ← NULL # remove x4 from data frame

df[c(’x5’,’x6’)] ← NULL # remove two variables

· Use the rm or remove command to remove data frames, not to remove vari-
ables within data frames

8.4 upData Function for Updating Data Frames
AH 4.1.5

· Good way to modify data frame without repeating dataframe$ prefix every-
where and without attaching

CHAPTER 8. OPERATING IN S 78

· General form is

dfnew ← upData(dfold, new variables=values, # create or recompute vars

rename=c(oldname=’newname’,oldname=’newname’), #rename vars

drop=c(’oldname1’,’oldname2’), #remove vars

labels=c(name1=’label1’,name2=’label2’), #give labels

levels=list(name1=list(newlevel1=’oldlevel’,

newlevel2=c(’oldlev1’,’oldlev2’))))

· Above example lists two variables but you can list any numberb

· To give an element a name (e.g., for rename,labels), you use the notation
c(name1=’string1’,name2=’string2’); you must do this to give names to
scalars (e.g., c(name=’value’)).
To specify a scalar that is unnamed, just use e.g. drop=’oldname’
Note : At present, labels must specify a list. In the future upData will be
modified to allow either a list or a vector.

· You can also create any number of new variables or redefine any number of
old ones

· labels are attributes that are added to variables to define long names for
variables; these needn’t be legal S names

– labels are used to annotate output when using Hmisc or Design libraries

– labels are printed by the describe and contents functions and are used
as axis labels for some high-level plotting functions in Hmisc

– You can fetch labels inside commands using e.g. label(age); set labels
outside upData using e.g. label(sbp)←’Systolic Blood Pressure’

– labels are automatically transferred from SAS datasets imported using
sas.get

bThe newlevel2 part of the example shows how to collapse multiple old categories into a single category for a factor variable.

CHAPTER 8. OPERATING IN S 79

· You can write over the modified data frame with the updated data frame
using e.g.

mydf ← upData(mydf, ...)

or you can store the modified data under a new name (possibly to be re-
named later to the old name after you are sure everything worked)

· Example:

> dat ← data.frame(a=(1:3)/7, y=c(’a’,’b1’,’b2’), z=1:3)

> dat

a y z

1 0.1428571 a 1

2 0.2857143 b1 2

3 0.4285714 b2 3

> dat ← upData(dat, w=A+z, rename=c(a=’A’), drop=’z’,

+ labels=c(A=’Label for A’, y=’Test Label’),

+ levels=list(y=list(a=’a’,b=c(’b1’,’b2’))))

Input object size: 662 bytes; 3 variables

Renamed variable a to A

Added variable w

Dropped variable z

New object size: 834 bytes; 3 variables

> dat

A y w

1 0.1428571 a 1.142857

2 0.2857143 b 2.285714

3 0.4285714 b 3.428571

8.5 Manipulating and Summarizing Data
AH 4.2.1-2,KO 7.1,PG 3

8.5.1 Sorting Data

· sort function will sort a vector into ascending order

· order is used to sort a matrix, vector, or data frame so that its rows are in
the order given by another variable

CHAPTER 8. OPERATING IN S 80

i ← order(df$state, -df$median.income) # descending order

df[i,] # print ordered data frame

8.5.2 By Processing

· By processing ≡ Aggregate statistics ≡ stratified estimates; statistics com-
puted after cross-classifying data

· Use tapply for most basic by processing

> y ← 1:8

> sex ← c(rep(’male’,4),rep(’female’,4))

> treat ← rep(c(’A’,’B’),4)

> sex

[1] "male" "male" "male" "male" "female" "female" "female" "female"

> treat

[1] "A" "B" "A" "B" "A" "B" "A" "B"

> tapply(y, sex, mean)

female male

6.5 2.5

> tapply(y, treat, mean)

A B

4 5

> tapply(y, list(sex,treat), mean)

A B

female 6 7

male 2 3

· Arguments, in order, are vector to analyze, vector or list of stratification vari-
ables, and function to compute for each stratum

· If data contain any NAs, add extra 4th argument na.rm=T in many cases

· by function can run more complex analyses in groups

> by(y, llist(sex), FUN=describe, descript=’y’)

sex:female

CHAPTER 8. OPERATING IN S 81

y

1 Variables 4 Observations

x

n missing unique Mean

4 0 4 6.5

5 (1, 25%), 6 (1, 25%), 7 (1, 25%), 8 (1, 25%)

sex:male

y

1 Variables 4 Observations

x

n missing unique Mean

4 0 4 2.5

1 (1, 25%), 2 (1, 25%), 3 (1, 25%), 4 (1, 25%)

llist is a function in Hmisc that makes the list function remember names
of variables, so in this case llist(sex) is the same as list(sex=sex); by
requires a list if you want to label the stratifying variable

· The FUN argument to by tells it which function to run on subsets of data
frames
In this example, descript is an argument expected by describe

· The aggregate function in S can summarize many response variables but
the summarization function must return a scalar

8.6 Data Manipulation and Management
AH 4.2.4

· Many functions available

CHAPTER 8. OPERATING IN S 82

· abbreviate is frequently used

· cut2 in Hmisc is used to create a categorical representation of a numeric
continuous variable

– cut2(x,c(10,20,30)) uses cut points 10,20,30

– cut2(x,g=5) creates quintile groups

– cut2(x,m=20) finds cutpoints to get 20 observations per interval

> set.seed(1)

> table(cut2(runif(1000), g=4))

[0.00109,0.240) [0.24008,0.496) [0.49646,0.760) [0.76006,0.999]

250 250 249 251

· Very seldom do you need to store the result of cut2 in a object with a name

· Example: compute mean blood pressure by quartiles of age: tapply(bp,

cut2(age,g=4), na.rm=T)

· expand.grid is very useful for creating systematic data; can save much data
entry time

> dframe ← expand.grid(age=30:34, sex=c(’female’,’male’))

> dframe

age sex

1 30 female

2 31 female

3 32 female

4 33 female

5 34 female

6 30 male

7 31 male

8 32 male

9 33 male

10 34 male

CHAPTER 8. OPERATING IN S 83

8.7 Advanced Data Manipulation Examples
AH 4.2.5-8

See text for

· merging data frames by subject ID (e.g., baseline + serial follow-up data)

· merging baseline data with one-number summaries of serial follow-up data

· reshaping serial data from rows to columns and vice-versa

· computing changes in serial observations

8.8 Recoding Variables and Creating Derived Variables
AH 4.3

8.8.1 Recoding One Variable

Using Arithmetic or ifelse

· Almost always use cut2 to make one continuous variable into intervals (as a
factor)

· To recode an arbitrary numeric variable into other numeric codes, use code
such as

x2 ← 1*(x==10)+2*(x > 10 & x < 20)+3*(x >= 20)

This results in 0 if x < 10, 3 if x >= 20.

· The ifelse function provides a general solution in which you can also have
the computation result in character strings:

x2 ← ifelse(x < 10, ’x<10’,

ifelse(x==10, ’x=10’,

CHAPTER 8. OPERATING IN S 84

ifelse(x > 10 & x < 20, ’x in (11,19)’,

’x>=20’)))

ifelse(a,b,c) results in b when a is TRUE and c when a is FALSE. It does
computations in a parallel fashion across vectors so that elements of b or c
are used corresponding to elements of a. a is almost always a vector. When
b or c are scalars, the scalar value is used for all elements of a.

· Another example: divide height by 1.2 for males, 1.1 for females

height.adjusted ← ifelse(sex==’female’, height/1.1, height/1.2)

or

height.adjusted ← height/ifelse(sex==’female’, 1.1, 1.2)

· ifelse can use any expressions for b and c so it can reference multiple
variables too

Recoding factor Variables

· Can use upData if variable is in a data frame that is not attached

· Otherwise most elegant method is to implicitly call the merge.levels function
using code such as the following

> x ← factor(c(’cat’,’dog’,’giraffe’,’dog’))

> levels(x) ← list(domestic=c(’cat’,’dog’), wild=’giraffe’)

> x

[1] domestic domestic wild domestic

To recode levels on a one:one basis use e.g.

levels(x) ← list(’newlevel’=’oldlevel’,’newlevel2’=’old2’)

You don’t need to enclose ’newlevel’ or ’newlevel2’ in quotes if these are
legal S names.

CHAPTER 8. OPERATING IN S 85

If you want to recode categories and the variable is not already a factor,
first make it a factor using e.g. x←factor(x)

8.8.2 Combining Multiple Variables into One

· Can use arithmetic statement or ifelse as above

· score.binary in Hmisc can score an automatically label categories from a
series of input expressions

– Can produce many types of scores (e.g., additive) but default is hierar-
chical

– Example: reading from left to right, categorize an observation into the
last expression that is true

myscale ← score.binary(age>70, previous.disease, current.severe.disease)

This assumes that previous.disease and current.severe.disease are
logical or 0/1;
Conditions on right override conditions on left, i.e., if a subject currently
has a severe disease, whether or not age>70 or previous.disease is
present is ignored in that case.
Result is a factor with levels
’none’, ’age>70’, ’previous.disease’, ’current.severe.disease’

8.8.3 Where to Derive Variables
AH 4.3.3

· In general, bad idea to store derived variables as permanent vectors as they
will not then be updated if the source data change

· Best to permanently store the formulas for computing them

· A script file that computes derived variables on demand works well

CHAPTER 8. OPERATING IN S 86

8.9 Review of Data Creation, Annotation, and Analysis Steps
AH 4.4

· Pay attention of suggested order of steps

1. Import external data, often defining field names instead of using non-
informative defaults such as V1, V2, . . .

2. Use upData to change variable names, add/change labels and levels,
recode, drop unneeded variables

3. Run analyses that do not need the data frame to be attached

– functions taking a whole data frame as an argument (datadensity,
summary, describe, hist.data.frame, etc.)

– simple analyses on data frame-prefixed variables

– analyses specified by statistical formulas, with data frame specified
using data=dataframename

4. Attach data frame if need to reference several individual variables outside
the data= mechanism

· See also the Hmisc Library Reference Card

8.10 Simple Missing Value Imputation
AH 4.5

· Imputing of NAs used to prevent incomplete data from being totally deleted
from an analysis of multiple variables

· If amount of missing data is very small, can use very simple fill-in methods
as implemented in Hmisc’s impute function

> x ← c(1,2,NA,4)

> impute(x) # impute NA with median (mode for categorical var)

1 2 3 4

1 2 2* 4 # * printed after imputed values

CHAPTER 8. OPERATING IN S 87

> impute(x, median) # same as default here

1 2 3 4

1 2 2* 4

> impute(x, 2.1) # impute with a constant

1 2 3 4

1.0 2.0 2.1* 4.0

> impute(x, mean)

1 2 3 4

1.000000 2.000000 2.333333* 4.000000

> impute(x,’random’) # impute by randomly drawing from non-NAs

1 2 3 4

1 2 4* 4

> impute(x,’random’)

1 2 3 4

1 2 4* 4

> impute(x,’random’)

1 2 3 4

1 2 2* 4

> x ← impute(x)

> is.imputed(x) # tells which obs. imputed

[1] F F T F

> attributes(x)

$names:

[1] "1" "2" "3" "4"

$class:

[1] "impute"

$imputed:

[1] 3 # third observation imputed

· Note that imputed values are flagged by saving their subscripts in an attribute
called ’imputed’

· If much missing data, simple fill-in methods result in biases, especially over-
confidence in precision of statistical estimates computed on filled-in data

Chapter 9

Probability and Statistical Functions

AH 5,UG 9

9.1 Statistical Summaries
AH 5.1,KO 7.1

9.1.1 Basic

· describe

· table(rowvar,colvar)—frequency tables

· summary.formula—used to compute and table or plot general stratified statis-
tics (covered in next chapter)

9.1.2 Inferential

· Coverage intervals (mean±SD, quantiles) and confidence limits for statistical
estimates such as the mean

· Many functions bundled with Hmisc summary.formula function

88

CHAPTER 9. PROBABILITY AND STATISTICAL FUNCTIONS 89

· Most of these are set up so that the vector of statistics they return can be
used as cells in a table or as central values with error bars or bands in high-
level plots using the Hmisc xYplota function

Function Purpose
smean.sd mean and SD
smean.sdl mean, mean−k×SD, mean+k×SD

default k is 2
smean.cl.boot mean and lower and upper

nonparametric bootstrap
confidence limits for mean

smean.cl.normal mean and parametric t-based
confidence limits assuming
normality of data

smedian.hilow median and lower and upper
quantiles (default is 0.025 and 0.975)

To get median and lower and upper quartiles use smedian.hilow(x, conf.int=.5)

9.2 Probability Distributions
AH 5.2,KO 7.3

9.2.1 Distributions of Sampled Data

· quantile

· summary

· smedian.hilow

· various histogram and one-dimensional scatterplots (scat1d, rug, histSpike)

· various box plot functions
aIn the latter uses, the statistical summary function outputs 3 numbers: the statistic, and variables named Lower and Upper.

CHAPTER 9. PROBABILITY AND STATISTICAL FUNCTIONS 90

· Hmisc ecdf for plotting empirical cumulative distribution functions

9.2.2 Theoretical Distributions

See Barry Brown’s S Cheatsheet in Chapter 5

> pbinom(3, 10, .5) # prob of <=3 heads in 10 tosses, fair coin

[1] 0.171875

> dbinom(3, 10, .5) # prob of exactly 3 heads

[1] 0.1171875

> sum(dbinom(0:3, 10, .5)) # another way to get cumulative prob

[1] 0.171875

> pnorm(1.96) # Prob(normal <= 1.96)

[1] 0.9750021

> pt(1.96,4000) # Prob(T with 4000 d.f. <= 1.96)

[1] 0.9749674

> 2*(1-pt(1.96,4000)) # Prob(|T 4000| <= 1.96)

[1] 0.05006512

> 1-pchi(3.84,1) # Prob(chi-sq on 1 d.f. > 3.84)

[1] 0.05004352

> qnorm(.975) # Find critical value for normal

[1] 1.959964 # =0.95 quantile of normal(0,1)

or z such that Prob(Z<=z)=.95

9.2.3 Confidence Limits for Binomial Proportions

· Simple random sampling of binary (Bernoulli distribution) responses; count
number of successes or events (x) out of n trials

· To get various 0.95 confidence limits for the unknown population probability
of an event use the Hmisc binconf function (here n = 10, x = 3):

> binconf(3,10,alpha=.05)

Lower Upper

Exact 0.06673951 0.6524529

Wilson 0.10779127 0.6032219

CHAPTER 9. PROBABILITY AND STATISTICAL FUNCTIONS 91

Wilson intervals are generally more accurate and narrower than so-called
“exact” confidence intervals based on the β or F distribution, assuming you
don’t require the interval’s coverage to be ≥ 0.95

9.3 Hmisc Functions for Power and Sample Size Calculations
AH 5.3

· bpower: power of comparison of 2 proportions using a good approximation
for probabilities

· bpower.sim: compute power like bpower but do it exactly through simulation

· bsamsize: solve for sample size to satisfy a given power

9.4 Statistical Tests
KO 7.4

In general, specific tests are special cases of certain models, so having separate
functions for these special cases can be more confusing than helpful.

9.4.1 Nonparametric Tests
5.4.1

· Spearman ρ rank correlation test tests whether two variables are indepen-
dent vs. their being monotonically associated with each other

· Wilcoxon two-sample rank-sum test for test whether two groups come from
the same distribution is a special case of the Spearman test where one of
the two variables is binary

· Spearman test can be extended to test whether any of a set of variables is
correlated with a continuous response variable

CHAPTER 9. PROBABILITY AND STATISTICAL FUNCTIONS 92

· Kruskal-Wallis test is a generalization of the Wilcoxon two-sample test for
comparing multiple groups

· The KW test is a special case of the generalized Spearman testb

· Can obtain all these tests using the command

spearman2(y ∼ x)

where y is continuous, and x is binary (Wilcoxon two-sample rank-sum test),
a factor (Kruskal-Wallis), or continuous (ordinary Spearman correlation test)

· spearman2 uses the F distribution to get a fairly accurate P -value

· spearman2 allows multiple right-hand-side variables, resulting in separate
tests of each against y

· spearman2 can also test for non-monotonic relationships between a contin-
uous x and a continuous y by generalizing the rank test further using an
argument p=2 to spearman2

· spearman2 prints the square of the Spearman rank correlation coefficient (ρ2)
as this is the only form that can be used for all the situations described

9.4.2 Parametric Tests
AH 5.4.2

· These are special cases of the multiple linear regression model

· t.test: 2-sample t-test function; arguments are not set up for the standard
“response vs. grouping variable” approach except in R:

t.test(y ∼ group)

bAll of these tests are special cases of the proportional odds ordinal logistic regression model for an ordinal or continuous response variable.

Chapter 10

Making Tables

AH 6

10.1 Frequency Tabulations
6.1

· table and crosstabs functions

10.2 Hmisc summary.formula Function
AH 6.2

10.2.1 Introduction

The summary.formula function in Hmisc is used to construct statistical sum-
maries of a response variable or a matrix of response variables stratified by
a variety of other variables.

summary.formula can be used to make a variety of non-simple tables.

93

CHAPTER 10. MAKING TABLES 94

S Formula Language

· We saw an example of using a statistical formula as an argument to tell a
function which data to process, instead of a vector, matrix, or data frame—
spearman2

· Usually a statistical model or formula has the form

response ∼ predictor1 + predictor2 + ...

where a response variable is to the left of ∼ and one or more predictors or
independent variables are on the right

· The predictors sometimes constitute stratification variables

· For regression models more syntax is available; we ignore that for this course

· Any S function with a formula as the first argument allows

– a data= argument to specify a data frame to analyze

– a subset= to specify a logical expression defining which subset of the
data to process
Variables inside this expression can be inside the data frame pointed to
in data without attaching the data frame

Object Oriented Features of S Used

· In S summary is a generic function

– summary(vector) produces descriptive stats similar to describe for a sin-
gle variable

– summary(dataframe) calls summary.data.frame to repeat the calcula-
tions for one variable separately for all variables in the the data frame

CHAPTER 10. MAKING TABLES 95

– summary(regression.result) summarizes the result of fitting a regres-
sion model

· summary(formula) calls summary.formula

· summary.formula gets the data for all the variables named in the formula,
looks at optional arguments, and does the calculations

· summary.formula creates an object with a class of summary.formula.subclass
where the value of subclass depends on options that are passed to summary,
as summary.formula creates three drastically different types of output

· The output can be rendered using print, plot, and latex methods

Typical Sequence of Commands

attach(mydata)

s ← summary(response ∼ x1 + x2 + x3, options)

s # invokes print.summary.formula.subclass

print(s, options) # to print with non-default options

plot(s, options) # invokes plot.summary.formula.subclass

latex(s, options) # invokes latex.summary.formula.subclass

to create LaTeX code to make tables

s ← summary(formula, data=mydata) # use data= if don’t attach

print(s, options)

...

Specifying Which Summary Statistics to Compute

· For two of the three types of summaries summary.formula can do you can
specify an argument fun that contains the definition of a function that com-
putes one or a vector of summary statistics. The function only need compute
its results for a single stratum .

CHAPTER 10. MAKING TABLES 96

· Note the inconsistency with builtin S functions such as tapply which use FUN

for this purpose instead of fun

· Number of non-missing and missing observations in each stratum are com-
puted automatically outside fun

· The default computation is the mean (equivalent to saying fun=mean)a

· summary.formula removes NAs before invoking this function, so na.rm=T is
not needed

· Specify fun=median to compute the median response for each stratum

· Specify fun=quantile to compute a 5-number summary

· Specify

fun=function(x) c(Mean=mean(x), Median=median(x))

to compute both the mean and the median, and label them

· Possibilities are limitless once you learn how to write simple functions

· By specifying a matrix for the response variable you can compute complex
multivariate summaries and allow for censored data

· Often we specify as the fun argument to summary.formula one of the func-
tions described in Section 9.1.2 such as smean.cl.boot or smean.sd

aWell, not exactly, as the default can compute the mean of each column of a multivariate (matrix) response separately.

CHAPTER 10. MAKING TABLES 97

10.2.2 Automatic Stratification of Continuous Variables

· When use a continuous variable as a stratification variable will automatically
categorize the variable into quantile intervals using cut2

· Default is quartiles

· Can specify optional argument g=k to summary.formula to use k quantile
intervals

· The value of g is used for all continuous stratifiers

· User can control intervals by using cut2 on variables in the formula:

summary(y ∼ cut2(weight, g=5) + cut2(pressure, g=4) +

cut2(age, c(21,65)))

This cut weight into quintiles, pressure into quartiles, and age into age< 21,
21 ≤age< 65, age≥ 65

10.2.3 Three Types of Summaries with summary.formula

Response Summaries

· The default

· Computes one or more descriptive statistics of the response variable strati-
fied separately by levels of independent variables

· For this type of summary you can surround one or more of the independent
variables with stratify(...) which will create another major grouping level
in a table

CHAPTER 10. MAKING TABLES 98

Cross-Classified Summaries

· Obtained using the option method=’cross’

· Cross-classifies by 2 or 3 stratifiers and produces statistical summaries of
the response variable (using fun)

· Will put first independent variable down rows of a table, second across
columns

· To be consistent with the rest of S the formula for this type of output should
have been

summary(y ∼ x1*x2, method=’cross’)

but instead the function uses the additive notation

summary(y ∼ x1+x2, method=’cross’)

· No plot method

Reverse Summaries

· Obtained using the option method=’reverse’

· “Reverse” because we reverse the roles of the response and independent
variables

· Needed because you can’t put > 1 response variable on the left side of the
∼

· Response is a categorical variable

CHAPTER 10. MAKING TABLES 99

· Each right-hand-side variable is stratified separately by the left-hand-side
variable

· This is the typical “Table 1” for a randomized clinical trial where columns
are for treatments and each row is for a baseline variable being stratified by
treatmentb

· Default summary is percents for categorical baseline variables (by default
only one percent is printed when the variable is binary) and three quartiles
for continuous variables

Examples

See AH 6.2 and http://hesweb1.med.virginia.edu/biostat/s/doc/summary.

pdf

10.3 summarize Function

· Like tapply in terms of having a vector (main analysis variable) as first ar-
gument

· Always cross-classifies

· May cross-classify by any number of variables

· User must take care of NAs (usually by specifying na.rm=T as final argument
to summarize)

bIt is now generally thought that such tables that are stratified by treatment can easily be misinterpreted by tempting researchers do something
about apparent imbalances in baseline characteristics across treatments. Researchers often do not realize that there is a strong likelihood of
counter-imbalances on patient descriptors that are not tabulated.

CHAPTER 10. MAKING TABLES 100

· Does not automatically stratify continuous variables; user must use cut2 for
example

· Use llist function to enclose multiple stratifiers, to get automatic naming

· Can specify new names to use inside llist — useful for temporary cut2

variables, etc.

set.seed(1)

n <- 200

y <- runif(n)

age <- rnorm(n, 50, 10)

sex <- sample(c(’f’,’m’),n,T)

state <- sample(c(’AL’,’AK’,’CA’), n, T)

Get mean y by sex x state categories

s <- summarize(y, llist(sex,state), mean)

options(digits=3)

s # s is an ordinary data frame

sex state y

1 f AK 0.470

2 f AL 0.493

3 f CA 0.485

4 m AK 0.497

5 m AL 0.464

6 m CA 0.465

mean and s.d. of y by sex

summarize(y, sex, smean.sd)

sex y SD

1 f 0.483 0.320

2 m 0.478 0.295

median of y by tertile of age and by sex,

new name for categorized age

summarize(y, llist(Age=cut2(age,g=3), sex), median)

Age sex y

1 [21.0,45.0) f 0.423

2 [21.0,45.0) m 0.519

3 [45.0,53.8) f 0.560

4 [45.0,53.8) m 0.496

CHAPTER 10. MAKING TABLES 101

5 [53.8,77.0] f 0.362

6 [53.8,77.0] m 0.361

Chapter 11

Inserting Plots into L ATEX Reports

11.1 Background

· To put a graphic on a web site or in a document a graphic file has to be
created

· Microsoft Office uses Windows Metafiles, a poorly documented Microsoft
format that does not render certain graphical components faithfully

· You can copy and paste an S-PLUS graph into Word or into the S-PLUS

Report window (implicitly uses Windows Metafile format), or explicitly export
a graph to Windows Metafile format and insert it into a Word document

· Adobe Postscript format provides the most faithful rendering of graphics,
and Postscript is a universally used format (PDF is a form of compressed
Postscript)

· A Postscript graphic can be inserted into Word documents (Insert ... Picture

... From File) and will print beautifully on a Postscript printer although
they display as a blank box on the screen

102

CHAPTER 11. INSERTING PLOTS INTO LATEX REPORTS 103

· LATEX is well set up to insert Postscript graphics

11.2 Producing Postscript Graphics in S-P LUS

· Can click on a graph sheet page and use the File menu to export to a file

· To automate the process to allow batch usage this can be done by calling
the postscript function:

postscript(’filename.ps’, options)

plot(....)

title(....)

dev.off()

· dev.off closes the graphics file and writes ’filename.ps’ to the current
working directorya

· To use better defaults for the size of the graphic, and for fonts and spacing
around the axes, use the Hmisc setps function

· Unlike most functions having a file name as an argument, you do not enclose
the file name in quotes for setps

· setps adds .ps to the end of the file created using postscript

· The first argument to setps is the base file name, and it must be a legal S
nameb

· Later in LATEX we use this base name as a symbolic reference to a specific
figure so that you can say

aThis is the same place where script files are saved by default.
bThis also insures that the name is a legal LATEX name so that it can be used as a symbolic label for referencing inside the LATEX document.

CHAPTER 11. INSERTING PLOTS INTO LATEX REPORTS 104

See Figure \ref{filename} for the results.

inside LATEX code, and LATEX will replace \ref{filename} with the appropriate
figure number

· So the typical usage is

setps(myplot)

plot(...)

...

dev.off()

which will create myplot.ps.

11.2.1 Making Postscript Graphs for Certain Graph Types

· Default usage of setps results in a small graph that is suitable for a book or
report

· Assumes that title information will later be placed in a legend, so that no
margin space is reserved for a title or subtitle

· This works well for ordinary single graphs produced by plot(...)

· To produce a matrix of graphs the size of the graphic needs to be increased
over the default size

· Example: make a 2× 3 matrix of plots

setps(thisplot, h=5) # 5 inches tall instead of 3’’ default

par(mfrow=c(2,3))

plot() # first graph

plot() # second graph

...

dev.off()

CHAPTER 11. INSERTING PLOTS INTO LATEX REPORTS 105

Adjust the height (argument h) according to the size you need, which will
depend on the extent of the matrix (or for dense single plots)

· If you do want to show titles (even though this is better to do in a legend) to
e.g.

setps(hisplot, toplines=1) # set aside 1 line of text on top

· To reserve space for a subtitle do e.g.

setps(myplot, sublines=1 or 2)

· Later we will be using Trellis multi-panel graphics (created using functions
like xyplot, dotplot, . . .)

· For use with Trellis only, specify setps(name, trellis=T) and do not specify
a height or width

11.3 Preparing S Commands for Graphs in L ATEX

· If you do not use legends, all that’s needed are commands such as above

· setps() . . . dev.off() tell the LATEX server to automatically include graphs

· To define a legend for a plot named, say, plot1 (i.e., you included the com-
mand setps(plot1) somewhere), put a line such as the following some-
where in your script file

#@plot1{A legend for this plot. Triangles depict means, circles

depict medians. The legend can be multi-lined as long as each line

begins with # and the legend is terminated by a right brace.}

Note that the word after @ matches the name of the plot given to setps

CHAPTER 11. INSERTING PLOTS INTO LATEX REPORTS 106

· Legends may appear just before their corresponding setps commands or
you can put all the legends at the top of the file, for example

· You can have as many legends as you want, leaving some plots without
legends if desired

· Point of inclusion of graph, if LATEX defaults are used, is at or after the point
at which setps appeared in your report file; graphs often appear on a later
page to optimize page usage

11.4 Symbolic References to Figures

· You can refer to a figure and have its number inserted automatically

· This can be done in both regular sentences and in S code;
especially useful when graph appears on different page

· Examples:

As you can see in Figure \ref{myplot} the results are surprising.

#@myplot{A relationship found by brilliant research.}

setps(myplot)

plot(x, y) # Figure \ref{myplot}

dev.off()

11.5 Using the LATEX Server

· There will be a separate .ps file for each graphic you created

· Server will accept these for upload; then these files will be available for in-
sertion in the generated report

CHAPTER 11. INSERTING PLOTS INTO LATEX REPORTS 107

· But you cannot upload a variable number of files to a Web server

· Use WinZip or zip.exe to zip all the .ps files into a single zip file such as
mygraphs.zip

· If you have WinZip installed and configured the default way, in Microsoft
Explorer you can right click on a .ps file and add it to a zip archive

· Specify or browse to the name of this .zip file to upload, under where you
specify or browse to the report file you are uploading to the LATEX server

Chapter 12

Principles of Graph Construction

The ability to construct clear and informative graphs is related to the ability to un-
derstand the data. There are many excellent texts on statistical graphics (many
of which are listed at the end of this chapter). Some of the best are Cleveland’s
1994 book The Elements of Graphing Data and the books by Tufte. The sugges-
tions for making good statistical graphics outlined here are heavily influenced by
Cleveland’s books, and quotes below are from his 1994 book.

12.1 Graphical Perception

• Goals in communicating information: reader perception of data values and
of data patterns. Both accuracy and speed are important.

• Pattern perception is done by

detection : recognition of geometry encoding physical values

assembly : grouping of detected symbol elements

estimation : assessment of relative magnitudes of two physical values

• For estimation, many graphics involve discrimination, ranking, and estima-
tion of ratios

108

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 109

• Humans are not good at estimating differences without directly seeing differ-
ences (especially for steep curves)

• Humans do not naturally order color hues

• Only a limited number of hues can be discriminated in one graphic

• Weber’s law: The probability of a human detecting a difference in two lines
is related to the ratio of the two line lengths

• This is why grid lines and frames improve perception and is related to the
benefits of having multiple graphs on a common scale.

– eye can see ratios of filled or of unfilled areas, whichever is most extreme

• For categorical displays, sorting categories by order of values attached to
categories can improve accuracy of perception. Watch out for over-interpretation
of extremes though.

• The aspect ratio (height/width) does not have to be unity. Using an aspect
ratio such that the average absolute curve angle is 45◦ results in better per-
ception of shapes and differences (banking to 45◦).

• Optical illusions can be caused by:

– hues, e.g., red is emotional. A red area may be perceived as larger.

– shading; larger regions appear to be darker

– orientation of pie chart with respect to the horizon

• Humans are bad at perceiving relative angles (the principal perception task
used in a pie chart)

• Here is a hierarchy of human graphical perception abilities:

1. Position along a common scale (most accurate task)

2. Position along identical nonaligned scales

3. Length

4. Angle and slope

5. Area

6. Volume

7. Color: hue (red, green, blue, etc.), saturation (pale/deep), and lightness

– Hue can give good discrimination but poor ordering

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 110

12.2 General Suggestions

• Exclude unneeded dimensions (e.g. width, depth of bars)

• “Make the data stand out. Avoid Superfluity”; Decrease ink to information
ratio

• “There are some who argue that a graph is a success only if the important
information in the data can be seen in a few seconds. . . . Many useful graphs
require careful, detailed study.”

• When actual data points need to be shown and they are too numerous, con-
sider showing a random sample of the data.

• Omit “chartjunk”

• Keep continuous variables continuous; avoid grouping them into intervals.
Grouping may be necessary for some tables but not for graphs.

• Beware of subsetting the data finer than the sample size can support; condi-
tioning on many variables simultaneously (instead of multivariable modeling)
can result in very imprecise estimates

12.3 Tufte on “Chartjunk”

Chartjunk does not achieve the goals of its propagators. The over-
whelming fact of data graphics is that they stand or fall on their content,
gracefully displayed. Graphics do not become attractive and interest-
ing through the addition of ornamental hatching and false perspective
to a few bars. Chartjunk can turn bores into disasters, but it can never
rescue a thin data set. The best designs . . . are intriguing and curiosity-
provoking, drawing the viewer into the wonder of the data, sometimes by
narrative power, sometimes by immense detail, and sometimes by ele-
gant presentation of simple but interesting data. But no information, no
sense of discovery, no wonder, no substance is generated by chartjunk.

— Tufte p. 121, 1983

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 111

12.4 Tufte’s Views on Graphical Excellence

“Excellence in statistical graphics consists of complex ideas communicated with
clarity, precision, and efficiency. Graphical displays should

• show the data

• induce the viewer to think about the substance rather than about method-
ology, graphic design, the technology of graphic production, or something
else

• avoid distorting what the data have to say

• present many numbers in a small space

• make large data sets coherent

• encourage the eye to compare different pieces of data

• reveal the data at several levels of detail, from a broad overview to the fine
structure

• serve a reasonably clear purpose: description, exploration, tabulation, or
decoration

• be closely integrated with the statistical and verbal descriptions of a data
set.”

12.5 Formatting

• Tick Marks should point outward

• x- and y-axes should intersect to the left of the lowest x value and below the
lowest y value, to keep values from being hidden by axes

• Minimize the use of remote legends. Curves can be labeled at points of
maximum separation (see the Hmisc labcurve function).

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 112

12.6 Color, Symbols, and Line Styles

• Some symbols (especially letters and solids) can be hard to discern

• Use hues if needed to add another dimension of information, but try not to
exceed 3 different hues. Instead, use different saturations in each of the
three different hues.

• Make notations and symbols in the plots as consistent as possible with other
parts, like tables and texts

• Different dashing patterns are hard to read especially when curves inter-
twine or when step functions are being displayed

• An effective coding scheme for two lines is to use a thin black line and a thick
gray scale line

12.7 Scaling

• Consider the inclusion of 0 in your axis. Many times it is essential to include
0 to tell the full story. Often the inclusion of zero is unnecessary.

• Use a log scale when it is important to understand percent change of multi-
plicative factors or to cure skewness toward large values

• Humans have difficulty judging steep slopes; bank to 45◦, i.e., choose the
aspect ratio so that average absolute angle in curves is 45◦.

12.8 Displaying Estimates Stratified by Categories

• Perception of relative lengths is most accurate — areas of pie slices are
difficult to discern

• Bar charts have many problems:

– High ink to information ratio

– Error bars cause perception errors

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 113

– Can only show one-sided confidence intervals well

– Thick bars reduce the number of categories that can be shown

– Labels on vertical bar charts are difficult to read

• Dot plots are almost always better

• Consider multi-panel side-by-side displays for comparing several contrasting
or similar cases. Make sure the scales in both x and y axes are the same
across different panels.

• Consider ordering categories by values represented, for more accurate per-
ception

12.9 Displaying Distribution Characteristics

• When only summary or representative values are shown, try to show their
confidence bounds or distributional properties, e.g., error bars for confidence
bounds or box plot

• It is better to show confidence limits than to show ±1 standard error

• Often it is better still to show variability of raw values (quartiles as in a box
plot so as to not assume normality, or S.D.)

• For a quick comparison of distributions of a continuous variable against many
categories, try box plots.

• When comparing two or three groups, overlaid empirical distribution function
plots may be best, as these show all aspects of the distribution of a continu-
ous variable.

12.10 Showing Differences

• Often the only way to perceive differences accurately is to actually compute
differences; then plot them

• It is not a waste of space to show stratified estimates and differences be-
tween them on the same page using multiple panels

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 114

• This also addresses the problem that confidence limits for differences can-
not be easily derived from intervals for individual estimates; differences can
easily be significant even when individual confidence intervals overlap.

• Humans can’t judge differences between steep curves; one needs to actually
compute differences and plot them.

12.11 Choosing the Best Graph Type

The recommendations that follow are good on the average, but be sure to think
about alternatives for your particular data set. For nonparametric trend lines, it
is advisable to add a “rug” plot to show the density of the data used to make
the nonparametric regression estimate. Alternatively, use the bootstrap to derive
nonparametric confidence bands for the nonparametric smoother.

12.11.1 Single Categorical Variable

Use a dot plot or horizontal bar chart to show the proportion corresponding to
each category. Second choices for values are percentages and frequencies. The
total sample size and number of missing values should be displayed somewhere
on the page. If there are many categories and they are not naturally ordered,
you may want to order them by the relative frequency to help the reader estimate
values.

12.11.2 Single Continuous Numeric Variable

An empirical cumulative distribution function, optionally showing selected quan-
tiles, conveys the most information and requires no grouping of the variable. A
box plot will show selected quantiles effectively, and box plots are especially
useful when stratifying by multiple categories of another variable. Histograms
are also possible.

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 115

12.11.3 Categorical Response Variable vs. Categorical Ind. Var.

This is essentially a frequency table. It can also be depicted graphically

12.11.4 Categorical Response vs. a Continuous Ind. Var.

Choose one or more categories and use a nonparametric smoother to relate the
independent variable to the proportion of subjects in the categories of interest.
Show a rug plot on the x-axis.

12.11.5 Continuous Response Variable vs. Categorical Ind. Var.

If there are only two or three categories, superimposed empirical cumulative
distribution plots with selected quantiles can be quite effective. Also consider
box plots, or a dot plot with error bars, to depict the median and outer quartiles.
Occasionally, a back-to-back histogram can be effective for two groups (see the
Hmisc histbackback function).

12.11.6 Continuous Response vs. Continuous Ind. Var.

A nonparametric smoother is often ideal. You can add rug plots for the x- and
y-axes, and if the sample size is not too large, plot the raw data. If you don’t
trust nonparametric smoothers, group the x-variable into intervals having a given
number of observations, and for each x-interval plot characteristics (3 quartiles
or mean ± 2 SD, for example) vs. the mean x in the interval. This is done auto-
matically with the Hmisc xYplot function with the methods=’quantile’ option.

CHAPTER 12. PRINCIPLES OF GRAPH CONSTRUCTION 116

12.12 Conditioning Variables

You can condition (stratify) on one or more variables by making separate pages
by strata, by making separate panels within a page, and by superposing groups
of points (using different symbols or colors) or curves within a panel. The ac-
tual method of stratifying on the conditional variable(s) depends on the type of
variables.

Categorical variable(s) : The only choice to make in conditioning (stratifying)
on categorical variables is whether to combine any low-frequency categories.
If you decide to combine them on the basis of relative frequencies you can
use the combine.levels function in Hmisc.

Continuous numeric variable(s) : Unfortunately, to condition on a continuous
variable without the use of a parametric statistical model, one must split
the variable into intervals. The first choice is whether the intervals of the
numeric variable should be overlapping or non-overlapping. For the former
the built-in equal.count function can be used for a paneling or grouping
variable in trellis graphics (these overlapping intervals are called “shingles”
in trellis). For non-overlapping intervals the Hmisc cut2 function is a good
choice because of its many options and compact labeling.

Chapter 13

Graphics for One or Two Variables

AH 11.1,11.3

See

· www.math.montana.edu/~umsfjban/Courses/Stat438/Text/Comprehensive.
toc.html

· http://exploringdata.cqu.edu.au

· http://davidmlane.com/hyperstat/desc_univ.html

· http://www.statsoft.com/textbook/stgraph.html

· http://www.itl.nist.gov/div898/handbook/eda/section1/eda15.htm

13.1 One-Dimensional Scatterplot
C 133

· Rug plot; useful by itself or on curves or axes

117

CHAPTER 13. GRAPHICS FOR ONE OR TWO VARIABLES 118

· Shows all raw data values

· For large datasets, draw random thirds of vertical tick to avoid black blob

· Old-style dot plots are similar to rug plots

· Can use Cleveland’s dot charts to show raw data

rug(x) # basic built-in rug plot function

datadensity(mydataframe) # show 1-d scatterplot for all variables

dotplot(x) # one variable

dotplot(∼ x) # same thing

stripplot(x) # Trellis version

stripplot(∼ x) # ditto

hist(x)

scat1d(x) # add rug plot at top of histogram

plot(x, y)

scat1d(x) # rug plot for x at top

scat1d(y, side=4) # rug plot for y at right side

scat1d has many options

13.2 Histogram
C 3.3, 133-6

· Used for estimating the probability density function

f(x) = lim
δ→0

Prob(x− δ < X ≤ x)/δ (13.1)

· Very dependent on how bins formed, and number of bins

· y-axis can be frequency or proportion

· No statistical estimates can be read directly off a histogram or density plot

hist(x, nclass=i) # use i bins

CHAPTER 13. GRAPHICS FOR ONE OR TWO VARIABLES 119

histogram(x) # Trellis version

histogram(∼ x)

histSpike(x) # high-res spike histogram

plot(x, y)

histSpike(x, add=T) # add spike histogram to existing plot, x-axis

Note: histSpike is called automatically by scat1d when n is large (by default,
≥ 2000)

13.3 Density Plot
Rosner 5.1-5.2

· Smoothed histogram

· Smooth estimate of f(x) above

· Depends on choice of a smoothing parameter

plot(density(x), type=’l’)

densityplot(∼ x) # Trellis version

hist(x, probability=T, nclass=20); lines(density(x)) # ditto

probability=T scales y-axes so area under curve is 1.0

13.4 Empirical Cumulative Distribution Plot
Rosner 4.6,5.4

· Population cumulative distribution function is

F (x) = Prob(X ≤ x) (13.2)

· F (b) − F (a) = Prob(a < X ≤ b) and is the area under the density function
f(x) from a to b

· Estimate of F (x) is the empirical cumulative distribution function, which is
the proportion of data values ≤ x

CHAPTER 13. GRAPHICS FOR ONE OR TWO VARIABLES 120

· Cumulative histogram

· Works fine if histogram has one observation per bin

· ECDF requires no binning and is unique

· Excellent for showing differences in entire distributions between two or three
overlaid groups

· Quantiles can be read directly off ECDF

ecdf(mydataframe) # show all continuous variables

ecdf(x)

ecdf(x, q=c(.2,.8)) # reference lines for .2 and .8 quantiles

ecdf(x, datadensity=’rug’) # add rug plot

ecdf(x, datadensity=’hist’) # add spike histogram

ecdf(x, datadensity=’density’) # add density plot

ecdf(∼ x) # Trellis version

13.5 Box Plot
C 139-142

· Most useful for comparing many groups

· Basically uses 3-number summary: 3 quartiles

· Easy to also show mean

· Can be extended to show other percentiles, especially farther out in the tails
of the distribution

· Usually show lower and upper “adjacent” values (“whiskers”) and “outside”
values; some find these not to be useful

CHAPTER 13. GRAPHICS FOR ONE OR TWO VARIABLES 121

boxplot(x) # basic function

plot(groups, x) # stratified, vertical boxes

boxplot(split(x,groups)) # same

bpplot(split(x,groups)) # box-percentile plot, shows 101 percentiles

bwplot(x) # basic horizontal box plot, Trellis

bwplot(∼ x) # ditto

bwplot(x, panel=panel.bpplot) # horizontal box-percentile plot

13.6 Scatter Plots
C 100-1, 3.1, 3.5, 4.8

· Excellent for showing relationship between a semi-continuous X and a con-
tinuous Y

· Does not work well for huge n unless relationship is tight

· Can use transformed axes, or transformed data may be plotted

· Can show a limited number of classes of points through the use of different
symbols

plot(x, y)

plot(x, y, log=’xy’) # double log plot, nonlinear axes

plot(log(x), log(y)) # log plot, log axes

plot(x, y, main=’Main Title’)

plot(x, y, xlab=’X label’, ylab=’Y label’,

xlim=c(0,1), ylim=c(20,100))

xyplot(y ∼ x) # Trellis

13.7 Optional Commands to Embellish Non-Trellis Plots

13.7.1 Titles

plot(x, y, main=’Main Title’)

plot(x, y)

CHAPTER 13. GRAPHICS FOR ONE OR TWO VARIABLES 122

title(’Main Title’)

title(sub=’Subtitle’, adj=0)

adj=0,.5,1 for left, center, right-justification

title(’First Line\nSecond Line’)

Use \n to jump down one line on output

par(mfrow=c(2,2),oma=c(0,0,2,0))# 2x2 matrix of plots, leave 2 lines for

plot() # overall top title (oma = outer margins)

hist()

...

mtitle(’Overall Title’)

pstamp() # date-time stamp lower right corner

13.7.2 Adding Lines, Symbols, Text, and Axes

plot(x, y)

axis(3) # add axis on top (ticks & labels)

axis(4, labels=FALSE) # add axis on right (ticks only)

lines(1:3, c(2,4,-1)) # add x=1:3, y=2, 4, -1

points(x2, y2)

points(locator()) # add clicked points

text(.2, 1.3, ’Text’) # add text

text(locator(1), ’Mytext’) # add text at click

13.7.3 Reference Lines

abline(a=0, b=1) # line of identity (a,b=intercept,slope)

abline(a=0, b=1, lty=2) # dotted line

abline(h=c(1,3)) # horizontal line at y=1,3

abline(v=0) # vertical line at x=0

13.8 Choosing Symbols, Colors, and Line Types
AH 12.1.3

show.pch() # display all symbols

points(x, y, pch=i) # use symbol i from this display

show.col() # show all colors

points(x, y, col=i)

Line types are specified with an lty argument. See AH Figure 12.4.

Chapter 14

Conditioning and Plotting Three or More
Variables

14.1 Conditioning
C 114,152-3,167,249-0,267

C 3.10,3.11,4.9· Choose one or two variables of principal interest

– Typically one for histograms, ECDFs, density plots

– Two for scatterplots

– One or two for dot plots

· Can condition on (hold constant) effects of other variables using a statistical
model (not covered in this course) or by subsetting data

· Subsets usually non-overlapping for categorical conditioning (stratification)
variables

· May or may not be overlapping (shingles) intervals for continuous condition-

123

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 124

ing variables

· Conditioning may be shown in many ways

– different symbols or colors for different groups on a scatterplot or dot plot

– different line styles or colors on a lines plot showing multiple curves, or
carefully labeled curves which use the same line styles

– adjacent lines of dots on a dot plot

– different vertical, horizontal (or both) panels

– different pages, including layered transparencies

– dynamically in real time using “brushing” and other interactive techniques

· Cleveland’s principal of small multiples

See Section 12.12 of these lecture notes.

14.2 Dot Plots
C 3.4,4.1,4.6,4.9

C 267,269

· Ideal for showing how one or more categorical variables are related to a
single continuous numeric response variable

· Continuous conditioning variables must be categorized

· This is usually done by creating intervals containing equal sample sizes

· Can show error bars and other superpositioning

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 125

· Done using Trellis dotplot or Hmisc Trellis Dotplot function (later) or using
basic dotchart2 function in Hmisc

· Created automatically when plotting certain objects created by summary.formula

14.3 Thermometer Plots
C 240-1

· Useful in problems that are similar to those handled by dot plots

· But thermometers may be positioned irregularly

· Ideal for geographical displays

· See example from online help file for symbols

· For depicting contingency tables see the Hmisc symbol.freq function AH 6.3

14.4 Extensions of Scatterplots

14.4.1 Single Plots
C Fig. I,3.5,3.10

C 3.11,3.13,4.4· Vary symbols, colors—best for conditioning on categorical variables

· Bubble plots: can depict an addition continuous variable which may be a
second response variable

· Radius of circles plotted is proportional to the third variable

x ← 1:10

y ← runif(10)

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 126

z ← runif(10)

symbols(x, y, circles=z, inches=.2) # largest is .2in

14.4.2 Scatterplot Matrices
C 3.9, KO 217

· Show all pairwise relationships from among 3 or more continuous variables

x ← matrix(rnorm(200*5),ncol=5)

pairs(x)

pairs(mydataframe[,c(’age’,’pressure’,’weight’,’height’)])

· Trellis function: splom

14.5 3-D Plots for Almost Smooth Surfaces
KO 193-6

· GUI plus several functions

· Perspective plot: simulated 3-D surface

· Contour plot

· Image plot: 3rd variable categorized into, for example, 10 intervals;
Shown using color (e.g., heat spectrum) or grayscale
See main web page for image plot examples C Fig. II, 211-2, 4.3

· Basic S-PLUS functions: persp, contour, image

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 127

14.6 Dynamic Graphics

14.6.1 Interactively Identifying Points
AH 11.2

· If use plot or points

· Use identify(x, y, labels=rowlabels)

plot(state.x91[,’Income’], state.x91[,’Murder’])

identify(state.x91[,c(’Income’,’Murder’)],

labels=dimnames(state.x91)[[1]])

· First argument to identify may be a vector (then 2nd argument is y-variable),
a 2-column matrix, or a list

14.6.2 Wireframe and Perspective Plots

· Works for smooth data or somewhat tight relationships

· GUI is nice for this

· Can interactively look at 3-D plot from different perspectives

· Or can automatically get a matrix of plots from varying perspectives

14.6.3 Brushing and Spinning
C 3.12

· Useful for examining relationships between multiple continuous variables
when some of the relationships are somewhat tight (depending on the sam-
ple size)

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 128

· Brushing: highlight points in one 2-D scatterplot; shows corresponding points
in other 2-D plots

· Spinning: use motion to simulation 3-D point clouds, rotating 3rd variable in
and out of display

brush(cbind(sbp, dbp, age, cholesterol), hist=T)

brush(x[,c(’sbp’,’dbp’,’age’,’cholesterol’)])

brush(x[,Cs(sbp,dbp,age,cholesterol)])

brush(state.x91) # matrix built-in to S-Plus

brush(prim4) # ’’ ’’

· First argument to brush (a matrix) may not contain NAs

· hist argument: draw marginal histograms

14.6.4 “Live” Graphics on Web Sites

Java Graphlets

· S-PLUS 6.x has a Java graphics device (used like postscript device but can
specify underlying data)

· Allows drilling down to other pre-programmed results

· Simple to use on web sites

S-PLUS StatServer and R

· Can build web sites at which users click on options, S-PLUS is run on a
server, non-pre-programmed graphics are created on the fly

· R can be freely used on web servers

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 129

14.7 Trellis Graphics
AH 11.4, KO 6, UG 6

Function Purpose Formula Argument
barchart Bar chart y ~ x | g1*g2

bwplot Box and whisker plot y ~ x | g1*g2

densityplot Probability density plot ~ x | g1*g2

dotplot Dot plot y ~ x | g1*g2

Dotplot Hmisc generalization of dotplot y ~ x | g1*g2

ecdf Hmisc ECDF plot ~ x | g1*g2,

groups=g3

histogram Histogram ~ x | g1*g2

parallel Parallel coordinate plot ~ x | g1*g2

panel.bpplot enhanced box plots and
box–%-tile plots with bwplot

panel.plsmo Hmisc panel function for y ~ x | g1*g2,

xyplot groups=g3

splom Multi–panel scatterplot matrices ~ x | g1*g2

stripplot One–dimensional scatter plot y ~ x | g1*g2

xyplot Conditioning plots/scatter plots y ~ x | g1*g2

xYplot Hmisc generalization of xyplot Cbind(y,y2,y3) ~ x | g1*g2,

for multi–column y groups=g3

setTrellis Hmisc trellis setup
trellis.strip.blank Hmisc function to set trellis

to use blank background for panel titles

General form of first argument (statistical formula):

vertical variable ∼ horizontal variable | row.conditioner *

column.conditioner * page.conditioner, groups=superposition.variable

· Variables after | are conditioned upon to make panels (available for all graph
types)

· groups variable makes separate lines or symbols within a panel (not avail-
able for all graph types)

· All Trellis functions take data and subset arguments.

14.7.1 Appropriate Paneling/Grouping Variables

· These are assumed discretea

aThe GUI will automatically discretize continuous numeric variables when they are used in paneling.

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 130

· Numeric continuous variables need to be discretized

Panel Variables

· If panel variable is a discrete numeric and you want the value to explicitly
show in the panel strip, specify e.g.

dotplot(y ∼ x | factor(g))

· For continuous variable, panels may correspond to overlapping intervals; to
create these use equal.count or shingle functions after the |

· For non-overlapping intervals, cut2 is flexible and provides nice panel label-
ing

14.7.2 Classes of Trellis Function

Functions Plotting All Data Points

The following functions are often used on raw data. They are also used to plot
summary data computed on raw data, which will be covered later.

· barchart

· dotplot

· Hmisc version of dotplot: Dotplot

· parallel

· splom

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 131

· stripplot

· xyplot

· Hmisc version of xyplot: xYplot

Functions That Summarize Data and then Plot

· bwplot: computes 3 quartiles, mean, outer values, etc. on each group of
points (panel, vertical box plot within panel); then draws box plot

· density: computes smooth estimate of density function, then plots

· ecdf: computes ECDF for each group or panel

· histogram: bins x-variable, computes frequencies for each panel

· Note : for density, ecdf, histogram user has no control over y-axis as
these are computed

· xYplot has an argument method that can do automatic summarization of raw
data; summaries fed immediately into plots

Built-in vs. Hmisc

· For dotplot, xyplot you must specify panel=panel.superpose to use su-
perposition, in addition to specifying groups

· Dotplot, xYplot implicitly handle superposition when groups is given

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 132

· Dotplot, xYplot allow for error bars (xYplot also allows for error bands);
these are covered later

· Dotplot, xYplot use label attributes of x and y variables for labeling axes
(if not label defined, uses variable names as with built-in Trellis functions)

· xYplot sometimes uses different defaults for the type argument

– User can take control by specifying type=’l’,’p’,’b’ for lines, points,
or both

· Hmisc functions do some automatic key drawing

· xYplot will do some automatic data summarization

· Hmisc has panel functions to be discussed later:

– panel.bpplot: can use as a replacement for panel.bwplot

– panel.plsmo: can use with xyplot to plot lowess trend lines

14.7.3 Panel Functions
KO 6.4.9

· A strength of Trellis is its ability to let the user specify a panel argument

· This directs Trellis in constructing each panel; panel function does not need
to know about other panels

· Panel function can be a single function or it can call many panel functions

· Latter is how you combine graph types (e.g., raw data + trend line)

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 133

xyplot(y ∼ x,

panel=function(...) {
panel.xyplot(...)

panel.loess(...) })

· You can more easily get raw data + trend line by using

xyplot(y ∼ x, panel=panel.smooth) # or:

xyplot(y ∼ x, panel=panel.plsmo) # panel.plsmo in Hmisc

Hmisc panel.bpplot

· Extends bwplot to do box-percentile plots

· By default plots mean using solid circle, and shows 0.25, 0.5, 0.75, and 0.9
coverage intervals, and does not show any raw data

· Has many options

· Examples: ?panel.bpplot:

set.seed(13)

x ← rnorm(1000)

g ← sample(1:6, 1000, replace=T)

x[g==1][1:20] ← rnorm(20)+3 # contaminate 20 x’s for group 1

default trellis box plot

bwplot(g ∼ x)

box-percentile plot with data density (rug plot)

bwplot(g ∼ x, panel=panel.bpplot, probs=seq(.01,.49,by=.01), datadensity=T)

add ,scat1d.opts=list(tfrac=1) to make all tick marks the same size

when a group has > 125 observations

small dot for means, show only .05,.125,.25,.375,.625,.75,.875,.95 quantiles

bwplot(g ∼ x, panel=panel.bpplot, cex=.3)

suppress means and reference lines for lower and upper quartiles

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 134

bwplot(g ∼ x, panel=panel.bpplot, probs=c(.025,.1,.25), means=F, qref=F)

continuous plot up until quartiles ("Tootsie Roll plot")

bwplot(g ∼ x, panel=panel.bpplot, probs=seq(.01,.25,by=.01))

start at quartiles then make it continuous ("coffin plot")

bwplot(g ∼ x, panel=panel.bpplot, probs=seq(.25,.49,by=.01))

same as previous but add a spike to give 0.95 interval

bwplot(g ∼ x, panel=panel.bpplot, probs=c(.025,seq(.25,.49,by=.01)))

decile plot with reference lines at outer quintiles and median

bwplot(g ∼ x, panel=panel.bpplot, probs=c(.1,.2,.3,.4), qref=c(.5,.2,.8))

default plot with tick marks showing all observations outside the outer

box (.05 and .95 quantiles), with very small ticks

bwplot(g ∼ x, panel=panel.bpplot, nout=.05, scat1d.opts=list(frac=.01))

show 5 smallest and 5 largest observations

bwplot(g ∼ x, panel=panel.bpplot, nout=5)

Use a scat1d option (preserve=T) to ensure that the right peak extends

to the same position as the extreme scat1d

bwplot(∼ x , panel=panel.bpplot, probs=seq(.00,.5,by=.001),

datadensity=T, scat1d.opt=list(preserve=T))

Hmisc panel.plsmo

Lowess nonparametric trend lines (to be discussed later) with enhancements

xyplot(y ∼ x | year, panel=panel.plsmo, groups=country)

Does automatic labeling of curves

14.7.4 Layout and Style Specification
KO 6.4

Vertical vs. Horizontal Paneling, Panel Order

· Example: Trellis graph with 2 panels

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 135

· Default layout is 2 columns, 1 row

· To use 2 rows, 1 column specify

trellisfunction(..., layout=c(1,2))

· Can also use layout just to specify the number of panels:

trellisfunction(..., layout=c(3,3)) # 9 panels reserved

· Default order is lower left to upper right

· Add as.table=T to use LR Top-Bottom ordering

Multiple Trellis Plots in One Figure
KO 6.4.7

· Store results of multiple Trellis calls in multiple objects

· Use the Trellis print method to compose the page

p1 ← trellisfunction1(...)

p2 ← trellisfunction2(...)

p3 ← ...

print(p1, split=c(column,row,maxcolumn,maxrow), more=T)

print(p2, split=c(...), more=T)

print(p3, split=c(...), more=F) # last one

· See KO for how to allow different graphs to have different space allocations

14.7.5 Creating Postscript Graphics Files

The Hmisc setps function uses decent defaults for B&W graphics

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 136

setps(plotname, trellis=T, h=...)

trellisfunction()

dev.off()

14.7.6 Controlling Trellis Graphical Parameters
KO 6.4

· setps with trellis=T specifies that strip label panels have a blank back-
ground for easy reading on black and white graphs

· When making graphs interactively, you can achieve the same effect easily
by specifying trellis.strip.blank() before creating the graphic. Alterna-
tively, specify an argument like to following to the Trellis function:
strip=function(...) strip.default(..., style=1) . AH 11.4, KO 6.1,6.4.6

If you have already created a Trellis graph you may have to issue dev.off()

or close the graph sheet window for this to take effect.

· To see a list of arguments that can be specified to the high-level Trellis func-
tions type ?trellis.args. You will see arguments for specifying nonlinear
axis scales, panel label strip format, layout, customized keys, axis limits,
aspect ratio and banking to 45◦, etc.

· To use a √ scale, you can specify scales as in the following

x ← 1:10

y ← x^2

ys ← seq(0,100,by=10)

xyplot(sqrt(y) ∼ x, type=’l’, ylab=’y’, ylim=sqrt(c(0,100)),

scales=list(y=list(at=sqrt(ys), labels=format(ys))))

· To see many of the current Trellis/Lattice settings, type show.settings()

· Type ?trellis.par.get to learn how to retrieve the current value of any
Trellis graphical parameter (e.g., line styles, point symbols, dot symbols, strip
background, etc.)

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 137

· To change a parameter, use trellis.par.set KO 6.4.1

dev.off() # Trellis needs to have the device inactive to do this

tpl ← trellis.par.get(’plot.line’)

tpl$lwd ← 3 # change line width to 3

trellis.par.set(’plot.line’, tpl)

This will affect all subsequent Trellis graphs. These three commands will for
example cause the line thickness of error bars drawn by the Dotplot function
to be 3 instead of the default of 1.

14.7.7 Summarizing Data for Input to Trellis Functions
AH 11.4.3-4

· Most frequently, summarizations for Trellis use simultaneous cross-classification,
unlike
summary(..., method=’response’)

· Hmisc summarize function is made for this

· Produces a ready-to-use data frame that will appear to a Trellis function to
be raw data

set.seed(111)

dfr ← expand.grid(month=1:12, year=c(1997,1998), reps=1:100)

attach(dfr)

y ← abs(month-6.5) + 2*runif(length(month)) + year - 1997

s ← summarize(y, llist(month,year), mean, na.rm=T)

s

xYplot(y ∼ month, groups=year, data=s)

· To compute proportions, take means of binary variables

s ← summarize(y > 6, llist(month,year), mean,

stat.name=’ygt6’, na.rm=T)

s

xYplot(ygt6 ∼ month | year, data=s)

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 138

· FUN (3rd) argument to summarize may specify a function that computes mul-
tiple statistics

· This is used to make error bars and bands

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 139

14.7.8 Error Bars and Bands
AH 11.4.1-2

· Used for

– Measures of precision: ± S.E., ±2× S.E., (possibly asymmetric confi-
dence limits for a population mean)

– Measures of variability of raw data: ±2× S.D., quantiles

· Think of upper and lower values as 2nd and 3rd response variables

· Trellis allows only a univariate response variable

· Hmisc tricks Trellis by using the Hmisc Cbind function to “hide” the upper and
lower values (and possibly more) in an attribute ’other’ to a single response
variable

· Hmisc xYplot and Dotplot functions allow for such multiple response vari-
ables

· Functions such as smean.cl.normal, smedian.hilow, smean.sdl are set up
to create the central value (e.g., mean) and variables named Lower and
Upper

· FUN argument of summarize can use these functions nicely with xYplot and
Dotplot

xYplot

· If you have already computed the lower and upper values (or the S.E.) you
can give these directly to xYplot:

xYplot(Cbind(y,lower,upper) ∼ month)

xYplot(Cbind(y,2*se) ∼ month)

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 140

In the latter example, y-2*se and y+2*se are automatically computed (be-
cause there are only 2 arguments to Cbind).

· More often we compute summaries to plot, e.g.:

The following example uses the summarize function in Hmisc to

compute the median and outer quartiles. The outer quartiles are

displayed using "error bars"

set.seed(111)

dfr ← expand.grid(month=1:12, year=c(1997,1998), reps=1:100)

attach(dfr)

y ← abs(month-6.5) + 2*runif(length(month)) + year-1997

s ← summarize(y, llist(month,year), smedian.hilow, conf.int=.5)

xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s,

keys=’lines’, method=’alt’) # Figure 14.1

Can also do:

s ← summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),

stat.name=c(’y’,’Q1’,’Q3’))

xYplot(Cbind(y, Q1, Q3) ∼ month, groups=year, data=s, keys=’lines’)

· To display means and bootstrapped nonparametric confidence intervals:

s ← summarize(y, llist(month,year), smean.cl.boot)

s

month year y Lower Upper

1 1997 6.55 6.44 6.67

1 1998 7.51 7.40 7.62

2 1997 5.58 5.47 5.69

2 1998 6.44 6.33 6.55

.

12 1998 7.47 7.37 7.58

xYplot(Cbind(y, Lower, Upper) ∼ month | factor(year), type=’l’, data=s)

Figure 14.2

factor(year) causes year to be written in panel labels

Can also use Y ← cbind(y, Lower, Upper); xYplot(Cbind(Y) ∼ ...)

Or:

xYplot(y ∼ month | year, nx=F, method=smean.cl.boot) # see later

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 141

2

4

6

8

2 4 6 8 10

+

+

+
+

+
+ +

+

+
+

+

+

month

y

Figure 14.1: Alternating error bars showing quartiles of raw data.

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 142

2

3

4

5

6

7

2 4 6 8 10 12

1997

2 4 6 8 10 12

1998

month

y

Figure 14.2: Mean and nonparametric bootstrap 0.95 confidence intervals

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 143

xYplot(Cbind(y, Lower, Upper) ∼ month | factor(year),

method=’filled bands’, type=’l’, data=s) # Figure 14.3

Use method=’bands’ for ordinary unfilled bands

2

3

4

5

6

7

2 4 6 8 10 12

1997

2 4 6 8 10 12

1998

month

y

Figure 14.3: Nonparametric bootstrap confidence limits for each month, but depicted with filled
bands

· Here is an example using double bands, to depict the following quantiles:
.1 .25 .5 .75 .9. The 0.25 and 0.75 quantiles are drawn with line thickness 2,
and the central line with a thickness of 4. Note that summarize produces a
matrix for y when type=’matrix’ is specified, and Cbind(y) trusts the first
column to be the point estimate (here the median)

s ← summarize(y, llist(month,year), quantile, probs=c(.5,.1,.25,.75,.9),

type=’matrix’)

xYplot(Cbind(y) ∼ month | factor(year), data=s,

type=’l’, method=’bands’, lwd.bands=c(1,2,2,1), lwd=4)

Figure 14.4

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 144

2

4

6

8

2 4 6 8 10 12

1997

2 4 6 8 10 12

1998

month

y

Figure 14.4: Central line depicts the median, and bands depict the 0.1, 0.25, 0.75, 0.9 quantiles of the
raw data

xYplot with method=’quantile’ or method=functionname

· method=’quantile’: xYplot automatically groups the x variable into inter-
vals containing a target of nx observations

· Default value of nx is the lesser of 40 and 1
4× stratum size (specify nx=0 to

do no grouping; useful when x variable is discrete such as month)

· Quantiles given by the probs argument; default is
probs=c(.5,.25,.75)

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 145

· Within each x group computes three quantiles of y and plots these as three
lines

· Mean x within each x group is taken as the x-coordinate

· Useful empirical display for large datasets in which scatterdiagrams are too
busy to see patterns of central tendency and variability; good for residual
plots for showing symmetry and lack of trend in central tendency and vari-
abilityb

· Can also specify a general function of a data vector that returns a matrix of
statistics for method; the statistic in the first column should be the measure
of central tendency

· Arguments can be passed to that function a list methodArgs

· Example: Group x into intervals containing 40 observations, plot the 0.5, 0.25, 0.75
quantiles of y against mean x in interval

set.seed(1)

age ← rnorm(1000, 30, 10)

sbp ← 0.3*(age-30) + rnorm(1000, 120, 15)

xYplot(sbp ∼ age, method=’quantile’, # Figure 14.5

xlim=c(5,60), ylim=c(100,140))

· Instead of quantiles of raw data, show parametric confidence bands, and
require 60 observations in a group

xYplot(sbp ∼ age, method=smean.cl.normal, # Figure 14.6

xlim=c(5,60), ylim=c(100,140), nx=60)

bSpecify method=smean.sdl to instead plot mean and ±2× S.D.

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 146

100

110

120

130

140

10 20 30 40 50 60

age

sb
p

Figure 14.5: 0.25, 0.5, 0.75 quantiles of sbp vs. intervals of age containing 40 observations

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 147

100

110

120

130

140

10 20 30 40 50 60

age

sb
p

Figure 14.6: Mean and parametric 0.95 confidence limits for means, for intervals of age containing
60 observations

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 148

Dotplot

· “Multivariate response” packaged by Cbind appears as the x-variable after
the ∼

· Does not work well with superposition of groups

· Example: Display proportions and approximate 0.95 confidence limits from
already-tabulated data

d ← expand.grid(continent=c(’USA’,’Europe’), year=1999:2001)

d$proportion ← c(.2, .18, .19, .22, .23, .20)

d$SE ← c(.02, .01, .02, .015, .021, .025)

d

continent year proportion SE

1 USA 1999 0.20 0.020

2 Europe 1999 0.18 0.010

3 USA 2000 0.19 0.020

4 Europe 2000 0.22 0.015

5 USA 2001 0.23 0.021

6 Europe 2001 0.20 0.025

Dotplot(year ∼ Cbind(proportion, proportion-1.96*SE, proportion+1.96*SE) |

continent, data=d, ylab=’Year’) # Figure 14.7

· To re-arrange the order of the vertical groups, use the reorder.factor func-
tion AH 11.4, 4.6

· First just reverse the order of years on the y-axis

yr ← factor(d$year, 2001:1999)

Dotplot(yr ∼ Cbind(proportion, proportion-1.96*SE, proportion+1.96*SE) |

continent, data=d, ylab=’Year’)

· Next, reorder years by the average proportion over the two continents

yr ← factor(d$year) # reorder.factor only accepts factors

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 149

1999

2000

2001

0.16 0.20 0.24

USA

0.16 0.20 0.24

Europe

proportion

M
on

th

Figure 14.7: Dot plot showing proportions and approximate 0.95 confidence limits for population
probabilities

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 150

yr ← reorder.factor(yr, d$proportion, mean)

levels(yr)

[1] "1999" "2000" "2001"

This happens to be in the original order so the dot plot will be the same as
Figure 14.7

· To use more accurate Wilson confidence intervals on raw data:

set.seed(3)

d ← expand.grid(continent=c(’USA’,’Europe’), year=1999:2001,

reps=1:100)

Generate binary events from a population probability of 0.2

of the event, same for all years and continents

d$y ← ifelse(runif(6*100) <= .2, 1, 0)

rm(y) # remove old y so as to not confuse the following

attach(d)

s ← summarize(y, llist(continent,year),

function(y) {
n ← sum(!is.na(y))

s ← sum(y, na.rm=T)

binconf(s, n)

}, type=’matrix’)

Dotplot(year ∼ Cbind(y) | continent,

data=s, ylab=’Year’)

Same format of output as Figure 14.7

· Example: dfr data frame and associated raw response variable y from
above

· Display a 5-number (5-quantile) summary (2 intervals, dot=median)

s ← summarize(y, llist(month,year), quantile,

probs=c(.5,.05,.25,.75,.95), type=’matrix’)

Dotplot(month ∼ Cbind(y) | factor(year),

data=s, ylab=’Month’) # Figure 14.8

dev.off()

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 151

1

2

3

4

5

6

7

8

9

10

11

12

2 4 6 8

1997

2 4 6 8

1998

y

M
on

th

Figure 14.8: Multi-tiered dot plot showing .05, .25, .5, .75, .95 quantiles of raw data

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 152

14.7.9 Summary of Functions for Aggregating Data for Plotting
AH 11.4.4

tapply

· Stratifies a single variable by one or a list of stratification variables

· When stratify by > 1 variable, result is a matrix which difficult to plot
directly

· Hmisc reShape function can be used to re–shape the result into a data
frame for plotting

· When stratify by a single variable, tapply creates a vector of summary
statistics suitable for making a simple dot or bar plot without conditioning

aggregate

· Input = vector or a data frame and a by list of one or more stratification
variables

· Handy to enclose the by variables in the llist function

· Can summarize many variables at once but only a single number such
as the mean is computed for each one

· aggregate does not preserve numeric stratification variables — it trans-
forms them into factors which are not suitable for certain graphics

· Result is data frame

summary.formula

· Can compute separate summaries for each of the stratification variables

· Can also do × classifications when method=’cross’

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 153

· Can summarize response variable using multiple statistics (e.g., mean
and median)

· If specify a fun function that can deal specially with matrices, you can
summarize multiple–column response variables

· Creates special objects and has special methods for presenting them

– print method for printing a table in ASCII text format

– plot method for plotting the result (not available for method=’cross’

– LATEX method for typesetting the table, allowing the use of multiple
fonts, character sizes, subscripts, superscripts, bold, etc.

· Don’t plot the results of summary.formula using one of the trellis func-
tions.

summarize

· Similar purpose as aggregate but with some differences

· Will summarize only a single response variable but the FUN function can
summarize it with many statistics

· Can compute multiple quantiles or upper and lower limits for error bars

· Will not convert numeric stratifiers to factors, so output is suitable for
summarizing data for xyplot or xYplot when the stratification variable
needs to be on the x–axis

· Only does cross–classification

· Creates an ordinary data frame suitable for any use in S-PLUS, especially
for passing as a data argument to trellis graphics functions

CHAPTER 14. CONDITIONING AND PLOTTING THREE OR MORE VARIABLES 154

· Can also easily use the GUI to graph this data frame

method=function with xYplot: Automatically aggregates data to be plotted
when central tendency and upper and lower bands are of interest.

Chapter 15

Nonparametric Trend Lines

C 18-9, 168-79, AH 11.3

· Continuous X, continuous or binary Y

· Nonparametric smoother only assumes that the shape of the relationship
between X and Y is smooth

· A smoother is like a moving average but better

– Moving average is a moving flat line approximation

– Moving averages have problems in the left and right tails

· Best all-purpose smoother: loess

· Is called a scatterplot smoother or moving weighted linear regression

· By having moving slope and intercept, with overlapping windows, the smooth
curve is more accurate and has no problems in left and right tails

155

CHAPTER 15. NONPARAMETRIC TREND LINES 156

· loess can handle binary response variable if you turn off outlier rejection
(i.e., tell the algorithm to do no extra iterations)

· Basic S-PLUS function for loess smoothing is lowess:

plot(age, sysbp)

lines(lowess(age, sysbp))

· To use more than two variables use the function called loess which uses the
statistical formula language

· Hmisc plsmo function plots loess or “super smoother” (supsmu) estimates
with several options including automatic stratification on a discrete variable

plsmo(age, sysbp, group=sex, datadensity=T) # 2 curves with rug plots

· Example using titanic3 dataset from Web site

attach(titanic3)

plsmo(age, survived, group=interaction(pclass,sex),

datadensity=T) # Figure 15.1

dev.off()

interaction(a,b) creates a new factor variable containing the cross-classifications
of the two constituent variables

· plsmo automatically turns outlier rejection off if the y variables has only two
unique values

· plsmo automatically labels curves by levels of the group variablea

· You can use plsmo as a panel function to xyplot:
aNote that group is not plural, which is inconsistent with the Trellis groups variable used for superposition.

CHAPTER 15. NONPARAMETRIC TREND LINES 157

age

su
rv

iv
ed

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

1st.female

2nd.female

3rd.female

1st.male2nd.male

3rd.male

Figure 15.1: loess smoothed estimates of the probability of surviving the Titanic as a function of
passenger age, sex, and ticket class

xyplot(sysbp ∼ age | race, groups=sex, panel=panel.plsmo)

· Other ways to get trend lines using Trellis are given in Section 14.7.3

Chapter 16

Reproducible Analysis, File and Script
Management

16.1 File Management

· Organize the user area on your computer hierarchically

· Use many subdirectories

· Example major subdirectories:

bin : local executables

data : universal data including teaching and example datasets

doc : documents not relating to analyses

– subdirectories might include letters, papers, proposals, references,

reports, reviews, seminars, talks, teaching, each with many sub-
directories

projects : project-specific directories

– subdirectories might correspond to courses, grants, contracts, depart-
ments

R : generic functions specific to R

158

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 159

S : generic functions for S-PLUS and R
tmp : temporary files to be purged monthly

· Terminal subdirectories have all the files associated with a project or subpro-
ject, e.g.

– S, SAS, and other scripts

– Data files when not stored centrally

– Final analysis files

– Analysis output listings

– Graphics files

– Source files for functions needed for only the project in question

– Report documents

– History log or diary that chronologically documents updates to source
data and analysis code, main findings, and reasons for changes in the
analysis plan

· Separating files by software they are associated with (e.g., having separate
directories for S code, SAS code, Word documents, etc.) does not work well

16.2 Script Management and Reproducible Analyses
AH 13

· Storing analysis code in a script allows analyses to be reproduced as needed
in batch mode when data are corrected or otherwise updated or when com-
puting software is improved

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 160

· Scripts also provide detailed documentation on exactly how analyses were
donea

· Document code by liberal use of comments

· Analyses generally require multiple approaches and changes in the choice
of statistical models as the analyst better understands the project and the
data

· Some analysts store scripts for each new analysis in a separate file

· When the analyst returns to the project after a significant time lapse, the
sequencing of analysis steps is difficult to reconstruct

· The multiple-script approach is extremely hard to follow when a new analyst
takes up the project

· In general it is best to have one main analysis script that contains explicit
detours

· If you need to reliably roll back source files to reproduce an older analysis
use a version control system such as CVS (http://www.gnu.org/software/
cvs)

· Often useful to code so that unneeded steps are not executed each time the
script is run

· Ease of doing this depends on statistical computing package used

· SAS has no “IF statements” that can control the flow of entire procedures
aIt is useful to put scripts on a web site for reference by readers of reports and manuscripts.

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 161

– comment out blocks of code not needing to be re-run (will have to un-
comment them to run again though)

– use the macro facility’s %IF %THEN statements to conditionally execute
sections of code; this just does text expansion / suppression and is not
data-sensitive

· The S language is fully “live” so that if statements can be used in all contexts
and they can be data-sensitive, e.g.

n ← nrow(mydata)

if(n < 20) print(mydata) else survplot(survfit(Surv(d.time,death)))

In this example, if the sample size is < 20 the dataset is merely listed. When
the data are updated and the sample size is sufficient, a Kaplan-Meier sur-
vival curve will be plotted.

· One good way to write scripts with multiple components is to set up variables
at the top of the script controlling what currently needs to be executed, e.g.

create ← F # analysis file already created

fitmod ← F # model already fitted

valmod ← T # need to validate model

if(create) {
df ← sas.get(...)

df.desc describe(df)

ddist ← datadist(df)

}
if(fitmod) {

fit ← lrm(death ∼ age*sex, x=T, y=T)

print(fit)

print(anova(fit))

}
if(valmod) {

val ← validate(fit)

print(val)

}

This is especially useful for processing large datasets where each step takes
significant execution time.

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 162

· Disadvantages:

– must explicitly print objects because code is surrounded by { }

– resulting output listing file will contain only output from recently run code
sections

· The Hmisc library’s do function solves these problems by outputting results
and graphics to separate files AH 13.2

16.3 Reproducible Research

· Projects require multiple programming and writing stepsb:

– create/update primary database (e.g., using SQL)

– create/update extractions from primary database (e.g., using SAS or S
to merge data tables)

– create/update S analysis files

– obtain scalar computed valuesc, tabular, and graphics output on latest
data

– assemble new computed values, tables, and graphics into a report

– recompile the report into a final output format such as PDF

· The more of these steps that can be automated the more efficient and error-
free the analysis becomes

bSee http://hesweb1.med.virginia.edu/biostat/s/LiveDoc.html for more information.
cFor example, a single P -value for a primary hypothesis.

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 163

· The Unix/Linux make commandd allows the user to set up dependency rules
to re-run completely different software in the correct order depending on the
dates that target files were last modified

– will run only steps needed

– steps are run so that modification date/times of target files are in correct
order according to dependency rules

· See http://sepwww.stanford.edu/research/redoc for details of the make

approach

· Perl is also very useful for managing execution of multiple programs AH 13.3

16.3.1 Reproducible Reports

· When report components (especially tables or graphs) change, being able
to automatically recompile a report results in major gains in efficiency and
freedom from transcription errors

· Word processors such as Microsoft Word are not very useful in this context
because they lack batch mode and command orientation

· Markup languages such as LATEX, html, and special XML formats are useful
for this purpose

· Many ways to use LATEX

· Literate programminge, in which a single source document contains analysis
code as well as all the text for the final report, has been found to result in
better documentation for the code as well as the text

dAvailable for Windows using the cygwin32 product
ehttp://www.ctan.org/tex-archive/help/LitProg-FAQ

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 164

LATEX Server

· The LATEX server has a Perl script that converts annotated S output into a PDF

report

· User need not install LATEX

· All text to be sent to LATEX begins with S comment symbol (#)

· All other lines are assumed to be S commands or S output

· S commands are “pretty printed”; S output included verbatim

· Graphics included automatically if triggered by the Hmisc setps command
and closed by dev.off()

· Example output from S:

#\title{Important Project}

#\author{Jane Q. Public}

#\date{\today}

#\maketitle

#\thanks{This project was done under duress.}

#\section % Section 1

#My approach to this problem involved ...

x <- rnorm(1000)

mean(x)

[1] -0.0237

setps(hist)

hist(x)

dev.off()

#You can see a Gaussian shape in the histogram.

#More conclusions.

#\section % Section 2

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 165

#One can see that ...

The input file to S is the above without the line of output showing the mean
of x. See http://biostat.virginia.edu/latex for details.

· The server can also process ready-to-typeset LATEX code

Sweave in R

· Another approach to all-in-one report/analysis code

· Based on Ramsey’s noweb literate programming tool

· Sweave function in R tools package, by Friedrich Leischf

· No special symbols such as # at beginning of lines

· S code set off by lines containing only <<>>=

· LATEX text starts with a line containing only @

· If the code fragment produces any graphs, the fragment is opened with
<<fig=T>>= instead of <<>>=

· All other lines sent to LATEX, S code and output sent to LATEX by default but
this can easily be overridden

· Example: Input file model.nw

\documentclass{article}

\title{Lateralization and Postsurgical Depression in Epilepsy}

\author{Frank E Harrell Jr}

\begin{document}

fhttp://www.ci.tuwien.ac.at/~leisch/Sweave

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 166

\maketitle

All calculations were done using R version 1.5.1 \cite{Roriginal}.

<<>>=

d <- read.csv(’epi.csv’)

library(Design)

library(tools)

attach(d)

Side <- factor(Side)

cdipre <- CDIPre

CDIPre <- factor(CDIPre)

dd <- datadist(CDIPre, Side, VIQPre, Scale2Pre)

options(datadist=’dd’)

v <- varclus(~., data=d)

@

The variable clustering diagram below shows which variables in the

dataset are interrelated. The y-axis is the Spearman ρ^2

(squared rank correlation coefficient).

\begin{center} % centers resulting figures in LaTeX

<<fig=T>>=

plot(v)

@

\end{center}

Mean values of the two response variables stratified by the predictors

are given in the chart below.

\begin{center}

<<fig=T>>=

par(mfrow=c(1,2))

scale2pre <- cut2(Scale2Pre,g=4)

viqpre <- cut2(VIQPre,g=4)

s <- summary(CDIPst ~ CDIPre + scale2pre + viqpre + Side)

plot(s, main=’’)

s <- summary(Scale2Pst ~ CDIPre + scale2pre + viqpre + Side)

plot(s, main=’’)

@

\end{center}

Develop multiple imputations for the \texttt{VIQPre} variable and to a

lesser extent the preop scales (imputing 10

imputations per subject\cite[Chapter 3]{rms}) so that

no subjects with response variable information will be discarded from

the two regression models. The R function

\texttt{aregImpute} in the Hmisc library\cite{Hmisc}

is used to develop the imputations.

<<>>=

s <- !is.na(CDIPst)

sum(is.na(VIQPre[s]))

sum(is.na(CDIPre[s]))

s <- !is.na(Scale2Pst)

sum(is.na(VIQPre[s]))

sum(is.na(Scale2Pre[s]))

h <- aregImpute(~VIQPre + Side + CDIPre + CDIPst + Scale2Pst +

Scale2Pre, n.impute=10)

@

\texttt{CDIPst} is an ordinal response variable with a very discrete

distribution due to the number of ties. Such response variables are

best modeled using the proportional odds ordinal logistic model

\cite[Chapter 13]{rms}. The first model below is the main model, and

its ANOVA table gives the partial (adjusted) effects of each variable

in the model. Note especially the test for the effect of

\texttt{Side} on the level of \texttt{CDIPst} adjusted for

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 167

\texttt{CDIPre} and \texttt{VIQPre}.

A secondary ANOVA tests whether \texttt{CDIPre} interactions with

\texttt{Side}. Everywhere \texttt{VIQPre} is modeled with a

restricted cubic spline with 4 knots, so as to not assume linearity

for this continuous adjustment variable.

<<>>=

z <- data.frame(VIQPre,Side,CDIPre,CDIPst,Scale2Pre,Scale2Pst,cdipre)

f <- fit.mult.impute(CDIPst ~ CDIPre + Side + rcs(VIQPre,4), lrm, h,

data=z, subset=!is.na(CDIPst))

f

anova(f)

anova(fit.mult.impute(CDIPst ~ cdipre*Side + rcs(VIQPre,4), lrm, h,

data=z, subset=!is.na(CDIPst)))

@

Note that 108 observations were used in this analysis (number of

patients having \texttt{CDIPst} measured). The test for

\texttt{CDIPre} \times \texttt{Side} interaction yielded $P=0.2$ so

there is little evidence that the \texttt{Side} effect is different

for low vs.\ high values of \texttt{CDIPre}.

From the main model we plot the effects of each predictor, on a common

scale, along with pointwise 0.95 confidence bands.

\begin{center}

<<fig=T>>=

par(mfrow=c(2,2))

plot(f, ylim=c(-3,4))

@

\end{center}

Next the main analysis is repeated using only temporal lobe patients.

<<>>=

f <- fit.mult.impute(CDIPst ~ CDIPre + Side + rcs(VIQPre,4), lrm, h,

data=z, subset=!is.na(CDIPst) & Lobe==1)

f

anova(f)

@

\texttt{Scale2Pst} has an almost continuous distribution and may be

analyzed by ordinary least squares (ordinary linear multiple regression).

\begin{center}

<<fig=T>>=

g <- fit.mult.impute(Scale2Pst ~ Scale2Pre + Side + rcs(VIQPre,4), ols, h,

data=z, subset=!is.na(Scale2Pst))

g

anova(g)

gia <- fit.mult.impute(Scale2Pst ~ Scale2Pre*Side + rcs(VIQPre,4), ols, h,

data=z, subset=!is.na(Scale2Pst))

anova(gia)

par(mfrow=c(2,2))

plot(g, ylim=c(40,80))

plot(gia, Scale2Pre=NA, Side=NA, ylim=c(40,80),conf.int=F)

@

\end{center}

Note that 90 observations were used in this analysis (number of

patients having \texttt{Scale2Pst} measured). There is some evidence

that the effect of \texttt{Side} differs by levels of

\texttt{Scale2Pre} ($P=0.08$), and from that second model that

includes the interaction term, there is mild evidence that

\texttt{Side} has an effect for some level of \texttt{Scale2Pre}

($P=0.08$ with 2 d.f.). This effect is shown in the bottom right

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 168

panel of the last graph. Unlike the other 3 panels this panel is from

the model that includes the interaction term. The numbers on this

panel refer to \texttt{Side=1, Side=2}.

The main model is refitted below on temporal lob patients only.

<<>>=

gia <- fit.mult.impute(Scale2Pst ~ Scale2Pre*Side + rcs(VIQPre,4), ols, h,

data=z, subset=!is.na(Scale2Pst) & Lobe==1)

anova(gia)

@

<<echo=F>>=

detach(’d’)

@

\bibliography{/home/feh3k/doc/survrisk/feh.bib}

\bibliographystyle{abbrv}

\end{document}

· This file is run through R by running the command

library(tools)

Sweave(’model.nw’)

or (better) by running a special R batch command, to do all the calculations
and plotting and produce the file model.tex and many graphics files. Both
PDF and PostScript files are produced for each plot, with names such as
model-001.eps and model-001.pdf. All LATEX \includegraphics macro calls
are generated to include these graphs.

· If LATEX is installed locally, you can run the system latex command to pro-
duce a PostScript report, or the pdflatex command to produce a PDF report

· Instead you can upload the .tex and a zip file containing all the .eps files to
the LATEX server to obtain the PDF reportg

· A neat feature of Sweave is the ability to include calculated variables directly
in sentences, e.g.

And the final answer is \Sexpr{sqrt(9)}.
gThe above example used a bibliographic database, so to produce the report the following commands had to be run locally:

pdflatex model

bibtex model

pdflatex model

pdflatex had to be run at least twice to define all bibliographic citations inside the final report

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 169

which will produce “And the final answer is 3.”

· There are utility functions for extracting just the R output or just the LATEX text

· Sweave is an excellent tool for producing self-documenting reports with nice
graphics, to be given to clients

Generating Results in S, Inserting in L ATEX

· Another alternative: keep LATEX and S separateh

· S can output plain text, LATEX code, and graphics:

s ← summary(death ∼ age + race + sex)

sink(’table1.txt’)

s # or print(s)

sink() # plain output from summary in table1.txt

latex(s, file=’table1.tex’) # special LaTeX output in table1.tex

setps(fig1, h=5)

plot(s)

dev.off() # creates fig1.ps

The LATEX source file might look like

\documentclass{article}

\usepackage{graphicx}

\usepackage{moreverb} % provides verbatimtabinput

\title{My Report}

\author{DG Dogbert}

\date{\today}

\begin{document}

\maketitle

\input{table1} % insert table1.tex

\verbatimtabinput{table1.txt} % insert table1.txt
hhttp://hesweb1.med.virginia.edu/biostat/s/doc/summary.pdf

CHAPTER 16. REPRODUCIBLE ANALYSIS, FILE AND SCRIPT MANAGEMENT 170

\includegraphics{fig1.ps}

\end{document}

· Can also invoke latex() under Sweave to include the resulting .tex file in
the same job

S Code to Generate Entire Report

· Some reports are generic and are run repeatedly over time when data up-
dated

· Good approach to reproducible analysis is to write S code to generate almost
the entire LATEX report

· S code can use data-sensitive inclusion and exclusion of selected graphs,
tables, sentences, and paragraphs

· S code generates all figure legends in addition to all LATEX graphics macro
invocations

· Small amount of customized user-written text can be inserted at appropriate
points

· FE Harrell has a detailed example of this approach for preparing Data Moni-
toring Committee reports for clinical trials

Bibliography

[1] M. Goosens, S. Rahtz, and F. Mittelbach. The LATEX Graphics Companion. Addison Wesley, Reading, MA, 1997.

171

