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Preface

The purpose of this book is to give an introduction into statistics in order
to solve some problems of bioinformatics. Statistics provides procedures to
explore and visualize data as well as to test biological hypotheses. The book
intends to be introductory in explaining and programming elementary statis-
tical concepts, thereby bridging the gap between high school levels and the
specialized statistical literature. After studying this book readers have a suf-
ficient background for Bioconductor Case Studies (Hahne et al., 2008) and
Bioinformatics and Computational Biology Solutions Using R and Biocon-
ductor (Genteman et al., 2005). The theory is kept minimal and is always
illustrated by several examples with data from research in bioinformatics.
Prerequisites to follow the stream of reasoning is limited to basic high-school
knowledge about functions. It may, however, help to have some knowledge
of gene expressions values (Pevsner, 2003) or statistics (Bain & Engelhardst,
1992; Ewens & Grant, 2005; Rosner, 2000; Samuels & Witmer, 2003), and
elementary programming. To support self-study a sufficient amount of chal-
lenging exercises are given together with an appendix with answers.

The programming language R is becoming increasingly important because
it is not only very flexible in reading, manipulating, and writing data, but
all its outcomes are directly available as objects for further programming.
R is a rapidly growing language making basic as well as advanced statisti-
cal programming easy. From an educational point of view, R provides the
possibility to combine the learning of statistical concepts by mathematics,
programming, and visualization. The plots and tables produced by R can
readily be used in typewriting systems such as Emacs, I¥TEX, or Word.

Chapter 1 gives a brief introduction into basic functionalities of R. Chap-
ter 2 starts with univariate data visualization and the most important de-
scriptive statistics. Chapter 3 gives commonly used discrete and continuous
distributions to model events and the probability by which these occur. These
distributions are applied in Chapter 4 to statistically test hypotheses from
bioinformatics. For each test the statistics involved are briefly explained and
its application is illustrated by examples. In Chapter 5 linear models are ex-
plained and applied to testing for differences between groups. It gives a basic
approach. In Chapter 6 the three phases of analysis of microarray data (pre-
processing, analysis, post processing) are briefly introduced and illustrated
by many examples bringing ideas together with R scrips and interpretation of
results. Chapter 7 starts with an intuitive approach into Euclidian distance
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and explains how it can be used in two well-known types of cluster analysis to
find groups of genes. It also explains how principal components analysis can
be used to explore a large data matrix for the direction of largest variation.
Chapter 8 shows how gene expressions can be used to predict the diagnosis
of patients. Three such prediction methods are illustrated and compared.
Chapter 9 introduces a query language to download sequences efficiently and
gives various examples of computing important quantities such as alignment
scores. Chapter 10 introduces the concept of a probability transition matrix
which is applied to the estimation of phylogenetic trees and (Hidden) Markov
Models.

R commands come after its prompt >, except when commands are part
of the ongoing text. Input and output of R will be given in verbatim
typewriting style. To save space sometimes not all of the original output
from R is printed. The end of an example is indicated by the box L. In
its Portable Document Format (PDF)! there are many links to the Index,
Table of Contents, Equations, Tables, and Figures. Readers are encouraged
to copy and paste scripts from the PDF into the R system in order to study
its outcome. Apart from using the book to study application of statistics in
bioinformatics, it can also be useful for statistical programming.

I would like to thank my colleges Joop Bouman, Sven Warris and Jan
Peter Nap for their useful remarks on parts of an earlier draft. Many thanks
also go to my students for asking questions that gave hints to improve clarity.
Remarks to further improve the text are appreciated.

Wim P. Krijnen Groningen
Hanze University October 2009
Institute for Life Science and Technology

Zernikeplein 11

9747 AS Groningen

The Netherlands

w.p.krijnen@pl.hanze.nl

1©This document falls under the GNU Free Document Licence and may be used freely
for educational purposes.
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Chapter 1

Brief Introduction into Using R

To get started a gentle introduction to the statistical programming language
R will be given (R Development Core Team, 2009), specific for our purposes.
This will solve the practical issues to follow the stream of reasoning. In
particular, it is briefly explained how to install R and Bioconductor, how to
obtain help, and how to perform simple calculations.

Since many computations are essentially performed on data vectors, sev-
eral basic illustrations of this are given. With respect to gene expressions the
data vectors are placed one beneath the other to form a data matrix with
the genes as rows and the patients as columns. The idea of a data matrix is
extensively explained and illustrated by several examples. A larger example
consists of the classical Golub et al. (1999) data, which will be analyzed
frequently to illustrate statistical procedures.

1.1 Getting R Started on your PC

You can downloaded R freely from http://cran.r-project.org. Click on
your favorite operating system (Windows, Linux or Mac0S) and simply follow
the instructions. After a little patience you should be able to start R (Ihaka
& Gentleman, 1996) after which a screen is opened with the prompt >. The
input and output of R will be displayed in verbatim typewriting style.
All useful functions of R are contained in libraries which are called ” pack-
ages”. The standard installation of R makes basic packages available such
as base and stats. From the button Packages at cran.r-project.org it
can be seen that R has a huge number of packages available for a wide scale

1
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of statistical procedures. To download a specific package you can use the
following.

> install.packages(c("TeachingDemos") ,repo="http://cran.r-project.org",
+ dep=TRUE)

This installs the package TeachingDemos developed by Greg Snow from the
repository http://cran.r-project.org. By setting the option dep to TRUE
the packages on which the TeachingDemos depend are also installed. This is
strongly recommended! Alternatively, in the Windows application of R you
can simply click on the Packages button at the top of your screen and follow
the instructions. After installing you have to load the package in order to use
its functions. For instance, to produce a nice plot of the outcome of throwing
twelve times with a die, you can use the following.

> library(TeachingDemos)
> plot(dice(12,1))

In the sequel we shall often use packages from Bioconductor, a very useful
open source software project for the analysis and comprehension of genomic
data. To follow the book it is essential to install Bioconductor on your PC
or network. Bioconductor is primarily based on R and can be installed, as
follows.

> source("http://www.bioconductor.org/biocLite.R")
> biocLite()

Then to download the ALL package from a repository to your system, to load
it, and to make the ALL data (Chiaretti, et. al, 2004) available for usage, you
can use the following.

> biocLite("ALL")
> library(ALL)
> data(ALL)

These data will be analyzed extensively later-on in Chapter 5 and 6. General
help on loaded Bioconductor packages becomes available by openVignette ().
For further information the reader is referred to www.bioconductor.org or
to several other URL’s! .

! http://mccammon.ucsd.edu/~bgrant/bio3d/user_guide/user_guide.html
http://rafalab. jhsph.edu/software.html
http://dir.gmane.org/gmane.science.biology.informatics.conductor
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http://dir.gmane.org/gmane.science.biology.informatics.conductor
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In this and the following chapters we will illustrate many statistical ideas
by the Golub et al. (1999) data, see also Section 1.8. The golub data become
available by the following.?

> library(multtest)
> data(golub)

R is object-oriented in the sense that everything consists of objects belonging
to certain classes. Type class(golub) to obtain the class of the object golub
and str(golub) to obtain its structure or content. Type objects() or 1s()
to view the currently loaded objects, a list probably growing soon to be large.
To prevent conflicting definitions, it is wise to remove them all at the end of
a session by rm(list=1s()). To quit a session, type q(), or simply click on
the cross in the upper right corner of your screen.

1.2 Getting help

All functionalities of R are well-organized in so-called packages. Use the func-
tion library() to see which packages are currently installed on your oper-
ating system. The packages stats and base are automatically installed, be-
cause these contain many basic functionalities. To obtain an overview of the
content of a package use ls(package:stats) or library(help="stats").
Help on the purpose of specific functions can be obtained from the (package)
manual by typing a question mark in front of a function. For instance, ?sum
gives details on summation. In case you are seeking help on a function which
uses if, simply type apropos("if"). When you are starting with a new con-
cept such as "boxplot”, it is convenient to have an example showing output
(a plot) and programming code. Such is given by example(boxplot). The
function history can be useful for collecting previously given commands.
Type help.start() to launch an HTML page linking to several well-
written R manuals such as: 7 An Introduction to R”, ”The R Language Defi-
nition”, "R Installation and Administration”, and "R Data Import/Export”.
Further help can be obtained from http://cran.r-project.org. Its ”con-
tributed” page contains well-written freely available on-line books® and use-
ful reference charts*. At http://www.r-project.org you can use R site

2 Functions to read data into R are read.table or read.csv, see also the " The R Data
Import/Export manual”.

3”R for Beginners” by Emmanuel Paradis or the ”The R Guide” by Jason Owen

4"R reference card” by Tom Short or by Jonathan Baron
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search, Rseek, or other useful search engines. There are a number of useful
URL’s with information on R.?

1.3 Calculating with R

R can be used as a simple calculator. For instance, to add 2 and 3 we simply
insert the following.

> 243
[1] 5

In many calculations the natural base e = 2.718282 of exponential functions
is used. Such type of functions can be called as follows.

> exp(1)
[1] 2.718282

To compute €? = e - e we use exp(2).5 So, indeed, we have e® =exp(x), for
any value of x.
The sum 1+ 2+ 3+ 4+ 5 can be computed by

> sum(1:5)
[1] 15

and the product 5! =5-4-3-2-1 by

> prod(1:5)
[1] 120

1.4 Generating a sequence and a factor

In order to compute so-called quantiles of distributions (see e.g. Section
2.1.4) or plots of functions, we need to generate sequences of numbers. The
easiest way to construct a sequence of numbers is by

> 1:5
[1] 1 234 5

5We mention in particular:
http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/R_BioCondManual.html
6The argument of functions is always placed between parenthesis ().
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This sequence can also be produced by the function seq, which allows for
various sizes of steps to be chosen. For instance, in order to compute per-
centiles of a distribution we may want to generate numbers between zero and
one with step size equal to 0.1.

> seq(0,1,0.1)
(1] 0.0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1.0

For plotting and testing of hypotheses we need to generate yet another
type of sequence, called a “factor”. It is designed to indicate an experimen-
tal condition of a measurement or the group to which a patient belongs.”
When, for instance, for each of three experimental conditions there are mea-
surements from five patients, the corresponding factor can be generated as
follows.

> factor <- gl(3,5)
> factor

[1] 111112222233333
Levels: 1 2 3

The three conditions are often called “levels” of a factor. Each of these
levels has five repeats corresponding to the number of observations (patients)
within each level (type of disease). We shall further illustrate the idea of a
factor soon because it is very useful for purposes of visualization.

1.5 Computing on a data vector

A data vector is simply a collection of numbers obtained as outcomes from
measurements. This can be illustrated by a simple example on expression
values of a gene. Suppose that gene expression values 1,1.5, and 1.25 from
the persons ”"Eric”, "Peter”, and " Anna” are available. To store these in a
vector we use the concatenate command c(), as follows.

> genel <- ¢(1.00,1.50,1.25)
> genel
[1] 1.00 1.50 1.25

7 See e.g. Samuals & Witmer (2003, Chap. 8) for a full explanation of experiments
and statistical principles of design.
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Now we have created the object genel containing three gene expression val-
ues. To compute the sum, mean, and standard deviation of the gene expres-
sion values we use the corresponding built-in-functions.

> sum(genel)

[1] 3.75

> mean(genel)

[1] 1.25

> sum(genel)/3

[1] 1.25

> sd(genel)

[1] 0.25

> sqrt(sum((genel-mean(genel))~2)/2)
[1] 0.25

By defining x; = 1.00, x5 = 1.50, and x3 = 1.25, the sum of the weights can
be expressed as Y ., z; = 3.75. The mathematical summation symbol 3" is
in R language simply sum. The mean is denoted by T = Z?:l x;/3 = 1.25
and the sample standard deviation as

s= Y (;—T)?/(3—1) = 0.25,

=1

1.6 Constructing a data matrix

In various types of spreadsheets it is custom to store data values in the
form of a matrix consisting of rows and columns. In bioinformatics gene
expression values (from several groups of patients) are stored as rows such
that each row contains the expressions values of the patients corresponding
to a particular gene and each column contains all gene expression values for
a particular person. To illustrate this by a small example suppose that we
have the following expression values on three genes from Eric, Peter, and
Anna.®

> gene2 <- ¢(1.35,1.55,1.00)
> gene3 <- c(-1.10,-1.50,-1.25)
> gened <- c(-1.20,-1.30,-1.00)

8By the function data.entry you can open and edit a screen with the values of a
matrix.
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Before constructing the matrix it is convenient to add the names of the rows
and the columns. To do so we construct the following list.

> rowcolnames <- list(c("genel",'"gene2","gene3","gened"),
+ c("Eric","Peter","Anna"))

After the last comma in the first line we give a carriage return for R to come
up with a new line starting with + in order to complete a command. Now we
can construct a matrix containing the expression values from our four genes,
as follows.

> gendat <- matrix(c(genel,gene2,gene3,gened), nrow=4, ncol=3,
+ byrow=TRUE, dimnames = rowcolnames)

Here, nrow indicates the number of rows and ncol the number of columns.
The gene vectors are placed in the matrix as rows. The names of the rows
and columns are attached by the dimnames parameter. To see the content of
the just created object gendat, we print it to the screen.

> gendat

Eric Peter Anna
genel 1.00 1.50 1.25
gene2 1.35 1.556 1.30
gene3 -1.10 -1.50 -1.25
gene4 -1.20 -1.30 -1.00

A matrix such as gendat has two indices [i,j], the first of which refers to
rows and the second to columns’. Thus, if you want to print the second
element of the first row to the screen, then type gendat[1,2]. If you want
to print the first row, then use gendat([1,]. For the second column, use
gendat[,2].

It may be desirable to write the data to a file for using these in a later
stage or to send these to a college of yours. Consider the following script.

> write.table(gendat,file="D:/data/gendat.Rdata")
> gendatread <- read.table("D:/data/gendat.Rdata")
> gendatread
Eric Peter Anna
genel 1.00 1.50 1.25

9ndices referring to rows, columns, or elements are always between square brackets [].
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gene2 1.35 1.55 1.30
gene3 -1.10 -1.50 -1.25
gene4 -1.20 -1.30 -1.00

An alternative is to use write.csv.!°

1.7 Computing on a data matrix

Means or standard deviations of rows or columns are often important for
drawing biologically relevant conclusions. Such type of computations on a
data matrix can be accomplished by “for loops”. However, it is much more
convenient to use the apply functionality on a matrix. To do so we specify
the name of the matrix, indicate rows or columns (1 for rows and 2 for
columns), and the name of the function. To illustrate this we compute the
mean of each person (column).

> apply(gendat,2,mean)
Eric Peter Anna
0.0125 0.0625 0.0750

Similarly, the mean of each gene (row) can be computed.

> apply(gendat,1,mean)
genel gene?2 gene3 gene4
1.250000 1.400000 -1.283333 -1.166667

It frequently happens that we want to re-order the rows of a matrix according
to a certain criterion, or, more specifically, the values in a certain column
vector. For instance, to re-order the matrix gendat according to the row
means, it is convenient to store these in a vector and to use the function
order.

> meanexprsval <- apply(gendat,1,mean)

> o0 <- order(meanexprsval,decreasing=TRUE)
>0

[11 2143

0For more see the "R Data import/Export” manual, Chapter 3 of the book "R for
Beginners”, or search the internet by the key ”r wiki matrix”.



1.7. COMPUTING ON A DATA MATRIX 9

Thus gene2 appears first because it has the largest mean 1.4, then genel
with 1.25, followed by gene4 with -1.16 and, finally, gene3 with -1.28. Now
that we have collected the order numbers in the vector o, we can re-order
the whole matrix by specifying o as the row index.!!

> gendat [o,]

Eric Peter Anna
gene2 1.35 1.56 1.30
genel 1.00 1.50 1.25
gene4 -1.20 -1.30 -1.00
gene3 -1.10 -1.50 -1.25

Another frequently occurring problem is that of selecting genes with a certain
property. We illustrate this by several methods to select genes with positive
mean expression values. A first method starts with the observation that the
first two rows have positive means and to use c(1,2) as a row index.

> gendat[c(1,2),]
Eric Peter Anna

genel 1.00 1.50 1.25

gene2 1.35 1.55 1.30

A second way is to use the row names as an index.

> gendat[c("genel","gene2"),]
Eric Peter Anna

genel 1.00 1.50 1.25

gene2 1.35 1.55 1.30

A third and more advanced way is to use an evaluation in terms of TRUE
or FALSE of logical elements of a vector. For instance, we may evaluate
whether the row mean is positive.

> meanexprsval > 0O
genel gene2 gene3 gened
TRUE TRUE FALSE FALSE

Now we can use the evaluation of meanexprsval > 0 in terms of the values
TRUE or FALSE as a row index.

H1You can also use functions like sort or rank.
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> gendat [meanexprsval > 0,]
Eric Peter Anna

genel 1.00 1.50 1.25

gene2 1.35 1.55 1.30

Observe that this selects genes for which the evaluation equals TRUE. This
illustrates that genes can be selected by their row index, row name or value
on a logical variable.

1.8 Application to the Golub (1999) data

The gene expression data collected by Golub et al. (1999) are among the clas-
sical in bioinformatics. A selection of the set is called golub and is contained
in the multtest package, which is part of Bioconductor. The data consist
of gene expression values of 3051 genes (rows) from 38 leukemia patients'?.
Twenty seven patients are diagnosed as acute lymphoblastic leukemia (ALL)
and eleven as acute myeloid leukemia (AML). The tumor class is given by
the numeric vector golub.cl, where ALL is indicated by 0 and AML by
1. The gene names are collected in the matrix golub.gnames of which the
columns correspond to the gene index, ID, and Name, respectively. We shall
first concentrate on expression values of a gene with manufacturer name
"M92287_at", which is known in biology as "CCND3 Cyclin D3". The ex-
pression values of this gene are collected in row 1042 of golub. To load the
data and to obtain relevant information from row 1042 of golub.gnames, use
the following.

> library(multtest); data(golub)
> golub.gnames[1042,]
[1] "2354" "CCND3 Cyclin D3" "M92287_at"

The data are stored in a matrix called golub. The number of rows and
columns can be obtained by the functions nrow and ncol, respectively.

> nrow(golub)
[1] 3051

> ncol(golub)
[1] 38

12The data are pre-processed by procedures described in Dudoit et al. (2002).
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So the matrix has 3051 rows and 38 columns, see also dim(golub). Each
data element has a row and a column index. Recall that the first index refers
to rows and the second to columns. Hence, the second value from row 1042
can be printed to the screen as follows.

> golub[1042,2]
[1] 1.52405

So 1.52405 is the expression value of gene CCND3 Cyclin D3 from patient
number 2. The values of the first column can be printed to the screen by the
following.

> golub[,1]

To save space the output is not shown. We may now print the expression
values of gene CCND3 Cyclin D3 (row 1042) to the screen.

> golub[1042,]
[1] 2.10892 1.52405 1.96403 2.33597 1.85111 1.99391 2.06597
[9] 2.17622 1.80861 2.44562 1.90496 2.76610 1.32551 2.59385
[17] 1.10546 1.27645 1.83051 1.78352 0.45827 2.18119 2.31428
[25] 1.36844 2.37351 1.83485 0.88941 1.45014 0.42904 0.82667
[33] 1.02250 0.12758 -0.74333 0.73784 0.49470 1.12058

To print the expression values of gene CCND3 Cyclin D3 to the screen only
for the ALL patients, we have to refer to the first twenty seven elements of
row 1042. A possibility to do so is by the following.

> golub[1042,1:27]

However, for the work ahead it is much more convenient to construct a factor
indicating the tumor class of the patients. This will turn out useful e.g.
for separating the tumor groups in various visualization procedures. The
factor will be called gol.fac and is constructed from the vector golub.cl,
as follows.

> gol.fac <- factor(golub.cl, levels=0:1, labels = c("ALL","AML"))

In the sequel this factor will be used frequently. Obviously, the labels corre-
spond to the two tumor classes. The evaluation of gol.fac=="ALL" returns
TRUE for the first twenty seven values and FALSE for the remaining eleven.
This is useful as a column index for selecting the expression values of the
ALL patients. The expression values of gene CCND3 Cyclin D3 from the
ALL patients can now be printed to the screen, as follows.

1.81649
1.92776
1.99927
0.63637
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> golub[1042,gol.fac=="ALL"]

For many types of computations it is very useful to combine a factor with
the apply functionality. For instance, to compute the mean gene expression
over the ALL patients for each of the genes, we may use the following.

> meanALL <- apply(golub[,gol.fac=="ALL"], 1, mean)

The specification golub[,gol.fac=="ALL"] selects the matrix with gene ex-
pressions corresponding to the ALL patients. The 3051 means are assigned
to the vector meanALL.

After reading the classical article by Golub et al. (1999), which is strongly
recommended, one becomes easily interested in the properties of certain
genes. For instance, gene CD33 plays an important role in distinguishing
lymphoid from myeloid lineage cells. To perform computations on the ex-
pressions of this gene we need to know its row index. This can obtained by
the grep function.!?

> grep("CD33",golub.gnames[,2])
[1] 808

Hence, the expression values of antigen CD33 are available at golub[808,]
and further information on it by golub.gnames[808,].

1.9 Running scripts

It is very convenient to use a plain text writer like Notepad, Kate, Emacs, or
WinEdt for the formulation of several consecutive R commands as separated
lines (scripts). Such command lines can be executed by simply using copy
and paste into the command line editor of R. Another possibility is to execute
a script from a file. To illustrate the latter consider the following.

library(multtest); data(golub)

gol.fac <- factor(golub.cl,levels=0:1, labels= c("ALL","AML"))
mall <- apply(golub[,gol.fac=="ALL"], 1, mean)

maml <- apply(golub[,gol.fac=="AML"], 1, mean)

o <- order(abs(mall-maml), decreasing=TRUE)

>
>
>
>
>
> print(golub.gnames[o[1:5],2])

3Indeed, several functions of R are inspired by the Linux operating system.
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[1] "CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)"
[2] "INTERLEUKIN-8 PRECURSOR"

[3] "Interleukin 8 (IL8) gene"

[4] "DF D component of complement (adipsin)"

[6] "MPO Myeloperoxidase"

The row means of the expression values per patient group are computed and
stored in the object mall and maml, respectively. The absolute values of the
differences in means are computed and their order numbers (from large to
small) are stored in the vector o. Next, the names of the five genes with the
largest differences in mean are printed to the screen.

After saving the script under e.g. the name meandif.R in the directory
D:\\Rscripts\\meandif .R, it can be executed by using source ("D:\\Rscripts\\meandif.R").
Once the script is available for a typewriter it is easy to adapt it and to re-run
it.

Readers are strongly recommended to trial-and-error with respect to writ-
ing programming scripts. To run these it is very convenient to have your
favorite word processor available and to use, for instance, the copy-and-paste
functionality.

1.10 Overview and concluding remarks

It is easy to install R and Bioconductor. R has many convenient built-in-
functions for statistical programming. Help and illustrations on many topics
are available from various sources. With the reference charts, R manuals,
(on-line) books and R Wiki at hand you have various sources of information
to help you along with practical issues. Although there recently became
several GUI’s available, we shall concentrate on the command line editor
because its range of possibilities is much larger.

The above introduction is of course very brief. A more extensive in-
troduction into R, assuming some background on biomedical statistics, is
given by Dalgaard (2002). There are book length treatments combining R
with statistics (Venables, & Ripley, 2002; Everitt & Hothorn, 2006). Other
treatments go much deeper into programming aspects (Becker, Chambers, &
Wilks, 1988; Venables & Ripley, 2000; Gentleman, 2008).

For the sake of illustration we shall work frequently with the data kindly
provided by Golub et al. (1999) and Chiaretti et al. (2004). The corre-
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sponding scientific articles are freely available from the web. Having these
available may further motivate readers for the computations ahead.

1.11 Exercises

1. Some questions to orientate yourself.

(a) Use the function class to find the class to which the follow-
ing objects belong: golub, golub[1,1],golub.cl, golub.gnames,
apply, exp, gol.fac, plot, ALL.

(b) What is the meaning of the following abbreviations: rm, sum, prod,
seq, sd, nrow.

(c¢) For what purpose are the following functions useful: grep, apply,

gl, library, source, setwd, history, str.

2. gendat Consider the data in the matrix gendat, constructed in Sec-
tion 1.6. Its small size has the advantage that you can check your
computations even by a pocket calculator. '

a) Use apply to compute the standard deviation of the persons.

Order the matrix according to the gene standard deviations.

(c

(a)
(b) Use apply to compute the standard deviation of the genes.
)
(d) Which gene has the largest standard deviation?

3. Computations on gene means of the Golub data.

(a) Use apply to compute the mean gene expression value.
(b) Order the data matrix according to the gene means.

(c) Give the names of the three genes with the largest mean expression
value.

(d) Give the biological names of these genes.
4. Computations on gene standard deviations of the Golub data.

(a) Use apply to compute the standard deviation per gene.

4Obtaining some routine with the apply functionality is quite helpful for what follows.
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(b) Select the expression values of the genes with standard deviation
larger than two.

(c) How many genes have this property?
5. Oncogenes in Golub data.

(a) How many oncogenes are there in the dataset? Hint: Use grep.

(b) Find the biological names of the three oncogenes with the largest
mean expression value for the ALL patients.

(¢) Do the same for the AML patients.
(d) Write the gene probe ID and the gene names of the ten genes with

largest mean gene expression value to a csv file.

6. Constructing a factor. Construct factors that correspond to the follow-
ing setting.
(a) An experiment with two conditions each with four measurements.
(b) Five conditions each with three measurements.
(c) Three conditions each with five measurements.

7. Gene means for Bl patients. Load the ALL data from the ALL library
and use str and openVignette() for a further orientation.

(a) Use exprs(ALL[,ALL$BT=="B1"] to extract the gene expressions
from the patients in disease stage B1. Compute the mean gene
expressions over these patients.

(b) Give the gene identifiers of the three genes with the largest mean.
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Chapter 2

Data Display and Descriptive
Statistics

A few essential methods are given to display and visualize data. It quickly
answers questions like: How are my data distributed? How can the frequen-
cies of nucleotides from a gene be visualized? Are there outliers in my data?
Does the distribution of my data resemble that of a bell-shaped curve? Are
there differences between gene expression values taken from two groups of
patients?

The most important central tendencies (mean, median) are defined and
illustrated together with the most important measures of spread (standard
deviation, variance, inter quartile range, and median absolute deviation).

2.1 Univariate data display

To observe the distribution of data various visualization methods are made
available. These are frequently used by practitioners as well as by experts.

2.1.1 Frequency table

Discrete data occur when the values naturally fall into categories. A fre-
quency table simply gives the number of occurrences within a category.

Example 1. A gene consists of a sequence of nucleotides {A,C, G, T'}.
The number of each nucleotide can be displayed in a frequency table. This

17
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will be illustrated by the Zyxin gene which plays an important role in cell
adhesion (Golub et al., 1999). The accession number (X94991.1) of one of
its variants can be found in a data base like NCBI (UniGene). The code
below illustrates how to read the sequence ”X94991.1”7 of the species homo
sapiens from GenBank, , to construct a pie from a frequency table of the four
nucleotides.

install.packages(c("ape") ,repo="http://cran.r-project.org",dep=TRUE)
library(ape)

table(read.GenBank (c("X94991.1"),as.character=TRUE))
pie(table(read.GenBank (c("X94991.1"))))

From the resulting frequencies in Table 2.1 it seems that the nucleotides are
not equally likely. A nice way to visualize a frequency table is by plotting a
pie. O

Table 2.1: A frequency table and its pie of Zyxin gene.

410 | 789 | 573 | 394

2.1.2 Plotting data

An elementary method to visualize data is by using a so-called stripchart,
by which the values of the data are represented as e.g. small boxes. Often,
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it is useful in combination with a factor that distinguishes members from
different experimental conditions or patients groups.

Example 1. Many visualization methods will be illustrated by the Golub
et al. (1999) data. We shall concentrate on the expression values of gene
"CCND3 Cyclin D3", which are collected in row 1042 of the data matrix
golub. To plot the data values one can simply use plot(golub[1042,]). In
the resulting plot in Figure 2.1 the vertical axis gives the size of the expression
values and the horizontal axis the index of the patients. It can be observed
that the values for patient 28 to 38 are somewhat lower, but, indeed, the
picture is not very clear because the groups are not plotted separately.

To produce two adjacent stripcharts one for the ALL and one for the
AML patients, we use the factor called gol.fac from the previous chapter.

data(golub, package = "multtest")
gol.fac <- factor(golub.cl,levels=0:1, labels= c("ALL","AML"))
stripchart(golub[1042,] ~ gol.fac, method="jitter")

From the resulting Figure 2.2 it can be observed that the CCND3 Cyclin D3
expression values of the ALL patients tend to have larger expression values
than those of the AML patients. O

2.1.3 Histogram

Another method to visualize data is by dividing the range of data values into
a number of intervals and to plot the frequency per interval as a bar. Such
a plot is called a histogram.

Example 1. A histogram of the expression values of gene "CCND3 Cyclin
D3" of the acute lymphoblastic leukemia patients can be produced as follows.

> hist(golub[1042, gol.fac=="ALL"])

The function hist divides the data into 5 intervals having width equal to
0.5, see Figure 2.3. Observe from the latter that one value is small and the
other are more or less symmetrically distributed around the mean. o
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Figure 2.1: Plot of gene ex- Figure 2.2: Stripchart of
pression values of CCND3 gene expression values of
Cyclin D3. CCND3 Cyclin D3 for ALL

and AML patients.

2.1.4 Boxplot

It is always possible to sort n data values to have increasing order x; < x5 <

- < x,, where z1 is the smallest, x5 is the first-to-the smallest, etc. Let
Zo.25 be a number for which it holds that 25% of the data values x,--- , x,
is smaller. That is, 25% of the data values lay on the left side of the number
Xo.05, reason for which it is called the first quartile or the 25th percentile.
The second quartile is the value xg50 such that 50% of the data values are
smaller. Similarly, the third quartile or 75th percentile is the value xq 75 such
that 75% of the data is smaller. A popular method to display data is by
drawing a box around the first and the third quartile (a bold line segment
for the median), and the smaller line segments (whiskers) for the smallest and
the largest data values. Such a data display is known as a box-and-whisker
plot.

Example 1. A vector with gene expression values can be put into in-
creasing order by the function sort. We shall illustrate this by the ALL

AML
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expression values of gene "CCND3 Cyclin D3" in row 1042 of golub.

> x <- sort(golub[1042, gol.fac=="ALL"], decreasing = FALSE)
> x[1:5]
[1] 0.458 1.105 1.276 1.326 1.368

The second command prints the first five values of the sorted data values
to the screen, so that we have xy = 0.458, x5 = 1.105, etc. Note that the
mathematical notation z; corresponds exactly to the R notation x[1i] |

Histogram of golub[1042, gol.fac == "ALL"]

Frequency
6
I
I I
o

-05 0.0 05

- JL 1 o

[ T T T T T 1 T T
0.0 0.5 1.0 15 2.0 25 3.0 ALL AML

golub[1042, gol.fac == "ALL"]

Figure 2.3: Histogram of ALL ex-  Figure 2.4: Boxplot of ALL and
pression values of gene CCND3  AML expression values of gene
Cyclin D3. CCND3 Cyclin D3.

Example 2. A view on the distribution of the expression values of the
ALL and the AML patients on gene CCND3 Cyclin D3 can be obtained by
constructing two separate boxplots adjacent to one another. To produce such
a plot the factor gol.fac is again very useful.

> boxplot(golub[1042,] ~ gol.fac)

From the position of the boxes in Figure 2.4 it can be observed that the gene
expression values for ALL are larger than those for AML. Furthermore, since
the two sub-boxes around the median are more or less equally wide, the data
are quite symmetrically distributed around the median.
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To compute exact values for the quartiles we need a sequence running
from 0.00 to 1.00 with steps equal to 0.25. To construct such a sequence the
function seq is useful.

> pvec <- seq(0,1,0.25)

> quantile(golub[1042, gol.fac=="ALL"],pvec)
0% 256% 50%  75% 100%

0.458 1.796 1.928 2.179 2.766

The first quartile xgo5 = 1.796, the second xg50 = 1.928, and the third
Zo.75 = 2.179. The smallest observed expression value equals xg g = 0.458
and the largest x1 99 = 2.77. The latter can also be obtained by the function
min(golub[1042, gol.fac=="ALL"]) and max(golub[1042, gol.fac=="ALL"]),
or more briefly by range (golub[1042, gol.fac=="ALL"]). O

Outliers are data values laying far apart from the pattern set by the
majority of the data values. The implementation in R of the (modified)
boxplot draws such outlier points separately as small circles. A data point
x is defined as an outlier point if

T < g5 — 1.5+ (560.75 — 950.25) or x>xo7+1.5- (560.75 — 1‘0.25)-

From Figure 2.4 it can be observed that there are outliers among the gene
expression values of ALL patients. These are the smaller values 0.45827 and
1.10546, and the largest value 2.76610. The AML expression values have one
outlier with value -0.74333.

To define extreme outliers, the factor 1.5 is raised to 3.0. Note that this
is a descriptive way of defining outliers instead of statistically testing for the
existence of an outlier.

2.1.5 Quantile-Quantile plot

A method to visualize the distribution of gene expression values is by the
so-called quantile-quantile (Q-Q) plot. In such a plot the quantiles of the
gene expression values are displayed against the corresponding quantiles of
the normal (bell-shaped). A straight line is added representing points which
correspond exactly to the quantiles of the normal distribution. By observing
the extent in which the points appear on the line, it can be evaluated to
what degree the data are normally distributed. That is, the closer the gene
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expression values appear to the line, the more likely it is that the data are
normally distributed.

Normal Q-Q Plot

Sample Quantiles

1.0

Theoretical Quantiles

Figure 2.5: Q-Q plot of ALL gene expression values of CCND3 Cyclin D3.

Example 1. To produce a Q-Q plot of the ALL gene expression values
of CCND3 Cyclin D3 one may use the following.

qqnorm(golub[1042, gol.fac=="ALL"])
qqline(golub[1042, gol.fac=="ALL"])

From the resulting Figure 2.5 it can be observed that most of the data points
are on or near the straight line, while a few others are further away. |

The above example illustrates a case where the degree of non-normality
is moderate so that a clear conclusion cannot be drawn. By making the
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exercises below, the reader will gather more experience with the degree in
which gene expression values are normally distributed.

2.2 Descriptive statistics

There exist various ways to describe the central tendency as well as the spread
of data. In particular, the central tendency can be described by the mean or
the median, and the spread by the variance, standard deviation, interquartile
range, or median absolute deviation. These will be defined and illustrated.

2.2.1 Measures of central tendency

The most important descriptive statistics for central tendency are the mean

and the median. The sample mean of the data values x1,--- ,x, is defined
as
_ I
n

Thus the sample mean is simply the average of the n data values. Since it
is the sum of all data values divided by the sample size, a few extreme data
values may largely influence its size. In other words, the mean is not robust
against outliers.

The median is defined as the second quartile or the 50th percentile, and
is denoted by xg50. When the data are symmetrically distributed around the
mean, then the mean and the median are equal. Since extreme data values
do not influence the size of the median, it is very robust against outliers.
Robustness is important in bioinformatics because data are frequently con-
taminated by extreme or otherwise influential data values.

Example 1. To compute the mean and median of the ALL expression
values of gene CCND3 Cyclin D3 consider the following.

> mean(golub[1042, gol.fac=="ALL"])
[1] 1.89

> median(golub[1042, gol.fac=="ALL"])
[1] 1.93
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Note that the mean and the median do not differ much so that the distribu-
tion seems quite symmetric. O

2.2.2 Measures of spread

The most important measures of spread are the standard deviation, the in-
terquartile range, and the median absolute deviation. The standard deviation
is the square root of the sample variance, which is defined as

n

82—ni12($i—f)2—nil((x1—§)2+...+(xn_f)2)'

Hence, it is the average of the squared differences between the data values
and the sample mean. The sample standard deviation s is the square root
of the sample variance and may be interpreted as the distance of the data
values to the mean. The variance and the standard deviation are not robust
against outliers.

The interquartile range is defined as the difference between the third and
the first quartile, that is xg75 — xg.25. It can be computed by the function
IQR(x). More specifically, the value IQR(x)/1.349 is a robust estimator of
the standard deviation. The median absolute deviation (MAD) is defined as
a constant times the median of the absolute deviations of the data from the
median (e.g. Jureckova & Picek, 2006, p. 63). In R it is computed by the
function mad defined as the median of the sequence |z1—xzgs50(, " - , |Zn —Z0.50]
multiplied by the constant 1.4826. It equals the standard deviation in case
the data come from a bell-shaped (normal) distribution (see Section 3.2.1).
Because the interquartile range and the median absolute deviation are based
on quantiles, these are robust against outliers.

Example 1. These measures of spread for the ALL expression values of
gene CCND3 Cyclin D3 can be computed as follows.

> sd(golub[1042, gol.fac=="ALL"])

[1] 0.491

> IQR(golub[1042, gol.fac=="ALL"]) / 1.349
[1] 0.284

> mad(golub[1042, gol.fac=="ALL"])

[1] 0.368



26 CHAPTER 2. DATA DISPLAY AND DESCRIPTIVE STATISTICS

Due to the three outliers (cf. Figure 2.4) the standard deviation is larger
than the interquartile range and the mean absolute deviation. That is, the
absolute differences with respect to the median are somewhat smaller, than
the root of the squared differences. O

2.3 Overview and concluding remarks

Data can be stored as a vector or a data matrix on which various useful
functions are defined. In particular, it is easy to produce a pie, histogram,
boxplot, or Q-Q plot of a vector of data. These plots give a useful first
impression of the degree of (non)normality of gene expression values.

To construct the histogram used the default method to compute the num-
ber of bars or breaks. If the data are distributed according to a bell-shaped
curve, then this is often a good strategy. The number of bars can be chosen
by the breaks option of the function hist. Optimal choices for this are dis-
cussed by e.g. Venables and Ripley (2002).

2.4 Exercises

Since the majority of the exercises are based on the Golub et al. (1999)
data, it is essential to make these available and to learn to work with it. To
stimulate self-study the answers are given at the end of the book.

1. Tlustration of mean and standard deviation.

(a) Compute the mean and the standard deviation for 1,1.5,2,2.5, 3.
(b) Compute the mean and the standard deviation for 1,1.5,2, 2.5, 30.

(¢) Comment on the differences.

2. Comparing normality for two genes. Consider the gene expression val-
ues in row 790 and 66 of the Golub et al. (1999) data.

(a) Produce a boxplot for the expression values of the ALL patients
and comment on the differences. Are there outliers?
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(b) Produce a QQ-plot and formulate a hypothesis about the normal-
ity of the genes.

(c) Compute the mean and the median for the expression values of
the ALL patients and compare these. Do this for both genes.

. Effect size. An important statistic to measure the effect size which

is defined for a sample as T/s. It measures the mean relative to the
standard deviation, so that is value is large when the mean is large and
the standard deviation small.

(a) Determine the five genes with the largest effect size of the ALL
patients from the Golub et al. (1999) data. Comment on their
size.

(b) Invent a robust variant of the effect size and use it to answer the
previous question.

Plotting gene expressions "CCND3 Cyclin D3". Use the gene expres-
sions from "CCND3 Cyclin D3" of Golub et al. (1999) collected in row
1042 of the object golub from the multtest library. After using the
function plot you produce an object on which you can program.

(a) Produce a so-called stripchart for the gene expressions separately
for the ALL as well as for the AML patients. Hint: Use a factor
for appropriate separation.

(b) Rotate the plot to a vertical position and keep it that way for the
questions to come.

(c¢) Color the ALL expressions red and AML blue. Hint: Use the col
parameter.

(d) Add a title to the plot. Hint: Use title.

(e) Change the boxes into stars. Hint: Use the pch parameter.
Hint: Store the final script you like the most in your typewriter
in order to be able to use it efficiently later on.

5. Box-and-Whiskers plot of "CCND3 Cyclin D3". Use the gene expres-

sions "CCND3 Cyclin D3" of Golub et al. (1999) from row 1042 of the
object golub of the multtest library.

(a) Construct the boxplot in Figure 2.6.
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(b) Add text to the plot to explain the meaning of the upper and
lower part of the box.

(¢) Do the same for the wiskers.

(d) Export your plot to eps format.

Hint 1: Use locator() to find coordinates of the position of the plot.
Hint 2: Use x1im to make the plot somewhat wider.

Hint 3: Use arrows to add an arrow.

Hint 4: Use text to add information at a certain position.

6. Box-and-wiskers plot of persons of Golub et al. (1999) data.

(a) Use boxplot(data.frame(golub)) to produce a box-and-wiskers
plot for each column (person). Make a screen shot to save it in
a word processor. Describe what you see. Are the medians of
similar size? Is the inter quartile range more or less equal. Are
there outliers?

(b) Compute the mean and medians of the persons. What do you
observe?

(c) Compute the range (minimal and maximum value) of the standard
deviations, the IQR and MAD of the persons. Comment of what
you observe.

7. Oncogenes of Golub et al. (1999) data.

(a) Select the oncogens by the grep facility and produce a box-and-
wiskers plot of the gene expressions of the ALL patients.

(b) Do the same for the AML patients and use par (mfrow=c(2,1))
to combine the two plots such that the second is beneath the first.
Are there genes with clear differences between the groups?

8. Descriptive statistics for the ALL gene expression values of the Golub
et al. (1999) data.

(a) Compute the mean and median for gene expression values of the
ALL patients, report their range and comment on it.

(b) Compute the SD, IQR, and MAD for gene expression values of
the ALL patients, report their range and comment on it.



2.4. EXERCISES

o
0 | T
[a\] I
1
1
1
o
N Median
T
:
[Te) 1
— 7] :
1
—_
o .
o | <——  outlier
—
n |
oS o

Figure 2.6: Boxplot with arrows and explaining text.

29



30 CHAPTER 2. DATA DISPLAY AND DESCRIPTIVE STATISTICS



Chapter 3

Important Distributions

Questions that concern us in this chapter are: What is the probability to
find fourteen purines in a microRNA of length twenty two? If expressions
from ALL patients of gene CCND3 Cyclin D3 are normally distributed with
mean 1.90 and standard deviation 0.5, what is the probability to observe
expression values larger than 2.47

To answer such type of questions we need to know more about statis-
tical distributions (e.g. Samuels & Witmer, 2003). In this chapter several
important distributions will be defined, explained, and illustrated. In par-
ticular, the discrete distribution binomial and the continuous distributions
normal, T, F, and chi-squared will be elaborated. These distributions have
a wealth of applications to statistically testing biological hypotheses. Only
when deemed relevant, the density function, the distribution function, the
mean g (mu), and the standard deviation o (sigma), are explicitly defined.

3.1 Discrete distributions

The binomial distribution is fundamental and has many applications in medicine
and bioinformatics.

3.1.1 Binomial distribution

The binomial distribution fits to repeated trials each with a dichotomous out-
come such as succes-failure, healthy-disease, heads-tails, purine-pyrimidine,
etc. When there are n trials, then the number of ways to obtain k successes

31
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out of n is given by the binomial coefficient

n!
Kl(n — k)

where n! = n-(n—1)---1 and 0! = 1 (Samuels & Witmer, 2003). The
binomial probability of k£ successes out of n consists of the product of this
coefficient with the probability of k successes and the probability of n —
k failures. Let p be the probability of succes in a single trial and X the
(random) variable denoting the number of successes. Then the probability P
of the event (X = k) that k successes occur out of n trails can be expressed
as

|
P(X=k) = ————p" (1 —p)" %, for k=0,--,n.  (3.1)

kl(n — k)

The collection of these probabilities is called the probability density function.
1

Example 1. To visualize the Binomial distribution, load the TeachingDemos
package and use the command vis.binom(). Click on ”Show Normal Ap-
proximation” and observe that the approximation improves as n increases,
taking p for instance near 0.5. |

Example 2. If two carriers of the gen for albinism marry, then each of the
children has probability of 1/4 of being albino. What is the probability for
one child out of three to be albino? To answer this question we take n = 3,
k =1, and p = 0.25 into Equation (3.1) and obtain

3!

1,(3—'1)'0.2{")10.752 = 3-0.140625 = 0.421875.

P(X=1)=
An elementary manner to compute this in R is by
> choose(3,1)* 0.2571x 0.7572

where choose(3,1) computes the binomial coefficient. It is more efficient to
compute this by the built-in-density-function dbinom(k,n,p), for instance
to print the values of the probabilities.

'For a binomially distributed variable np is the mean, np(l — p) the variance, and

v/np(1 — p) the standard deviation.
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> for (k in 0:3) print(dbinom(k,3,0.25))

Changing d into p yields the so-called distribution function with the cumula-
tive probabilities. That is, the probability that the number of Heads is lower
than or equal to two P(X < 2) is computed by pbinom(2,3,0.25). The
values of the density and distribution function are summarized in Table 3.1.
From the table we read that the probability of no albino child is 0.4218 and
the probability that all three children are albino equals 0.0156. O

Table 3.1: Discrete density and distribution function values of S35, with p =
0.6.

number of Heads k=0 k=1]| k=2 | k=3
density P(X = k) 0.4218 | 0.4218 | 0.1406 | 0.0156
distribution P(X < k) | 0.4218 | 0.843 | 0.9843 1

Example 3. RNA consists of a sequence of nucleotides A, G, U, and C,
where the first two are purines and the last two are pyrimidines. Suppose, for
the purpose of illustration, that the length of a certain micro RNA is 22, that
the probability of a purine equals 0.7, and that the process of placing purines
and pyrimidines is binomially distributed. The event that our microRNA
contains 14 purines can be represented by X = 14. The probability of this
event can be computed by

22!
0.7'%0.3% = dbinom(14, 22,0.7) = 0.1423.

PX =14) = 141(22 — 14)!

This is the value of the density function at 14. The probability of the event of
less than or equal to 13 purines equals the value of the distribution function
at value 13, that is

P(X < 13) = pbinom(13,22,0.7) = 0.1865.

The probability of strictly more than 10 purines is

22
P(X >11) = Y P(Sy = k) = sum(dbinom(11 : 22,22,0.7)) = 0.9860.
k=11

The binomial density function can be plotted by:
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Figure 3.1: Binomial probabilities  Figure 3.2: Binomial cumulative
with n =22 and p = 0.7 probabilities with n = 22 and p =
0.7.

> x <= 0:22
> plot(x,dbinom(x,size=22,prob=.7),type="h")

By the first line the sequence of integers {1, 2, --- ,22} is constructed and by
the second the density function is plotted, where the argument h specifies
pins. From Figure 3.1 it can be observed that the largest probabilities oc-
cur near the expectation 15.4. The graph in Figure 3.2 illustrates that the
distribution is an increasing step function, with x on the horizontal axis and
P(X < z) on the vertical.

A random sample of size 1000 from the binomial distribution with n = 22
and p = 0.7 can be drawn by the command rbinom(1000,22,0.7). This
simulates the number of purines in 1000 microRNA’s each with purine prob-
ability equal to 0.7 and length 22. |

3.2 Continuous distributions

The continuous distributions normal, T, F, and chi-squared will be defined,
explained and illustrated.
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3.2.1 Normal distribution

The normal distribution is of key importance because it is assumed for many
(preprocessed) gene expression values. That is, the data values zy,--- ,z,
are seen as realizations of a random variable X having a normal distribution.
Equivalently one says that the data values are members of a normally dis-
tributed population with mean x (mu) and variance o2 (sigma squared). It
is good custom to use Greek letters for population properties and N(u,o?)
for the normal distribution. The value of the distribution function is given
by P(X < x), the probability of the population to have values smaller than
or equal to x. Various properties of the normal distribution are illustrated
by the examples below.

Example 1. To view members of the normal distribution load the
TeachingDemos package and give the command vis.normal () to launch an
interactive display of bell-shaped curves. These bell-shaped curves are also
called normal densities. The curves are symmetric around g and attain a
unique maximum at z = p. If x moves further away from the mean u, then
the curves moves to zero so that extreme values occur with small probability.
Move the Mean and the Standard Deviation from the left to the right to
explore their effect on the shape of the normal distribution. In particular,
when the mean p increases, then the distribution moves to the right. If o is
small/large, then the distribution is steep/flat. U

Example 2. Suppose that the expression values of gene CCND3 Cyclin
D3 can be represented by X which is distributed as N(1.90,0.5%). From
the graph of its density function in Figure 3.3, it can be observed that it
is symmetric and bell-shaped around g = 1.90. A density function may
very well be seen as a histogram with arbitrarily small bars (intervals). The
probability that the expression values are less then 1.4 is

P(X < 1.4) = pnorm(1.4,1.9,0.5) = 0.1586.

Figure 3.4 illustrates the value 0.16 of the distribution function at x = 1.4.
It corresponds to the area of the blue colored surface below the graph of the
density function in Figure 3.3. The probability that the expression values
are larger than 2.4 is

P(X >2.4)=1—pnorm(2.4,1.9,0.5) = 0.1586.
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The probability that X is between 1.4 and 2.4 equals
P(1.4 < X <24) = pnorm(2.4,1.9,0.5) — pnorm(1.4,1.9,0.5) = 0.9545.

The graph of the distribution function in Figure 3.4 illustrates that it is
strictly increasing. The exact value for the quantile xg o5 can be computed
by

> gnorm(0.025,1.9,0.5)
[1] 0.920018

That is, the quantile g g25 = 0.920018. Hence, it holds that the probability of
values smaller than 0.920018 equals 0.025, that is P(X < 0.920018) = 0.025,
as can be verified by pnorm(0.920018,1.9,0.5). When X is distributed as
N(1.90,0.5?), then the population mean is 1.9 and the population standard
deviation 0.5. To verify this we draw a random sample of size 1000 from this
population by

> x <= rnorm(1000,1.9,0.5)

The estimate mean(x)=1.8862 and sd(x)=0.5071 are close to their popula-
tion values = 1.9 and o = 0.5. 2 O

2Use the function round to print the mean in a desired number a decimal places.
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For X distributed as N(u, 0?), it holds that (X — ) /o = Z is distributed
as N (0, 1). Thus by subtracting x and dividing the result with o any normally
distributed variable can be standardized into a standard normally distributed
Z having mean zero and standard deviation one.

3.2.2 Chi-squared distribution

The chi-squared distribution plays an important role in testing hypotheses
about frequencies, see Chapter 4. To define it, let {Z1,--- , Z,,} be indepen-
dent and standard normally distributed random variables. Then the sum of
squares

an:Z2 +22 Z

is the so-called chi-squared distributed (random) variable with m degrees of
freedom.

Example 1. To view various members of the x? distribution load the
TeachingDemos package. Use the command vis.gamma() to open an inter-
active display of various distributions. Click on ”Visualizing the gamma”,
”Visualizing the Chi-squared”, and adapt ”Xmax”. Move the ”Shape” but-
ton to the right to increase the degrees of freedom. Observe that the graphs
of chi-squared densities change from heavily skew to the right into more bell-
shaped normal as the degrees of freedom increases. U

Example 2. Let’s consider the chi-squared variable with 5 degrees of
freedom; x2 = Z + --- + Z2. To compute the probability of values smaller
than eight we use the function pchisq, as follows.

P (x2 < 8) = pchisq(8,5) = 0.8437644.

This yields the value of the distribution function at x = 8 (see Figure 3.6).
This value corresponds to the area of the blue colored surface below the graph
of the density function in Figure 3.5. Often we are interested in the value for
the quantile 25, where P(xZ < g025) = 0.025. 2 Such can be computed

by

31f the distribution function is strictly increasing, then there exists an exact and unique
solution for the quantiles.
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> qchisq(0.025, 5, lower.tail=TRUE)
[1] 0.8312 0O

Example 3. The chi-squared distribution is frequently used as a so-called
goodness of fit measure. With respect to the Golub et. al. (1999) data we
may hypothesize that the expression values of gene CCND3 Cyclin D3 for
the ALL patients are distributed as N(1.90,0.50%). If this indeed holds,
then the sum of squared standardized values equals their number and the
probability of larger values is about 1/2. In particular, let 1, - - , xo7 be the
gene expression values. Then the standardized values are z; = (2;—1.90)/0.50
and1ﬂuﬁrsun10fsquares}:?723::2503312.Tﬂuaprobabﬂﬁgrofkwgervahuﬁ
is P (x3; > 25.03312) = 0.5726, which indicates that this normal distribution
fits the data well. Hence, it is likely that the specified normal distribution is
indeed correct. Using R the computations are as follows.

library(multtest); data(golub)

gol.fac <- factor(golub.cl,levels=0:1, labels= c("ALL","AML"))
x <- golub[1042,gol.fac=="ALL"]

z <- (x-1.90)/0.50

sum(z~2)

pchisq(sum(z~2),27, lower.tail=FALSE) O
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3.2.3 T-Distribution

The T-distribution has many useful applications for testing hypotheses about
means of gene expression values, in particular when the sample size is lower
than thirty. If the data are normally distributed, then the values of \/n(Z —
) /s follow a T-distribution with n—1 degrees of freedom. The T-distribution

is approximately equal to the normal distribution when the sample size is
thirty.
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Figure 3.7: Density of T}y distri- Figure 3.8: Distribution function
bution. of Tho.

Example 1. Load the TeachingDemos and give vis.t () to explore a vi-
sualization of the T-distribution. Click on ”Show Normal Distribution” and
increase the number of degrees of freedom to verify that df equal to thirty is
sufficient for the normal approximation to be quite precise. O

Example 2. A quick NCBI scan makes it reasonable to assume that
the gene Gdf5 has no direct relation with leukemia. For this reason we take
i = 0. The expression values of this gene are collected in row 2058 of the
golub data. To compute the sample t-value /n(Z — p)/s use

n <- 11
x <- golub[2058, gol.fac=="AML"]
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t.value <- sqrt(n)*(mean(x)-0)/sd(x)
t.value
[1] 1.236324

From the above we know that this has a T} distribution. The probability
that Tjg is greater than 1.236324 can be computed, as follows.

P(Tyo > 1.236324) = 1 — P(Typ < 1.236324) = 1 — pt(1.236324,10) = 0.12.

This probability corresponds to the area of the blue colored surface below of
the graph of the density function in Figure 3.7. The T distribution function
with ten degrees of freedom is illustrated in Figure 3.8. The probability that
the random variable Tj, is between -2 and 2 equals

P(=2 < Ty < 2) =pt(2,10) — pt(—2,10) = 0.926612.

The 2.5% quantile can be computed by qt (0.025,n-1)=-2.228139. O

3.2.4 F-Distribution

The F-distribution is important for testing the equality of two variances. It
can be shown that the ratio of variances from two independent sets of nor-
mally distributed random variables follows an F-distribution. More specifi-
cally, if the two population variances are equal (03 = 03), then s?/s3 follows
an F-distribution with n; — 1,ny — 1 degrees of freedom, where s? is the
variance of the first set, s2 that of the second, and n; is the number of ob-
servations in the first and ns in the second.*

Example 1. For equal population variances the probability is large that
that the ratio of sample variances is near one. With respect to the Golub
et. al. (1999) data it is easy to compute the ratio of the variances of the
expression values of gene CCND3 Cyclin D3 for the ALL patients and the
AML patients.

> var(golub[1042,gol.fac=="ALL"])/var(golub[1042,gol.fac=="AML"])
[1] 0.7116441

4Tt is more correct to define S7/S3 for certain random variables S? and S2, we shall |,
however, not border.
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Since ny = 27 and ny = 11 this ratio is a realization of the Fyg 10 distribution.
Then, the probability that the ratio attains values smaller than 0.7116441 is

P(X < 0.7116441) = pf(0.7116441,26,10) = 0.2326147.

Figure 3.9 illustrates that this value corresponds to the area of the blue col-
ored surface below the graph of the density function. Figure 3.10 gives the
distribution function. To find the quantile x g5 use qf (. 025,26,10)=0.3861673.
This subject is taken further in Section 4.1.5. |

3.2.5 Plotting a density function

® A convenient manner to plot a density function in by using the correspond-
ing built-in-function. For instance to plot the bell-shaped density from the
normally distributed variable use the function dnorm, as follows.

> f<-function(x){dnorm(x,1.9,0.5)}
> plot(f,0,4,xlab="x-axis",ylab="density f(x)")

>This subsection is solemly on plotting and can be skipped without loss of continuity.
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This produces the graph of the density function in Figure 3.3. The specifica-
tion 0,4 defines the interval on the horizontal axis over which f is plotted.
The vertical axis is adapted automatically. We can give the surface under f
running x from 0 to 1.4 a nice blue color by using the following.

plot(f,0,4,xlab="x-axis",ylab="density f(x)")
x<-seq(0,1.4,0.01)
polygon(c(0,x,1.4), c(0,f(x),0), col="lightblue")

The basic idea of plotting is to start with a plot and next to add colors, text,
arrows, etc. In particular, the command polygon is used to give the surface
below the graph the color "lightblue". The polygon (surface enclosed by
many angles) is defined by the sequence of points defined as x and £ (x).

3.3 Overview and concluding remarks

For practical computations R has built-in-functions for the binomial, normal,
t, F, x2-distributions, where d stands for density, p for (cumulative) prob-
ability distribution, gq for quantiles, and r for drawing random samples, see
Table 3.2. The density, expectation, and variance of most the distributions
in this chapter are summarized in Table 3.3.

Table 3.2: Built-in-functions for random variables used in this chapter.

para- random
Distribution | meters | density distribution quantiles sampling
Bin n,p dbinom(z,n,p) | pbinom(x,n,p) | gbinom(c, n,p) | rbinom(10,n,p)
Normal L, O dnorm(x, i, 0) | pnorm(x, i, 0) | qunorm (v, i, 0) | rnorm(10, i, o)
Chi-squared | m dchisq(x,m) | pchisq(x,m) | qchisq(a,m) | rchisq(10,m)
T m dt(xz, m) pt(z,m) qt(a,m) rt(10,m)
F m,n df (x, m,n) pf(xz,m,n) qf (o, m, n) rf(10,m,n)

Although for a first introduction the above distributions are without
doubt among the most important, there are several additional distributions
available such as the Poisson, Gamma, beta, or Dirichlet. Obviously, these
can also be programmed by yourself. The freeware encyclopedia wikipedia of-
ten gives a useful first, though technical, orientation. Note that a distribution
acts as a population from which a sample can be drawn. Hence, distributions
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can be seen as models of data generating procedures. For a more thorough
treatment of distribution we refer the reader to Bain & Engelhardt (1992),

Johnson et al. (1992), and Miller & Miller (1999).

Table 3.3: Density, mean, and variance of distributions used in this chapter.

Distribution | parameters density expectation | variance
Binomial n,p ﬁik)!pk(ll— p)F np np(l — p)
Normal o —75= exp(—5(5)?) i o?
Chi-squared df=m m 2m

3.4 Exercises

It is importance to obtain some routine with the computation of probabilities

and quantiles.

1. Binomial Let X be binomially distributed with n = 60 and p = 0.4.
Compute the following.
(a) P(X =24), P(X < 24), and P(X > 30).
(b) P(20 < X < 30), P(20 < X).
(c) P(20 < X or X >40), and P(20 < X and X > 10).
(d) Compute the mean and standard deviation of X.
)

(e) The quantiles xq 25, 0.5, and xo.g7s-
2. Standard Normal. Compute the following probabilities and quantiles.

P(16 < Z <23).

P(Z < 1.64).

P(—1.64 < Z < —1.02).
P(0 < Z < 1.96).
P(—1.96 < Z < 1.96).

3. Normal. Compute for X distributed as N(10,2) the following proba-
bilities and quantiles.
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(a) P(X <12).
(b) P(X >38).
(c) P(9 <X <10,5).

(d) The quantiles xg 25, o5, and g g75.

4. T-distribution. Verify the following computations for the Tg distribu-

tion.

(a) P(Tg < 1)

(b) P(Ts > 2)

(c) P(-1<Ts<1)
(d) P(-2<Ts < —2).

(e) The quantiles tg 25, to5, and tg.g75.

5. F distribution. Compute the following probabilities and quantiles for
the Fg 5 distribution.
(a) P(Fgs5 < 3).
(b) P(Fs5 > 4).
(c) P(1 < Fg5 <6).
(d) The quantiles fy.025, fo.5, and fo.o75-

6. Chi-squared distribution. Compute the following for the chi-squared
distribution with 10 degrees of freedom.

(a) P(xio <3).

(b) P(xio > 4)-
) P(1 <Xy <6).
)

(c

(d) The quantiles go.025, go.5, and go.o75.

7. MicroRNA. Suppose that for certain microRNA of size 20 the proba-
bility of a purine is binomially distributed with probability 0.7.

(a) What is the probability of 14 purines?
(b) What is the probability of less than or equal to 14 purines?
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(c) What is the probability of strictly more than 10 purines?

(d) By what probability is of the number of purines between 10 and
157

(e) How many purines do you expect? In other words: What is the
mean of the distribution?

(f) What is the standard deviation of the distribution?

8. Zyxin. The distribution of the expression values of the ALL patients
on the Zyxin gene are distributed according to N(1.6,0.4%).

(a) Compute the probability that the expression values are smaller
than 1.27

(b) What is the probability that the expression values are between 1.2
and 2.07

(c) What is the probability that the expression values are between 0.8
and 2.47

(d) Compute the exact values for the quantiles xq 25 and g g7s.

(e) Use rnorm to draw a sample of size 1000 from the population and
compare the sample mean and standard deviation with that of the
population.

9. Some computations on Golub et al. (1999) data.

(a) Take u = 0 and compute the t-values for the ALL gene expression
values. Find the three genes with largest absolute t-values.

(b) Compute per gene the ratio of the variances for the ALL and the
AML patients. How many are between 0.5 and 1.57

10. Extreme value investigation. This (difficult!) question aims to teach
the essence of an extreme value distribution! An interesting extreme
value distribution is given by Pevsner (2003, p.103). Take the maximum
of a sample (with size 1000) from the standard normal distribution and
repeat this 1000 times. So that you sampled 1000 maxima. Next,
subtract from these maxima an and divide by bn, where

an <- sqrt(2*log(n)) - 0.5%(log(log(n))+log(4*pi))*(2xlog(n))~(-1/2)
bn <- (2*log(n))~(-1/2)
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Now plot the density from the normalized maxima and add the extreme
value function f(z) from Pevsner his book, and add the density (dnorm)
from the normal distribution. What do you observe?



Chapter 4

Estimation and Inference

Questions that we deal with in this chapter are related to statistically testing
biological hypothesis. Does the mean gene expression over ALL patients
differ from that over AML patients? That is, does the mean gene expression
level differ between experimental conditions? Is the mean gene expression
different from zero? To what extent are gene expression values normally
distributed? Are there outliers among a sample of gene expression values?
How can an experimental effect be defined? How can genes be selected with
respect to an experimental effect? Other important questions are: How can
it be tested whether the frequencies of nucleotide sequences of two genes are
different? How can it be tested whether outliers are present in the data?
What is the probability of a certain micro RNA to have more than a certain
number of purines?

In the foregoing chapters many population parameters were used to define
families of theoretical distributions. In any research (empirical) setting the
specific values of such parameters are unknown so that these must be esti-
mated. Once estimates are available it becomes possible to statistically test
biologically important hypotheses. The current chapter gives several basic
examples of statistical testing and some of its background. Robust type of
testing is briefly introduced as well as an outlier test.

4.1 Statistical hypothesis testing

Let po be a number representing the hypothesized population mean by a
researcher on the basis of experience and knowledge from the field. With

47
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respect to the population mean the null hypothesis can be formulated as
Hy : i = pp and the alternative hypothesis as Hy : p # pg. These are two
statements of which the latter is the opposite of the first: Either Hy or H;
is true. The alternative hypothesis is true if Hy : p < po or Hy 1 p > pyo
holds true. This type of alternative hypothesis is called “two-sided”. In case
Hy oy > po, it is called “one-sided”.

Such a null hypothesis will be statistically tested against the alternative
using a suitable distribution of a statistic (e.g. standardized mean). After
conducting the experiment, the value of the statistic can be computed from
the data. By comparing the value of the statistic with its distribution, the
researcher draws a conclusion with respect to the null hypothesis: Hj is
rejected or it is not. The probability to reject Hy, given the truth of Hy, is
called the significance level which is generally denoted by . We shall follow
the habit in statistics to use a = 0.05, but it will be completely clear how to
adapt the procedure in case other significance levels are desired.

4.1.1 The Z-test

The Z-test applies to the situation where we want to test Hy : 1 = o against
Hy @ # po and the standard deviation o is known. Assuming that the gene
expression values (z1,---,x,) are from a normal distribution we compute
the standardized value z = \/n(T — po)/o. Next we define the so-called p-
value as the standard normal probability of Z attaining values being more
extreme than |z|, that is occurring to the left of —|z| or to the right of |z|.!
Accordingly, the p-value equals

P(Z < =[z]) + P(Z = |2]) = 2- P(Z < —|z).

The conclusion from the test is now as follows: If the p-value is larger than
the significance level «, then Hj is not rejected and if it is smaller than the
significance level, then Hj is rejected.

Example 1. To illustrate the Z-test we shall concentrate on the Gdfb
gene from the Golub et al. (1999) data®. The corresponding expression
values are contained in row 2058. A quick search through the NCBI site

'Recall from a calculus course that | — 2| = 2 and [2| = 2.
2We will work with golub throughout this chapter, so it is essential to load these data
and to define the factor gol.fac.
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makes it likely that this gene is not directly related to leukemia. Hence,
we may hypothesize that the population mean of the ALL expression values
equals zero. Accordingly, we test Hy : = 0 against Hy : p # 0. For the sake
of illustration we shall pretend that the standard deviation ¢ is known to be
equal to 0.25. The z-value (=0.001116211) can be computed as follows.

data(golub, package = "multtest")

gol.fac <- factor(golub.cl,levels=0:1, labels= c("ALL","AML"))
sigma <- 0.25; n <- 27; mu0 <- 0

x <- golub[2058,gol.fac=="ALL"]

z.value <- sqrt(n)*(mean(x) - mu0l)/sigma

The p-value can now be computed as follows.

> 2xpnorm(-abs(z.value),0,1)
[1] 0.9991094

Since it is clearly larger than 0.05, we conclude that the null hypothesis of
mean equal to zero is not rejected (accepted). |

Note that the above procedure implies rejection of the null hypothesis
when z is highly negative or highly positive. More precisely, if z falls in the
region (—00, zg.025] Or [20.975,00), then Hj is rejected. For this reason these
intervals are called “rejection regions”. If z falls in the interval (zg.025, 20.975),
then Hjy is not rejected and consequently this region is called ”acceptance
region”. The situation is illustrated in Figure 4.1.

The interval (zg.025, 20.975) 1S often named “confidence interval”, because
if the null hypothesis is true, then we are 95% confident that the observed
z-value falls in it. It is custom to rework the confidence interval into an
interval with respect to p (Samuels & Witmer, 2003, p. 186). In particular,
the 95% confidence interval for the population mean pu is

_ g _ o
T + ZO.O%%’ T + 20.975% . (41)

That is, we are 95% certain® that the true mean falls in the confidence inter-
val. Such an interval is standard output of statistical software.

31f we would repeat the procedure sufficiently often
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Figure 4.1: Acceptance and rejection regions of the Z-test.

Example 2. Using the data from Example 1, the 95% confidence interval
given by Equation 4.1 can be computed as follows.*

> mean(x)+qnorm(c(0.025),0,1) *sigma/sqrt(n)
[1] -0.0942451
> mean(x)+qnorm(c(0.975),0,1)*sigma/sqrt(n)
[1] 0.09435251

Hence, the rounded estimated 95% confidence interval is (—0.094,0.094).
Since pg = 0 falls within this interval, Hy is not rejected. It is instructive and
convenient to run the Z-test from the TeachingDemos package, as follows.

4These computations only work together with those of Example 1, especially the defi-
nition of x.
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> library(TeachingDemos)
> z.test(x,mu=0,sd=0.25)

One Sample z-test

data: x
z = 0.0011, n = 27.000, Std. Dev. = 0.250, Std. Dev. of the sample mean
= 0.048, p-value = 0.9991
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
-0.09424511 0.09435251
sample estimates:
mean of x
5.37037e-05

From the z-value, the p-value, and the confidence interval, the conclusion is
not to reject the null-hypothesis of mean equal to zero. This illustrates that
testing by either of these procedures yields equivalent conclusions. |

Example 3. To develop intuition with respect to confidence intervals
load the package TeachingDemos and give the following command.

> ci.examp(mean.sim =0, sd = 1, n = 25, reps = 100,
+ method = "z", lower.conf=0.025, upper.conf=0.975)

Then 100 samples of size 25 from the N(0,1) distribution are drawn and for
each of these the confidence interval for the population mean is computed
and represented as a line segment. Apart from sampling fluctuations, the
confidence level corresponds to the percentage of intervals containing the
true mean (colored in black) and that the significance level corresponds to
intervals not containing it (colored in red or blue). g

4.1.2 One Sample t-Test

Indeed, in almost all research situations with respect to gene expression val-
ues, the population standard deviation ¢ is unknown so that the above test
is not applicable. In such cases t-tests are very useful for testing Hy : p = po
against H; @ p # po. The test is based on the t-value defined by ¢ =
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V/n(T — po)/s. The corresponding p-value is defined by 2 - P(T,,_1 < —|t]).
Similar to the above, Hy is not rejected if the p-value is larger than the signif-
icance level and Hj is rejected if the p-value is smaller than the significance
level. Equivalently, if ¢ falls in the acceptance region (to.025n-1,%0.975,0-1),
then Hj is not rejected and otherwise it is. For n = 6 the acceptance and
rejection regions are illustrated in Figure 4.2. The 95% confidence interval
for the population mean is given by (T +to.025 - $/v/1, T+to975 - $/+/n), where
the expression s/v/n gives the so-called “standard error of the mean”.

@

o
- rejection acceptance rejection
'% g — region region region
©
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X—axis

Figure 4.2: Acceptance and rejection regions of the Tx-test.

Example 1. Let’s test Hy : 1 = 0 against H; : p # 0 for the ALL
population mean of the Gdf5 gene expressions. The latter are collected in
row 2058 of the golub data. The t-value is computed as follows.
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> x <- golub[2058,gol.fac=="ALL"]; mu0 <- 0; n <- 27
> t.value<-sqrt(n)*(mean(x) - mu0O)/sd(x)

> t.value

[1] 0.001076867

The corresponding p-value can be computed by
2. P(Ty < —0.0010) = 2 % pt(—0.0010,26) = 0.9991 > «,

so that the conclusion is not to reject the null hypothesis of mean equal to
Zero.

To see whether the observed t-value belongs to the 95% confidence inter-
val, we compute

(t0.025’267 t0.975’26) = (qt(0025, n— 1), qt(09757 n— 1)) = (—2055, 2055)

Since this interval does contain the t-value, we do not reject the hypothesis
that p equals zero. The left boundary of the 95% confidence interval for the
population mean can be computed, as follows.

> mean(x)+qt(0.025,26)*sd(x)/sqrt(n)
[1] -0.1024562

The 95% confidence interval equals (—0.1025,0.1025). Since it contains zero,
we do not reject the null-hypothesis.

In daily practice it is much more convenient to use the built-in-function
t.test. We illustrate it with the current testing problem.

> t.test(x,mu=0)
One Sample t-test

data: x
t = 0.0011, df = 26, p-value = 0.9991
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
-0.1024562 0.1025636
sample estimates:
mean of x
5.37037e-05
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This yields by one command line the observed t-value, the p-value, and the
95% confidence interval for . O

In the previous example the test is two-sided because H; holds true if
< o or i > po. If, however, the researcher desires to test Hy : p = po
against H; : u > po, then the alternative hypothesis is one-sided and this
makes the procedure slightly different: Hj is accepted if P(T,, > t) > « and
it is rejected if P(T,, > t) < a. We shall illustrate this by a variant of the
previous example.

Example 2. In Chapter 2 a box-and-whiskers plot revealed that the
ALL gene expression values of CCND3 Cyclin D3 are positive. Hence, we
test Hy : p = 0 against H; : p > 0 by the built-in-function t-test. Recall
that the corresponding gene expression values are collected in row 1042 of
the golub data matrix (load it if necessary).

> t.test(golub[1042,gol.fac=="ALL"] ,mu=0, alternative = c("greater"))
One Sample t-test

data: golub[1042, gol.fac == "ALL"]
t = 20.0599, df = 26, p-value < 2.2e-16
alternative hypothesis: true mean is greater than O
95 percent confidence interval:
1.732853 Inf
sample estimates:
mean of x
1.893883

The large t-value indicates that, relative to its standard error, the mean dif-
fers largely from zero. Accordingly, the p-value is very close to zero, so that
the conclusion is to reject Hy. a

4.1.3 Two-sample t-test with unequal variances

Suppose that gene expression data from two groups of patients (experimen-
tal conditions) are available and that the hypothesis is about the difference
between the population means p; and py. In particular, Hy : py = po is to
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be tested against Hy : puy # pe. These hypotheses can also be formulated
as Hy @y — pe = 0 and Hy @ py — pe # 0. Suppose that gene expression
data from the first group are given by {x1,---x,} and that of the second by
{y1,"+* ,Ym}. Let T be the mean of the first and 7 that of the second, and s?
the variance of the first and s that of the second. Then the t-statistic can
be formulated as

(T —9) — (11 — p2)
Vsi/n+ si/m
The decision procedure with respect to the null-hypothesis is completely sim-
ilar to the above tests. Note that the t-value is large if the difference between
7 and 7 is large®, the standard deviations s; and s, are small, and the sample

sizes are large. This test is known as the Welch two-sample t-test (Lehmann,
1999).

t= (4.2)

Example 1. Golub et al. (1999) argue that gene CCND3 Cyclin D3 plays
an important role with respect to discriminating ALL from AML patients.
The boxplot in Figure 2.4 suggests that the ALL population mean differs from
that of AML. The null hypothesis of equal means can be tested by the func-
tion t.test and the appropriate factor and specification var.equal=FALSE.

> t.test(golub[1042,] ~ gol.fac, var.equal=FALSE)
Welch Two Sample t-test

data: golub[1042, ] by gol.fac
t = 6.3186, df = 16.118, p-value = 9.87e-06
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
0.8363826 1.6802008
sample estimates:
mean in group ALL mean in group AML
1.8938826 0.6355909

The t-value is quite large, indicating that the two means T and 7 differ largely
from zero relative to the corresponding standard error (denominator in Equa-
tion 4.2). Since the p-value is extremely small, the conclusion is to reject the
null-hypothesis of equal means. The data provide strong evidence that the

5 Assuming p — po = 0.
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population means do differ. O

When the first group is an experimental group and the second a control
group, then p; — o is the experimental effect in the population and T —7% that
in the sample. The t-value is the experimental effect in the sample relative
to the standard error. The size of the effect is measured by the p-value in
the sense that it is smaller for larger effects.

If the two population variances are equal, then the testing procedure
simplifies considerably. This is the subject of the next paragraph.

4.1.4 Two sample t-test with equal variances

Suppose exactly the same setting as in the previous paragraph, but now
the variances o7 and o3 for the two groups are known to be equal. To test
Hy : iy = po against Hy @ py # po, there is a t-test which is based on the
so-called pooled sample variance sz. The latter is defined by the following
weighted sum of the sample variances s? and s2, namely

o (=D -1
b n+m—2

Then the t-value can be formulated as

T —

<
|
=
|
=
S

Example 1. The null hypothesis for gene CCND3 Cyclin D3 that the
mean of the ALL differs from that of AML patients can be tested by the
two-sample t-test using the specification var.equal=TRUE.

> t.test(golub[1042,] ~ gol.fac, var.equal = TRUE)
Two Sample t-test

data: golub[1042, ] by gol.fac

t = 6.7983, df = 36, p-value = 6.046e-08

alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

0.8829143 1.6336690
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sample estimates:
mean in group ALL mean in group AML
1.8938826 0.6355909

From the p-value 6.046 - 1078, the conclusion is to reject the null hypothesis
of equal population means. Note that the p-value is slightly smaller than
that of the previous test. O

In case of any uncertainty about the validity of the assumption of equal
population variances, one may want to test this.

4.1.5 F-test on equal variances

The assumption of the above t-test it that the two population variances are
equal. Such an assumption can serve as a null hypothesis. That is, we desire
to test Hy : 0? = o2 against Hy : 0? # o3. This can be accomplished by
the so-called F-test, as follows. From the sample variances s? and s3, the
f-value f = s?/s3 can be computed, which is F,,, ,, 1 distributed with
ny — 1 and ny — 1 degrees of freedom. If P(F,, 1,1 < f) > a/2for f <1
or P(Fy,—1n,—1 > f) > a/2for f > 1, then Hy is not rejected and otherwise
it is rejected.

Example 1. The null hypothesis for gene CCND3 Cyclin D3 that the
variance of the ALL patients equals that of the AML patients can be tested
by the built-in-function var.test, as follows.

> var.test(golub[1042,] = gol.fac)
F test to compare two variances

data: golub[1042, ] by gol.fac
F =0.7116, num df = 26, denom df = 10, p-value = 0.4652
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2127735 1.8428387
sample estimates:
ratio of variances
0.7116441
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From the p-value 0.4652, the null-hypothesis of equal variances is not re-
jected. O

4.1.6 Binomial test

Suppose that for a certain micro RNA a researcher wants to test the hy-
pothesis that the probability of a purine equals a certain value py. However,
another researcher has reason to believe that this probability is larger. In
such a setting we want to test the null-hypothesis Hy : p = py against the
one-sided alternative hypothesis H; : p > pg. Suppose that sequencing re-
veals that the micro RNA has k£ purines out of a total n. Assuming that the
binomial distribution holds, the null-hypothesis can be tested by computing
the p-value P(X > k). If it is larger than the significance level a = 0.05,
then Hj is not rejected and otherwise it is.

Example 1. A micro RNA of length 22 contains 18 purines. The null
hypothesis Hy : p = 0.7 is to be tested against the one-sided H; : p > 0.7.
From

P(X >18) =1 — pbinom(17,22,0.7) = 0.1645 > 0.05 = o,

the conclusion follows not to reject the null-hypothesis. This test can also
be conducted by the function binom.test as follows.

> Dbinom.test(18, 22, p = 0.7, alternative = c("greater"),
+ conf.level = 0.95)
Exact binomial test

data: 18 and 22

number of successes = 18, number of trials = 22, p-value = 0.1645
alternative hypothesis: true probability of success is greater than 0.7
95 percent confidence interval:

0.6309089 1.0000000

sample estimates:
probability of success

0.8181818

The p-value 0.1645 is larger than the significance level 0.05, so that the null
hypothesis is not rejected. |
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4.1.7 Chi-squared test

It often happens that we want to test a hypothesis with respect to more than
one probability. That is, the Hy : (my, -+ ,7mm) = (p1,- -+ ,Pm) against Hj :
(71, ,Tm) # (P1,- -+ , Pm), Where p; to p,, are given numbers corresponding
to the hypothesis of a researcher. By multiplying the probabilities with the
total number of observations we obtain the expected number of observations
(e; =n-p;). Now we can compute the statistic ¢ = >\~ (0; — €;)*/e;, where
0; is the i-th observed and e; the i-th expected frequency. This statistic is
chi-squared (x?2,_;) distributed with m — 1 degrees of freedom. The p-value
of the chi-squared test is defined as P(x%,_, > ¢). If it is larger than the
significance level, then the null hypothesis is not rejected, and otherwise it is.
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Figure 4.3: Rejection region of x3-test.
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Example 1. Suppose we want to test the hypothesis that the nucleotides
of Zyxin have equal probability. Let the probability of {A, C, G, T} to occur
in the sequence be given by (my, 7o, w3, m4). Then the null hypothesis to be
tested is (my, o, w3, m4) = (1/4,1/4,1/4,1/4). In particular, for the sequence
7X94991.1”7 from Table 1.1 the total number of nucleotides is n = 2166, so
that the expected frequencies e; are equal to 2166/4 = 541.5. Then, the

g-value equals 327 | (0; — €;)?/e; =

(410 — 541.5)% (789 — 541.5)%> (573 —541.5)? (394 — 541.5)?
541.5 i 541.5 - 541.5 - 541.5
Since, P(x%[3] > 187.0674) is close to zero, the null hypothesis is clearly

rejected. The nucleotides of Zyxin do not occur with equal probability.
A more direct manner to perform the test is by using the built-in-function
chisq.test, as follows.

= 187.0674

> library(ape)
> zyxinfreq <- table(read.GenBank(c("X94991.1"),as.character=TRUE))
> chisq.test(zyxinfreq)

Chi-squared test for given probabilities

data: zyxinfreq
X-squared = 187.0674, df = 3, p-value < 2.2e-16

The package ape is loaded, the Zyxin sequence "X94991.1" is downloaded,
and the frequency table is constructed. The observed frequencies are given
as input to chisq.test which has equal probabilities as the default option.
The g-value equals X-squared and the degrees of freedom df = 3. From the
corresponding p-value, the conclusion is to reject the null hypothesis of equal
probabilities. The testing situation is illustrated in Figure 4.3, where the
red colored surface corresponds to the rejection region (7.81,00). Remember
from the previous chapter that the left bound of this rejection interval can
by found by qchisq(0.95, 3). The observed ¢ = 187.0674 obviously falls
far into the right hand side of the rejection region, so that the corresponding
p-value is very close to zero. |

Example 2. In the year 1866 Mendel observed in large number of exper-
iments frequencies of characteristics of different kinds of seed and their off-
spring. In particular, this yielded the frequencies 5474, 1850 the seed shape
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of ornamental sweet peas. A crossing of B and b yields off spring BB, Bb and
bb with probability 0.25, 0.50, 0.25. Since Mendel could not distinguish Bb
from BB, his observations theoretically occur with probability 0.75 (BB and
Bb) and 0.25 (bb). To test the null hypothesis Hy : (1, m) = (0.75,0.25)
against Hy : (w1, m) # (0.75,0.25), we use the chi-squared test®, as follows.

> pi <= ¢(0.75,0.25)
> x <-c(5474, 1850)
> chisq.test(x, p=pi)

Chi-squared test for given probabilities

data: x
X-squared = 0.2629, df = 1, p-value = 0.6081

From the p-value 0.6081, we do not reject the null hypothesis. o

To further illustrate the great flexibility of the chi-squared test another
example is given.

Example 3. Given certain expression values for a healthy control group
and an experimental group with a disease, we may define a certain cut off
value and classify e.g. smaller values to be healthy and larger ones to be
infected. In such a manner cut-off values can serve as a diagnostic instru-
ment. The classification yields true positives (correctly predicted disease),
false positives (incorrectly predicted disease), true negatives (correctly pre-
dicted healthy) and false negatives (incorrectly predicted healty). For the
sake of illustration suppose that among twenty patients there are 5 true pos-
itives (tp), 5 false positives (fp), 5 true negatives (tn), and 5 false negatives
(fn). These frequencies can be put is a two-by-two table giving the frequen-
cies on two random variables: the true state of the persons and the predicted
state of the persons (by the cut off value). In the worst case the prediction by
the cut-off value is independent of the disease state of the patient. The null
hypothesis of independence, can be tested by a chi-square test, as follows.

> dat <- matrix(c(5,5,5,5),2,byrow=TRUE)
> chisq.test(dat)

SFor the sake of clarity the code is somewhat unelegant in using the symbol pi, the
constant representing the ratio of a circle’s circumference to its diameter.
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Pearson’s Chi-squared test with Yates’ continuity correction

data: dat
X-squared = 0.2, df = 1, p-value = 0.6547

Since the p-value is larger than the significance level, the null hypothesis of
independence is not rejected.

Suppose that for another cutoff value we obtain 8 true positives (tp), 2
false positives (fp), 8 true negatives (tn), and 2 false negatives (fn). Then
testing independence yields the following.

> dat <- matrix(c(8,2,2,8),2,byrow=TRUE)
> chisq.test(dat)

Pearson’s Chi-squared test with Yates’ continuity correction

data: dat
X-squared = 5, df = 1, p-value = 0.02535

Since the p-value is smaller than the significance level, the null hypothesis of

independence is rejected. |
significant | non-significant
genes genes
Chromosome 1 100 2000
genome 300 6000

Example 4. A related and frequently applied test in Bioinformatics
is the Fisher exact test. In a two by two table with frequencies fi1, foo,
(fi12, and fo1), this test is based on the so-called odds ratio fi1 faz/(f12.fo1)-
Suppose that the number of significant onco type of genes in Chromosome 1
is f11 = 100 out of a total of f15 = 2000 and the number of significant genes
in the whole genome is fo; = 300 out of a total of foo = 6000. Then the
odds ratio equals 100 - 6000/(2000 - 300) = 1 and the number of significant
oncogenes in Chromosome 1 is exactly proportional to that in the genome.

The null-hypothesis of the Fisher test is that the odds ratio equals 1 and
the alternative hypothesis that it differs from 1. Suppose that the frequencies
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of significant oncogenes for Chromosome 1 equals f;; = 300 out of a total of
f12 = 500 and for the genome f5; = 3000 out of fo3 = 6000. The hypothesis
that the odd ratio equals one can now be tested as follows.

> dat <- matrix(c(300,500,3000,6000),2,byrow=TRUE)
> fisher.test(dat)

Fisher’s Exact Test for Count Data

data: dat
p-value = 0.01912
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.029519 1.396922
sample estimates:
odds ratio
1.199960

Since the p-value is smaller than the significance level, the null hypothesis
of odds ratio equal to one is rejected. There are more significant oncogenes
in Chromosome 1 compared to that in the genome. Other examples of the
Fisher test will be given in Chapter 6. U

4.1.8 Normality tests

Various procedures are available to test the hypothesis that a data set is
normally distributed. The Shapiro-Wilk test is based on the degree of lin-
earity in a Q-Q plot (Lehmann, 1999, p.347) and the Anderson-Darling test
is based on the distribution of the data (Stephens, 1986, p.372).

Example 1. To test the hypothesis that the ALL gene expression values
of CCND3 Cyclin D3 from Golub et al. (1999) are normally distributed, the
Shapiro-Wilk test can be used as follows.

> shapiro.test(golub[1042, gol.fac=="ALL"])

Shapiro-Wilk normality test
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data: golub[1042, gol.fac == "ALL"]
W = 0.947, p-value = 0.1774

Since the p-value is greater than 0.05, the conclusion is not to reject the null
hypothesis that CCND3 Cyclin D3 expression values follow from a normal
distribution. The Anderson-Darling test is part of the nortest package which
probably needs to be installed and loaded first. Running the test on our
CCND3 Cyclin D3 gene expression values comes down to the following.

> library(nortest)
> ad.test(golub[1042,gol.fac=="ALL"])

Anderson-Darling normality test

data: scale(golub[1042, gol.fac == "ALL"])
A = 0.5215, p-value = 0.1683

Hence, the same conclusion is drawn as from the Shapiro-Wilk test. Note
that the p-values from both tests are somewhat low. This confirms our obser-
vation in Section 2.1.5 based on the Q-Q plot that the distribution resembles
the normal. From the normality tests the conclusion is that the differences
in the left tail are not large enough to reject the null-hypothesis that the
CCND3 Cyclin D3 expression values are normally distributed. |

4.1.9 Outliers test

When gene expression values are not normally distributed, then outliers may
appear with large probability. The appearance of outliers in gene expression
data may influence the value of a (non-robust) statistic to a large extent.
For this reason it is useful to be able to test whether a certain set of gene
expression values is contaminated by an outlier or not. Accordingly, the
null-hypothesis to be tested is that a set of gene expression values does not
contain an outlier and the alternative is that it is contaminated with at least
one outlier. Under the assumption that the data are realizations of one and
the same distribution, such a hypothesis can be tested by the Grubbs (1950)
test. This test is based on the statistic g = |suspect value — T|/s, where the
suspect value is included for the computation of the mean = and the standard
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deviation s.

Example 1. From Figure 2.4 we have observed that expression values
of gene CCND3 Cyclin D3 may contain outliers with respect to the left tail.
This can actually be tested by the function grubbs.test of the outliers
package, as follows.

> library(outliers)
> grubbs.test(golub[1042, gol.fac=="ALL"])

Grubbs test for one outlier

data: golub[1042, gol.fac == "ALL"]
G = 2.9264, U = 0.6580, p-value = 0.0183
alternative hypothesis: lowest value 0.45827 is an outlier

Since the p-value is smaller than 0.05, the conclusion is to reject the null-
hypothesis of no outliers. 0

In case the data are normally distributed, the probability of outliers is
small. Hence, extreme outliers indicate that the data are non-normally dis-
tributed with large probability. Outliers may lead to such an increase of
the standard error that a true experimental effect remains uncovered (false
negatives). In such cases a robust test based on ranks may be preferred as a
useful alternative.

4.1.10 Wilcoxon rank test

In case the data are normally distributed with equal variance, the t-test is
an optimal test for testing Hy : uy = po against Hy : py # po (Lehmann,
1999). If, however, the data are not normally distributed due to skewness or
otherwise heavy tails, then this optimality does not hold anymore and there
is no guarantee that the significance level of the test equals the intended
level o (Lehmann, 1999). For this reason rank type of tests are developed for
which on beforehand no specific distributional assumptions need to be made.
In the below we shall concentrate on the two-sample Wilcoxon test because
of its relevance to bioinformatics. We sustain with a brief description of the
basic idea and refer the interested reader to the literature on non-parametric
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testing (e.g. Lehmann, 2006). To broaden our view we switch from hypothe-
ses about means to those about distributions. An alternative hypothesis
may then be formulated as that the distribution of a first group lays to the
left of a second. To set the scene let the gene expression values of the first
group (77 to x,,) have distribution F' and those of the second group (y; to
y,) distribution G. The null hypothesis is that both distributions are equal
(Hp : F = G) and the alternative that these are not. For example that the
x’s are smaller (or larger) than the y’s. By the two-sample Wilcoxon test the
data x1,--- ,Zm, Y1, - , Y, are ranked and the rank numbers of the x’s are
summed to form the statistic W after a certain correction (Lehmann, 2006).
The idea is that if the ranks of z’s are smaller than those of the y’s, then the
sum is small. The distribution of the sum of ranks is known so that a p-value
can be computed on the basis of which the null hypothesis is rejected if it is
smaller than the significance level .

Example 1. The null hypothesis that the expression values for gene
CCND3 Cyclin D3 are equally distributed for the ALL patients and the AML
patients can be tested by the built-in-function wilcox.test, as follows.

> wilcox.test(golub[1042,] ~ gol.fac)
Wilcoxon rank sum test

data: golub[1042, ] by gol.fac
W = 284, p-value = 6.15e-07
alternative hypothesis: true location shift is not equal to O

Since the p-value is much smaller than o = 0.05, the conclusion is to reject
the null-hypothesis of equal distributions. O

4.2 Application of tests to a whole set gene
expression data
Various tests are applied in the above to a single vector of gene expressions.

In daily practice, however, we want to analyze a set of thousands of (row)
vectors with gene expression values which are collected in a matrix. Such
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can conveniently be accomplished by taking advantage of the fact that R
stores the output of a test as an object in such a manner that we can extract
information such as p-values. Recall that the smaller the p-value the larger
the experimental effect. Hence, by collecting p-values in a vector we can
select genes with large differences between patient groups. This and testing
for normality will be illustrated by two examples.

Example 1. Having a data matrix with gene expression values, a ques-
tion one might ask is: What is the percentage of genes that passes a normality
test? Such can be computed as follows.

data(golub,package="multtest")

gol.fac <- factor(golub.cl,levels=0:1, labels= c("ALL","AML"))

sh <- apply(golub[,gol.fac=="ALL"], 1, function(x) shapiro.test(x)$p.value)
sum(sh > 0.05)/nrow(golub) * 100

[1] 58.27598

vV V V V

Hence, according to the Shapiro-Wilk test, 58.27% of the ALL gene ex-
pression values is normally distributed (in the sense of non-rejection). For
the AML expression values this is 60.73%. It can be concluded that about
forty percent of the genes do not pass the normality test. |

Example 2. In case the gene expression data are non-normally dis-
tributed the t-test may indicate conclusions different from those of the Wilcoxon
test. Differences between these can be investigated by collecting the p-values
from both tests and seeking for the largest differences.

data(golub, package = "multtest");
gol.fac <- factor(golub.cl,levels=0:1, labels= c("ALL","AML"))
pt <- apply(golub, 1, function(x) t.test(x ~ gol.fac)$p.value)
pw <- apply(golub, 1, function(x) wilcox.test(x ~ gol.fac)$p.value)
resul <- data.frame(cbind(pw,pt))
resul [pw<0.05 & abs(pt-pw)>0.2,]
pw pt
456 0.04480288 0.2636088
1509 0.03215830 0.4427477

V V V V Vv V

The p-value is extracted from the output of the t.test function and stored
in the vector pt. The logical operator & is used to select genes for which the
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Wilcoxon p-value is smaller than 0.05 and the absolute difference with the
p-value from the t-test is larger than 0.2. Since there are only two such genes
we can draw the reassuring conclusion that the tests give similar results. U

4.3 Overview and concluding remarks

Statistical hypothesis testing consists of hypotheses, distributional assump-
tions, and decisions (conclusions). The hypotheses pertain to the outcome
of a biological experiment and are always formulated in terms of population
values of parameters. Statistically, the outcomes of experiments are seen as
realizations of random variables. The latter are assumed to have a certain
suitable distribution which is seen as a statistical model for outcomes of an
experiment. Then a statistic is formulated (e.g. a t-value) which is treated
both as a function of the random variables and as a function of the data
values. By comparing the distribution of the statistic with the value of the
statistic, the p-value is computed and compared to the level of significance.
A large p-value indicates that the model fits the data well and that the as-
sumptions as well as the null-hypothesis are correct with large probability.
However, a low p-value indicates, under the validity of the distributional as-
sumptions, that the outcome of the experiment is so unlikely that this causes
a sufficient amount of doubt to the researcher to reject the null hypothesis.

The quality of a test is often expressed in terms of efficiency, which is
usually directly related to the (asymptotic) variance of an estimator. The
relative efficiency is the ratio of the asymptotic variances. For Wilcoxon’s test
versus the t-test this equals .955, which means that in the optimal situation
where the (gene expression) data are normally distributed, Wilcoxon’s test
is only a little worse than the t-test. In case, however, of a few outliers or
a slightly heavier tail, the Wicoxon test can be far more efficient than the
t-test (Lehmann, 1999, p.176). Efficiency is directly related to power; the
probability to reject a false hypothesis. The probability of drawing correct
conclusions can always be improved by increasing the sample size.

These considerations set the scene for making some recommendations,
which obviously should not be followed blindly. If gene expression data pass
a normality test, then the Welch type of t-test provides a general test with
good power properties (Ramsey, 1980; Wang, 1971). In case normality does
not hold and the sample size per group is at least least four, the Wilcoxon
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test is recommended.

Because the Wilcoxon p-values are based on ranks many of these are
equal for different genes, so that it is less suitable for ordering in case of
small sample size. On the other hand, it is obviously questionable whether
extremely small differences in p-values produced by the t-test contribute to
biologically relevant gene discrimination. That is, extremely small differences
should not be over-interpreted.

4.4 Exercises

1. Gene CD33. Use grep to find the index of the important gene CD33
among the list of characters golub.gnames. For each test below for-
mulate the null hypothesis, the p-value and your conclusion.

Test the normality of the ALL and AML expression values.

(a
(b

)

) Test for the equality of variances.

(c) Test for the equality of the means by an appropriate ¢-test.
)

(d) Is the experimental effect strong?

2. Gene "MYBL2 V-myb avian myeloblastosis viral oncogene homolog-
like 2”7 has its expression values in row 1788.

(a) Use a boxplot to construct a hypothesis about the experimental
effect.

(b) Test for the equality of means by an appropriate t-test.

3. HOXA9. Gene "HOXA9 Homeo box A9” with expression values in row
1391, can cause leukemia (Golub et al., 1999).

(a) Test the normality of the expression values of the ALL patients.
(b) Test for the equality of means by an appropriate t-test.

4. Zyxin. On NCBI there are various cDNA clones of zyxin.

(a) Find the accession number of cDNA clone with IMAGE:3504464.

(b) Test whether the frequencies of the nucleotides are equal for each
nucleic acid.
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(c) Test whether the frequencies of 7X94991.1” can be predicted by
the probabilities of the cDNA sequence "BC002323.2”.

Gene selection. Select the genes from the golub data with smallest
two-sample t-test values for which the ALL mean is greater than the
AML mean. Report the names of the best ten. Scan the Golub (1999)
article for genes among the ten you found and discuss their biological
function briefly.

Antigenes. Antigenes play an important role in the development of
cancer. Order the antigenes according to their p-values from the Welch

two-sample t-test with respect to gene expression values from the ALL
and AML patients of the Golub et al. (1999) data.

Genetic Model. A certain genetic model predicts that four phenotypes
occur in ration 9:3:3:1. In a certain experiment the offspring is observed
with frequencies 930, 330, 290, 90. Do the data confirm the model?

Comparing two genes. Consider the gene expression values in row 790
and 66 of the Golub et al. (1999) data.

(a) Produce a boxplot for the ALL expression values and comment on
the differences. Are there outliers?

(b) Compute the mean and the median for the ALL gene expression
values for both genes. Do you observed difference between genes?

(c) Compute three measures of spread for the ALL expression values
for both genes. Do you observe difference between genes?

(d) Test by Shapiro-Wilk and Anderson-Darling the normality for the
ALL gene expression values for both genes.

Normality tests for gene expression values of the Golub et al. (1999)
data. Perform the Shapiro-Wilk normality test separately for the ALL
and AML gene expression values. What percentage passed the normal-
ity test separately for the ALL and the AML gene expression values?
What percentage passes both testes?

Two-sample tests on gene expression values of the Golub et al. (1999)
data.
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(a) Perform the two-sample Welch ¢-test and report the names of the
ten genes with the smallest p-values.

(b) Perform the Wilcoxon rank test and report the names of the ten
genes with the smallest p-values.

Biological hypotheses. Suppose that the probability to reject a biolog-
ical hypothesis by the results of a certain experiment is 0.05. Suppose
that the experiment is repeated 1000 times.

How many rejections do you expect.

(a)

(b) What is the probability of less than 10 rejections?

(c) What is the probability of more than 5 rejections?
)

(d) What is the probability that the number of rejections is between
two and eight?

Programming some tests.

(a) Program the two-sample t-test with equal variances and illustrate
it with the expression values of row 1024 the of Golub et al. (1999)
data.

(b) The value of W in the two-sample Wilxoxon test equals the sum
of the ranks of Group 1 minus n(n + 1)/2, where n is the number
of gene expression values in Group 1. Program this and illustrate
it with the expression values of row 1024 of Golub et al. (1999)
data.

(c) The value of W in the two-sample Wilxoxon test equals the num-
ber of values z; > y;, where z;,y; are values from Group 1 and
2, respectively. Program this and illustrate it with the expression
values of row 1024 of Golub et al. (1999) data.
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Chapter 5

Linear Models

We have seen that the t-test can be used to discover genes with different
means in the population with respect to two groups of patients. In case,
however, there are three groups of patients the question arises how genes can
be selected having the largest differential expressions between group means
(experimental effect)? A technique making this possible is an application of
the linear model and is called analysis of variance. It is frequently applied
bioinformatics.

The validity of the technique is based on the assumption that the gene
expression values are normally distributed and have equal variance across
groups of patients. It is of importance to investigate these assumptions be-
cause it either reassures our confidence in the conclusions or it indicates that
alternative tests should be used.

In this chapter the linear model will briefly be explained. The main focus,
however, is on application of the linear model for testing the hypothesis that
three or more group means are equal. Several illustrations of analyzing gene
expression data will be given. It will be explained how the assumptions about
normality and equal variances (homogeneity) can be investigated and what
alternatives can be used in case either of these does not hold. The somewhat
technical concepts of “model matrix” and “contrast matrix” are explained
because these are useful for several applications in the next chapter.

73
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5.1 Definition of linear models
Given a gene expression Y;, a basic form of the linear model is
E:xiﬁ+€ia for izlf"a”a

where Y; is an observable variable, x; a fixed number, § an unknown weight,
€; a unobservable error variable. The fixed number z; follows from a sta-
tistical “design”, as we shall see. The x; value is part of the predictor, Y;
the criterion, and ¢; the error of the model. The systematical part of the
model z;0 equals the mean of the gene expression Y;. The model is called
"linear” because the degree of the coefficient § is one. For a linear model
to be a statistical model there must be some assumption with respect to
the distribution of the error variables. Frequently, it is assumed that the er-
ror variables e1,--- , ¢, are independent and normally distributed with zero
mean, that is, according to N(0,0?). Then the mean of Y; equals ;3 and its

variance 2.

Example 1. A common manner to introduce the linear model is by writing
Yi=01+x;0o+¢;, for i=1,--- n,

so that the model part represents a straight line with intercept (; and
slope 5. Given data points yi,---,y, and z1,--- ,x,, a best fitting line
through the data can easily be computed by least squares estimation of the
intercept and slope. A nice application to explore this is by the function
put.points.demo() from the TeachingDemos package. It allows points to
be added and deleted to a plot which interactively computes estimates for
the slope and the intercept given the data. By choosing the points more or
less on a horizontal line, the slope will be near zero. By choosing the points
nearly vertical, the slope will be large. By choosing a few gross errors in the
data it can be observed that the estimates are not robust against outliers. U

In order to handle gene expression data for three or more groups of pa-
tients we need to extend the model. The idea simply is to increase the
number of weights to the number of groups k, so that, we obtain the weights
B1,- -, Br and the corresponding design values x;1,--- ,z;. The system-
atic part of the model consists of a weighted sum of these design values:
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i1+ -+ 2Ok, By adding measurement error to this systematic part we
obtain the linear model

k
Y, = Z%’jﬁj + &
j=1

The design values z;; for Patient ¢ in Group j are collected in the so-called
"design” matrix denoted by X. In particular, the design value z;; is chosen
to be equal to 1 if Patient ¢ belongs to Group j and zero if (s)he does not.
By this choice it becomes possible to use linear model estimation for testing
hypotheses about group means. This will be illustrated by an example.

Example 2. Suppose we have the following artificial gene expressing values
2,3,1,2, of Group 1, 8,7,9,8 of Group 2, and 11,12,13,12 of Group 3. We may
assign these to a vector y, as follows.

>y <- c(2,3,1,2, 8,7,9,8, 11,12,13,12)

Next, we construct a factor indicating to which group each expression value
belongs. In particular, the first four belong to Group 1, the second four to
Group 2, and the third four to Group 3. We conveniently use the function
gl to define the corresponding factor.

> a <- gl(3,4)

> a

[1] 111122223333
Levels: 1 2 3

The design matrix X is also called “model matrix”. It is illuminating to
print it to the screen.

> model.matrix(y ~ a - 1)
al a2 a3
1 0

0 ~NO Ol WN -
O O O O - = =
B R, P, O OO0
O O O O O O O O
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9

10
11
12

O O O O
O O O O
R

The notation y~a-1 represents a model equation, where -1 means to skip
the intercept or general 