Introduction to the R Project for Statistical Computing for use at ITC

D G Rossiter
University of Twente
Faculty of Geo-information Science \& Earth Observation (ITC)
Enschede (NL)
http://www.itc.n7/persona7/rossiter

August 14, 2012

Contents

0 If you are impatient 1
1 What is R? 1
2 Why R for ITC? 3
2.1 Advantages 3
2.2 Disadvantages 4
2.3 Alternatives 5
2.3.1 S-PLUS 5
2.3.2 Statistical packages 5
2.3.3 Special-purpose statistical programs 5
2.3.4 Spreadsheets 6
2.3.5 Applied mathematics programs 6
3 Using R 7
3.1 R console GUI 7
3.1.1 On your own Windows computer 7
3.1.2 On the ITC network 7
3.1.3 Running the R console GUI 8
3.1.4 Setting up a workspace in Windows 8
3.1.5 Saving your analysis steps 9
3.1.6 Saving your graphs 9
3.2 Working with the R command line 10
3.2.1 The command prompt 10
3.2.2 On-line help in R 11
3.3 The RStudio development environment 13
3.4 The Tinn-R code editor 14
3.5 Writing and running scripts 14
3.6 The Rcmdr GUI 16
3.7 Loading optional packages 17
3.8 Sample datasets 18
4 The S language 19
4.1 Command-line calculator and mathematical operators 19
4.2 Creating new objects: the assignment operator 20
4.3 Methods and their arguments 21
4.4 Vectorized operations and re-cycling 22
4.5 Vector and list data structures 24
4.6 Arrays and matrices 25
4.7 Data frames 30
4.8 Factors 34
4.9 Selecting subsets 36

Version 4.0 Copyright © D G Rossiter 2003-2012. All rights reserved. Non-commercial reproduction and dissemination of the work as a whole freely permitted if this original copyright notice is included. To adapt or translate please contact the author.
4.9.1 Simultaneous operations on subsets 39
4.10 Rearranging data 40
4.11 Random numbers and simulation 41
4.12 Character strings 43
4.13 Objects and classes 44
4.13.1 The S3 and S4 class systems 45
4.14 Descriptive statistics 48
4.15 Classification tables 50
4.16 Sets 51
4.17 Statistical models in S 52
4.17.1 Models with categorical predictors 55
4.17.2 Analysis of Variance (ANOVA) 57
4.18 Model output 57
4.18.1 Model diagnostics 59
4.18.2 Model-based prediction 61
4.19 Advanced statistical modelling 62
4.20 Missing values 63
4.21 Control structures and looping 64
4.22 User-defined functions 65
4.23 Computing on the language 67
5 R graphics 69
5.1 Base graphics 69
5.1.1 Mathematical notation in base graphics 73
5.1.2 Returning results from graphics methods 75
5.1.3 Types of base graphics plots 75
5.1.4 Interacting with base graphics plots 77
5.2 Trellis graphics 77
5.2.1 Univariate plots 77
5.2.2 Bivariate plots 78
5.2.3 Triivariate plots 79
5.2.4 Panel functions 81
5.2.5 Types of Trellis graphics plots 82
5.2.6 Adjusting Trellis graphics parameters 82
5.3 Multiple graphics windows 84
5.3.1 Switching between windows 85
5.4 Multiple graphs in the same window 85
5.4.1 Base graphics 85
5.4.2 Trellis graphics 86
5.5 Colours 86
6 Preparing your own data for R 91
6.1 Preparing data directly in R 91
6.2 A GUI data editor 92
6.3 Importing data from a CSV file 93
6.4 Importing images 96
7 Exporting from R 99
8 Reproducible data analysis 101
8.1 The NoWeb document 101
8.2 The ETEX document 102
8.3 The PDF document 103
8.4 Graphics in Sweave 104
9 Learning R 105
9.1 Task views 105
9.2 R tutorials and introductions 105
9.3 Textbooks using R 106
9.4 Technical notes using R 107
9.5 Web Pages to learn R 107
9.6 Keeping up with developments in R 108
10 Frequently-asked questions 110
10.1 Help! I got an error, what did I do wrong? 110
10.2 Why didn't my command(s) do what I expected? 112
10.3 How do I find the method to do what I want? 113
10.4 Memory problems 115
10.5 What version of R am I running? 116
10.6 What statistical procedure should I use? 117
A Obtaining your own copy of R 119
A. 1 Installing new packages 121
A. 2 Customizing your installation 121
A. 3 R in different human languages 122
B An example script 123
C An example function 126
References 128
Index of R concepts 133
List of Figures
1 The RStudio screen 13
2 The Tinn-R screen 14
3 The R Commander screen 16
4 Regression diagnostic plots 60
5 Finding the closest point 66
6 Default scatterplot 70
7 Plotting symbols 71
8 Custom scatterplot 73
9 Scatterplot with math symbols, legend and model lines 74
10 Some interesting base graphics plots 76
11 Trellis density plots 78
12 Trellis scatter plots 79
13 Trellis trivariate plots 80
14 Trellis scatter plot with some added elements 82
15 Available colours 87
16 Example of a colour ramp 89
17 R graphical data editor 93
18 Example PDF produced by Sweave and $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ 103
19 Results of an RSeek search 108
20 Results of an R site search 109
21 Visualising the variability of small random samples 125
List of Tables
1 Methods for adding to an existing base graphics plot 71
2 Base graphics plot types 75
3 Trellis graphics plot types 83
4 Packages in the base R distribution for Windows 120

0 If you are impatient...

1. Install R and RStudio on your MS-Windows, Mac OS/X or Linux system (§A);
2. Run RStudio; this will automatically start R within it;
3. Follow one of the tutorials (§9.2) such as my "Using the R Environment for Statistical Computing: An example with the Mercer \& Hall wheat yield dataset" ${ }^{1}$ [48];
4. Experiment!
5. Use this document as a reference.

1 What is R ?

R is an open-source environment for statistical computing and visualisation. It is based on the S language developed at Bell Laboratories in the 1980's [20], and is the product of an active movement among statisticians for a powerful, programmable, portable, and open computing environment, applicable to the most complex and sophsticated problems, as well as "routine" analysis, without any restrictions on access or use. Here is a description from the R Project home page: ${ }^{2}$
" R is an integrated suite of software facilities for data manipulation, calculation and graphical display. It includes:

- an effective data handling and storage facility,
- a suite of operators for calculations on arrays, in particular matrices,
- a large, coherent, integrated collection of intermediate tools for data analysis,
- graphical facilities for data analysis and display either onscreen or on hardcopy, and
- a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities."

The last point has resulted in another major feature:

- Practising statisticians have implemented hundreds of spe-

[^0]cialised statistical produres for a wide variety of applications as contributed packages, which are also freelyavailable and which integrate directly into R .

A few examples especially relevant to ITC's mission are:

- the gstat, geoR and spatial packages for geostatistical analysis, contributed by Pebesma [33], Ribeiro, Jr. \& Diggle [39] and Ripley [40], respectively;
- the spatstat package for spatial point-pattern analysis and simulation;
- the vegan package of ordination methods for ecology;
- the circular package for directional statistics;
- the sp package for a programming interface to spatial data;
- the rgda1 package for GDAL-standard data access to geographic data sources;

There are also packages for the most modern statistical techniques such as:

- sophisticated modelling methods, including generalized linear models, principal components, factor analysis, bootstrapping, and robust regression; these are listed in $\S 4.19$;
- wavelets (wave1et);
- neural networks (nnet);
- non-linear mixed-effects models (n7me);
- recursive partitioning (rpart);
- splines (splines);
- random forests (randomForest)

2 Why R for ITC?

"ITC" is an abbreviation for University of Twente, Faculty of Geo-information Science\& Earth Observation. It is a faculty of the University of Twente located in Enschede, the Netherlands, with a thematic focus on geo-information science and earth observation in support of development. Thus the two pillars on which ITC stands are development-related and geo-information. R supports both of these.

2.1 Advantages

R has several major advantages for a typical ITC student or collaborator:

1. It is completely free and will always be so, since it is issued under the GNU Public License; ${ }^{3}$
2. It is freely-available over the internet, via a large network of mirror servers; see Appendix A for how to obtain R;
3. It runs on many operating systems: Unix ${ }^{\circledR}$ and derivatives including Darwin, Mac OS X, Linux, FreeBSD, and Solaris; most flavours of Microsoft Windows; Apple Macintosh OS; and even some mainframe OS.
4. It is the product of international collaboration between top computational statisticians and computer language designers;
5. It allows statistical analysis and visualisation of unlimited sophistication; you are not restricted to a small set of procedures or options, and because of the contributed packages, you are not limited to one method of accomplishing a given computation or graphical presentation;
6. It can work on objects of unlimited size and complexity with a consistent, logical expression language;
7. It is supported by comprehensive technical documentation and usercontributed tutorials (§9). There are also several good textbooks on statistical methods that use R (or S) for illustration.
8. Every computational step is recorded, and this history can be saved for later use or documentation.
9. It stimulates critical thinking about problem-solving rather than a "push the button" mentality.
10. It is fully programmable, with its own sophisticated computer language (§4). Repetitive procedures can easily be automated by user-

[^1]written scripts (§3.5). It is easy to write your own functions (§B), and not too difficult to write whole packages if you invent some new analysis;
11. All source code is published, so you can see the exact algorithms being used; also, expert statisticians can make sure the code is correct;
12. It can exchange data in MS-Excel, text, fixed and delineated formats (e.g. CSV), so that existing datasets are easily imported (§6), and results computed in R are easily exported (§7).
13. Most programs written for the commercial S-PLUS program will run unchanged, or with minor changes, in R (§2.3.1).

2.2 Disadvantages

R has its disadvantages (although "every disadvantage has its advantage"):

1. The default Windows and Mac OS X graphical user interface (GUI) (§3.1) is limited to simple system interaction and does not include statistical procedures. The user must type commands to enter data, do analyses, and plot graphs. This has the advantage that the user has complete control over the system. The Rcmdr add-on package (§3.6) provides a reasonable GUI for common tasks, and there are various development environments for R, such as RStudio (§3.3).
2. The user must decide on the analysis sequence and execute it step-by-step. However, it is easy to create scripts with all the steps in an analysis, and run the script from the command line or menus (§3.5); scripts can be preared in code editors built into GUI versions of R or separate front-ends such as Tinn-R (§3.5) or RStudio (§3.3). A major advantage of this approach is that intermediate results can be reviewed, and scripts can be edited and run as batch processes.
3. The user must learn a new way of thinking about data, as data frames (§4.7) and objects each with its class, which in turn supports a set of methods (§4.13). This has the advantage common to objectoriented languages that you can only operate on an object according to methods that make sense ${ }^{4}$ and methods can adapt to the type of object. ${ }^{5}$
4. The user must learn the S language (§4), both for commands and the notation used to specify statistical models (§4.17). The S statistical modelling language is a lingua franca among statisticians, and provides a compact way to express models.
[^2]
2.3 Alternatives

There are many ways to do computational statistics; this section discusses them in relation to R. None of these programs are open-source, meaning that you must trust the company to do the computations correctly.

2.3.1 S-PLUS

S-PLUS is a commercial program distributed by the Insightful corporation, ${ }^{6}$ and is a popular choice for large-scale commerical statistical computing. Like R , it is a dialect of the original S language developed at Bell Laboratories. ${ }^{7}$ S-PLUS has a full graphical user interface (GUI); it may be also used like R, by typing commands at the command line interface or by running scripts. It has a rich interactive graphics environment called Trellis, which has been emulated with the 1attice package in R (§5.2). S-PLUS is licensed by local distributors in each country at prices ranging from moderate to high, depending factors such as type of licensee and application, and how many computers it will run on. The important point for ITC R users is that their expertise will be immediately applicable if they later use S-PLUS in a commercial setting.

2.3.2 Statistical packages

There are many statistical packages, including MINITAB, SPSS, Statistica, Systat, GenStat, and BMDP, ${ }^{8}$ which are attractive if you are already familiar with them or if you are required to use them at your workplace. Although these are programmable to varying degrees, it is not intended that specialists develop completely new algorithms. These must be purchased from local distributors in each country, and the purchaser must agree to the license terms. These often have common analyses built-in as menu choices; these can be convenient but it is tempting to use them without fully understanding what choices they are making for you.

SAS is a commercial competitor to S-PLUS, and is used widely in industry. It is fully programmable with a language descended from PL/I (used on IBM mainframe computers).
2.3.3 Special-purpose statistical programs

Some programs adress specific statistical issues, e.g. geostatistical analysis and interpolation (SURFER, gslib, GEO-EAS), ecological analysis (FRAGSTATS), and ordination (CONOCO). The algorithms in these programs have

[^3]or can be programmed as an R package; examples are the gstat program for geostatistical analysis ${ }^{9}$ [35], which is now available within R [33], and the vegan package for ecological statistics.

2.3.4 Spreadsheets

Microsoft Excel is useful for data manipulation. It can also calculate some statistics (means, variances, ...) directly in the spreadsheet. This is also an add-on module (menu item Tools | Data Analysis...) for some common statistical procedures including random number generation. Be aware that Excel was not designed by statisticians. There are also some commercial add-on packages for Excel that provide more sophisticated statistical analyses. Excel's default graphics are easy to produce, and they may be customized via dialog boxes, but their design has been widely criticized. Least-squares fits on scatterplots give no regression diagnostics, so this is not a serious linear modelling tool.

OpenOffice ${ }^{10}$ includes an open-source and free spreadsheet (Open Office Calc) which can replace Excel.
2.3.5 Applied mathematics programs

MATLAB is a widely-used applied mathematics program, especially suited to matrix maniupulation (as is R , see §4.6), which lends itself naturally to programming statistical algorithms. Add-on packages are available for many kinds of statistical computation. Statistical methods are also programmable in Mathematica.

[^4]
3 Using R

There are several ways to work with R:

- with the R console GUI (§3.1);
- with the RStudio IDE (§3.3);
- with the Tinn-R editor and the R console (§3.4);
- from one of the other IDE such as JGR;
- from a command line R interface (CLI) (§3.2);
- from the ESS (Emacs Speaks Statistics) module of the Emacs editor.

Of these, RStudio is for most ITC users the best choice; it contains an R command line interface but with a code editor, help text, a workspace browser, and graphic output.

3.1 R console GUI

The default interface for both Windows and Mac OS/X is a simple GUI. We refer to these as "R console GUI" because they provide an easy-to-use interface to the R command line, a simple script editor, graphics output, and on-line help; they do not contain any menus for data manipulation or statistical procedures.

R for Linux has no GUI; however, several independent Linux programs ${ }^{11}$ provide a GUI development environment; an example is RStudio (§3.3).

3.1.1 On your own Windows computer

You can download and install R for Windows as instructed in §A, as for a typical Windows program; this will create a Start menu item and a desktop shortcut.

3.1.2 On the ITC network

R has been installed on the ITC corporate network at:

Itcnt03\Apps $\backslash R \backslash$ bin \backslash RGui.exe
For most ITC accounts drive P: has been mapped to $\backslash \backslash$ Itcnt03\Apps, so R can be accessed using this drive letter instead of the network address:
$P: \backslash R \backslash$ bin \backslash RGui.exe
${ }^{11}$ http://www.7inux7inks.com/artic7e/20110306113701179/GUIsforR.htm1

You can copy this to your local desktop as a shortcut.
Documentation has been installed at:
$P: \backslash R \backslash$ doc

3.1.3 Running the R console GUI

R GUI for Windows is started like any Windows program: from the Start menu, from a desktop shortcut, or from the application's icon in Explorer.

By default, R starts in the directory where it was installed, which is not where you should store your projects. If you are using the copy of R on the ITC network, you do not have write permission to this directory, so you won't be able to save any data or session information there. So, you will probably want to change your workspace, as explained in §3.1.4. You can also create a desktop shortcut or Start menu item for R, also as explained in §3.1.4.

To stop an R session, type q() at the command prompt ${ }^{12}$, or select the File | Exit menu item in the Windows GUI.
3.1.4 Setting up a workspace in Windows

An important concept in R is the workspace, which contains the local data and procedures for a given statistics project. Under Windows this is usually determined by the folder from which R is started.

Under Windows, the easiest way to set up a statistics project is:

1. Create a shortcut to RGui . exe on your desktop;
2. Modify its properties so that its in your working directory rather than the default (e.g. $P: \backslash R \backslash b i n$).

Now when you double-click on the shortcut, it will start R in the directory of your choice. So, you can set up a different shortcut for each of your projects.

Another way to set up a new statistics project in R is:

1. Start R as just described: double-click the icon for program RGui . exe in the Explorer;
2. Select the File | Change Directory ... menu item in R;
3. Select the directory where you want to work;

[^5]4. Exit R by selecting the File | Exit menu item in R, or typing the q() command; R will ask "Save workspace image?"; Answer y (Yes). This will create two files in your working directory: .Rhistory and . RData.

The next time you want to work on the same project:

1. Open Explorer and navigate to the working directory

2. Double-click on the icon for file . RData

R should open in that directory, with your previous workspace already loaded. (If R does not open, instead Explorer will ask you what programs should open files of type . RData; navigate to the program RGui . exe and select it.)

If you don't see the file . RData in your Explorer, this is because Windows Revealing hid- considers any file name that begins with "." to be a 'hidden' file. You need den files in to select the Tools | Folder options in Explorer, then the View tab, Windows and click the radio button for Show hidden files and folders. You must also un-check the box for Hide file extensions for known file types.

3.1.5 Saving your analysis steps

The File | Save to file ... menu command will save the entire console contents, i.e. both your commands and R's response, to a text file, which you can later review and edit with any text editor. This is useful for cutting-and-pasting into your reports or thesis, and also for writing scripts to repeat procedures.

3.1.6 Saving your graphs

In the Windows version of R , you can save any graphical output for insertion into documents or printing. If necessary, bring the graphics window to the front (e.g. click on its title bar), select menu command File | Save as ..., and then one of the formats. Most useful for insertion into MS-Word documents is Metafile; most useful for $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is Postscript; most useful for PDFLaTeX and stand-alone printing is PDF. You can later review your saved graphics with programs such as Windows Picture Editor. If you want to add other graphical elements, you may want to save as a PNG or JPEG; however in most cases it is cleaner to add annotations within R itself.

You can also review graphics within the Windows R GUI itself. Create the first graph, bring the graphics window to foreground, and then select the menu command History | Recording. After this all graphs are automatically saved within R, and you can move through them with the up and down arrow keys.

You can also write your graphics commands directly to a graphics file in many formats, e.g. PDF or JPEG. You do this by opening a graphics device, writing the commands, and then closing the device. You can get a list of graphics devices (formats) available on your system with ?Devices (note the upper-case D).

For example, to write a PDF file, we open a PDF graphics device with the pdf function, write to it, and then close it with the dev. off function:

```
pdf("figure1.pdf", h=6, w=6)
hist(rnorm(100), main="100 random values from N[0,1])")
dev.off()
```

Note the use of the optional height= and width= arguments (here abbreviated $h=$ and $w=$) to specifiy the size of the PDF file (in US inches); this affects the font sizes. The defaults are both 7 inches (17.18 cm).

3.2 Working with the R command line

These instructions apply to the simple R GUI and the R command line interface window within RStudio. One of the windows in these interfaces is the command line, also called the R console.

It is possible to work directly with the command line and no GUI:

- Under Linux and Mac OS/X, at the shell prompt just type R; there are various startup options which you can see with R-he1p.
- Under Windows
3.2.1 The command prompt

You perform most actions in R by typing commands in a command line interface window, ${ }^{13}$ in response to a command prompt, which usually looks like this:

The > is a prompt symbol displayed by R, not typed by you. This is R's way of telling you it's ready for you to type a command.

Type your command and press the Enter or Return keys; R will execute your command.

If your entry is not a complete R command, R will prompt you to complete it with the continuation prompt symbol:

[^6]R will accept the command once it is syntactically complete; in particular the parentheses must balance. Once the command is complete, R then presents its results in the same command line interface window, directly under your command.

If you want to abort the current command (i.e. not complete it), press the Esc ("escape") key.

For example, to draw 500 samples from a binomial distribution of 20 trials with a 40% chance of success ${ }^{14}$ you would first use the rbinom method and then summarize it with the summary method, as follows: ${ }^{15}$

```
> x <- rbinom(500,20,.4)
> summary(x)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    2.000 7.000 8.000 8.232 10.000 15.000
```

This could also have been entered on several lines:

```
> x <- rbinom(
+ 500,20,.4
+ )
```

You can use any white space to increase legibility, except that the assignment symbol <- must be written together:

```
> x <- rbinom(500,
20, 0.4)
```

R is case-sensitive; that is, method rbinom must be written just that way, not as Rbinom or RBINOM (these might be different methods). Variables are also case-sensitive: x and X are different names.

Some methods produce output in a separate graphics window:

```
> hist(x)
```


3.2.2 On-line help in R

Both the base R system and contributed packages have extensive help within the running R environment.

Individual In Windows, you can use the He7p menu and navigate to the method you methods want to understand. You can also get help on any method with the ?

[^7]method, typed at the command prompt; this is just a shorthand for the help method:

For example, if you don't know the format of the rbinom method used above. Either of these two forms:

```
> ?rbinom
> help(rbinom)
```

will display a text page with the syntax and options for this method. There are examples at the end of many help topics, with executable code that you can experiment with to see just how the method works.

Searching for If you don't know the method name, you can search the help for relevant methods methods using the help.search method ${ }^{16}$:
> help.search("binomial")
will show a window with all the methods that include this word in their description, along with the packages where these methods are found, whether already loaded or not.

In the list shown as a result of the above method, we see the Binomial (stats) topic; we can get more information on it with the ? method; this is written as the ? character immediately followed by the method name:
> ?Binomial
This shows the named topic, which explains the rbinom (among other) methods.

Vignettes Packages have a long list of methods, each of which has its own documentation as explained above. Some packages are documented as a whole by so-called vignettes ${ }^{17}$; for now most packages do not have one, but more will be added over time.

You can see a list of the vignettes installed on your system with the vignette method with an empty argument:
> vignette()
and then view a specific vignette by naming it:
> vignette("sp")
${ }^{16}$ also available via the He1p | Search he1p ... menu item
${ }^{17}$ from the OED meaning "a brief verbal description of a person, place, etc.; a short descriptive or evocative episode in a play, etc."

3.3 The RStudio development environment

RStudio ${ }^{18}$ is an excellent cross-platform ${ }^{19}$ integrated development environment for R. A screenshot is shown in Figure 1. This environment includes the command line interface, a code editor, output graphs, history, help, workspace contents, and package manager all in one atttractive interface. The typical use is: (1) open a script or start a new script; (2) change the working directory to this script's location; (3) write R code in the script; (4) pass lines of code from the script to the command line interface and evaluate the output; (5) examine any graphs and save for later use.

Figure 1: The RStudio screen

[^8]
3.4 The Tinn-R code editor

For Windows user, the Tinn-R code editor for Windows ${ }^{20}$ is recommended for those who do not choose to use RStudio. This is tightly integrated with the Windows R GUI, as shown in Figure 2. R code is syntax-highlighted and there is extensive help within the editor to select the proper commands and arguments. Commands can be sent directly from the editor to R , or saved in a file and sourced.

Figure 2: The Tinn-R screen, with the R command line interface also visible

3.5 Writing and running scripts

After you have worked out an analysis by typing a sequence of commands, you will probably want to re-run them on edited data, new data, subsets etc. This is easy to do by means of scripts, which are simply lists of commands in a file, written exactly as you would type them at the command

[^9]line interface. They are run with the source method. A useful feature of scripts is that you can include comments (lines that begin with the \# character) to explain to yourself or others what the script is doing and why.

Here's a step-by-step description of how to create and run a simple script which draws two random samples from a normal distribution and computes their correlation: ${ }^{21}$

1. Open a new document in a plain-text editor, i.e., one that does not insert any formatting. Under MS-Windows you can use Notepad or Wordpad; if you are using Tinn-R or RStudio open a new script.
2. Type in the following lines:
```
x <- rnorm(100, 180, 20)
y <- rnorm(100, 180, 20)
plot(x, y)
cor.test(x, y)
```

3. Save the file with the name test.R, in a convenient directory.
4. Start R (if it's not already running)
5. In R, select menu command File | Source R code ...
6. In the file selection dialog, locate the file test.R that you just saved (changing directories if necessary) and select it; R will run the script.
7. Examine the output.

You can source the file directly from the command line. Instead of steps 5 and 6 above, just type source("test.R") at the R command prompt (assuming you've switched to the directory where you saved the script).

Appendix B contains an example of a more sophisticated script.
For serious work with R you should use a more powerful text editor. The R for Windows, R for Mac OS X and JGR interfaces include built-in editors; another choice on Windows is WinEdt ${ }^{22}$. And both RStudio (§3.3) and Tinn_R (§3.4) have code editors. For the ultimate in flexibility and power, try emacs ${ }^{23}$ with the ESS (Emacs Speaks Statistics) module ${ }^{24}$; learning emacs is not trivial but rather an investment in a lifetime of efficient computing.

[^10]
3.6 The Rcmdr GUI

The Rcmdr add-on package, written by John Fox of McMaster University, provides a GUI for common data management and statistical analysis tasks. It is loaded like any other package, with the require method:

```
> require("Rcmdr")
```

As it is loaded, it starts up in another window, with its own menu system. You can run commands from these menus, but you can also continue to type commands at the R prompt. Figure 3 shows an R Commander screen shot.

Figure 3: The R Commander screen: Menu bar at the top; a top panel showing commands submitted to R by the menu commands; a bottom panel showing the results after execution by R

To use Rcmdr, you first import or activate a dataset using one of the commands on Rcmdr's Data menu; then you can use procedures in the Statistics, Graphs, and Mode1s menus. You can also create and graph probability distributions with the Distributions menu.

When using Rcmdr, observe the commands it formats in response to your menu and dialog box choices. Then you can modify them yourself at the R command line or in a script.

Rcmdr also provides some nice graphics options, including scatterplots (2D and 3D) where observations can be coloured by a classifying factor.

3.7 Loading optional packages

R starts up with a base package, which provides basic statistics and the R language itself. There are a large number of optional packages for specific statistical procedures which can be loaded during a session. Some of these are quite common, e.g. MASS ("Modern Applied Statistics with S" [57]) and lattice (Trellis graphics [50], §5.2). Others are more specialised, e.g. for geostatistics and time-series analysis, such as gstat. Some are loaded by default in the base R distribution (see Table 4).

If you try to run a method from one of these packages before you load it, you will get the error message

Error: object not found
You can see a list of the packages installed on your system with the library method with an empty argument:
> library()
To see what functions a package provides, use the 1ibrary method with the named argument. For example, to see what's in the geostatistical package gstat:
> 1ibrary(he1p=gstat)
To load a package, simply give its name as an argument to the require method, for example:
> require(gstat)
Once it is loaded, you can get help on any method in the package in the usual way. For example, to get help on the variogram method of the gstat package, once this package has been loaded:

3.8 Sample datasets

R comes with many example datasets (part of the default datasets package) and most add-in packages also include example datasets. Some of the datasets are classics in a particular application field; an example is the iris dataset used extensively by R A Fisher to illustrate multivariate methods.

To see the list of installed datasets, use the data method with an empty argument:
> data()
To see the datasets in a single add-in package, use the package= argument:

```
> data(package="gstat")
```

To load one of the datasets, use its name as the argument to the data method:
> data(iris)
The dataframe representing this dataset is now in the workspace.

4 The S language

R is a dialect of the S language, which has a syntax similar to ALGOL-like programming languages such as C, Pascal, and Java. However, S is objectoriented, and makes vector and matrix operations particularly easy; these make it a modern and attractive user and programming environment. In this section we build up from simple to complex commands, and break down their anatomy. A full description of the language is given in the R Language Definition [38] ${ }^{25}$ and a comprehensive introduction is given in the Introduction to $R[36] .{ }^{26}$ This section reviews the most outstanding features of S .

All the functions, packages and datasets mentioned in this section (as well as the rest of this note) are indexed (§С) for quick reference.

4.1 Command-line calculator and mathematical operators

The simplest way to use R is as an interactive calculator. For example, to compute the number of radians in one Babylonian degree of a circle:
> 2*pi/360
[1] 0.0174533

As this example shows, S has a few built-in constants, among them pi for the mathematical constant π. The Euler constant e is not built-in, it must be calculated with the \exp function as $\exp (1)$.

If the assignment operator (explained in the next section) is not present, the expression is evaluated and its value is displayed on the console. S has the usual arithmetic operators $+,-, *, /, \wedge$ and some less-common ones like \%\% (modulus) and \%/\% (integer division). Expressions are evaluated in accordance with the usual operator precedence; parentheses may be used to change the precedence or make it explicit:
> $3 / 2 \wedge 2+2$ * pi
[1] 7.03319
$>((3 / 2) \wedge 2+2) * p i$
[1] 13.3518
Spaces may be used freely and do not alter the meaning of any S expression.

Common mathematical functions are provided as functions (see §4.3), including $7 \mathrm{log}, \mathrm{log} 10$ and $\log 2$ functions to compute logarithms; exp for exponentiation; sqrt to extract square roots; abs for absolute value; round, ceiling, floor and trunc for rounding and related operations; trigonometric functions such as sin, and inverse trigonometric functions such as

[^11]asin.

```
> log(10); log10(10); log2(10)
[1] 2.3026
[1] 1
[1] 3.3219
> round(log(10))
[1] 2
> sqrt(5)
[1] 2.2361
sin(45 * (pi/180))
[1] 0.7071
> (asin(1)/pi)*180
[1] 90
```


4.2 Creating new objects: the assignment operator

New objects in the workspace are created with the assignment operator <-, which may also be written as $=$:

```
> mu <- 180
>mu = 180
```

The symbol on the left side is given the value of the expression on the right side, creating a new object (or redefining an existing one), here named mu , in the workspace and assigning it the value of the expression, here the scalar value 180, which is stored as a one-element vector. The twocharacter symbol <- must be written as two adjacent characters with no spaces..

Now that mu is defined, it may be printed at the console as an expression:

```
> print(mu)
[1] 180
> mu
[1] 180
and it may be used in an expression:
> mu/pi
[1] 57.2958
```

More complex objects may be created:

```
> s <- seq(10)
> S
[1] 1
```

This creates a new object named s in the workspace and assigns it the vector (1 $2 \ldots .10$). (The syntax of seq (10) is explained in the next section.)

Multiple assignments are allowed in the same expression:

```
> (mu <- theta <- pi/2)
```

[1] 1.5708

The final value of the expression, in this case the value of mu, is printed, because the parentheses force the expression to be evaluated as a unit.

Removing objects from the workspace You can remove objects when they are no longer needed with the rm function:

```
> rm(s)
> s
Error: Object "s" not found
```


4.3 Methods and their arguments

In the command s <- seq(10), seq is an example of an S method, often called a function by analogy with mathematical functions, which has the form:

```
method.name ( arguments )
```

Some functions do not need arguments, e.g. to list the objects in the workspace use the 1 s function with an empty argument list:
> 1s()

Note that the empty argument list, i.e. nothing between the (and) is still needed, otherwise the computer code for the function itself is printed.

Optional arguments Most functions have optional arguments, which may be named like this:

```
> s <- seq(from=20, to=0, by=-2)
> s
[1] 20 18 16 14 12 10 8
```

Named arguments have the form name = value.
Arguments of many functions can also be positional, that is, their meaning depends on their position in the argument list. The previous command could be written:

```
> s <- seq(20, 0, by=-2); s
[1] 20 18 16 14 12 10 8 % 6 4 4 2 0
```

because the seq function expects its first un-named argument to be the starting point of the vector and its second to be the end.

The command separator This example shows the use of the ; command separator. This allows several commands to be written on one line. In this case the first command computes the sequence and stores it in an object, and the second displays this object. This effect can also be achieved by enclosing the entire expression in parentheses, because then S prints the value of the expression, which in this case is the new object:

```
> (s <- seq(from=20, to=0, by=-2))
[1] 20 18 16 14 12 10 8 8 6 4 4 2 0
```

Named arguments give more flexibility; this could have been written with names:

```
> (s <- seq(to=0, from=20, by=-2))
```

[1] $20 \begin{array}{llllllllll}18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 & 0\end{array}$
but if the arguments are specified only by position the starting value must be before the ending value.

For each function, the list of arguments, both positional and named, and their meaning is given in the on-line help:
> ? seq

Any element or group of elements in a vector can be accessed by using subscripts, very much like in mathematical notation, with the [] (select array elements) operator:

```
> samp[1]
[1] -1.239197
> samp[1:3]
[1] -1.23919739 0.03765046 2.24047546
> samp[c(1,10)]
[1] -1.239197 9.599777
```

The notation 1:3, using the : sequence operator, produces the sequence from 1 to 3 .

The catenate function The notation $c(1,10)$ is an example of the very useful c or catenate ("make a chain") function, which makes a list out of its arguments, in this case the two integers representing the indices of the first and last elements in the vector.

4.4 Vectorized operations and re-cycling

A very powerful feature of S is that most operations work on vectors or matrices with the same syntax as they work on scalars, so there is rarely any need for explicit looping commands (which are provided, xe.g. for).

These are called vectorized operations. As an example of vectorized operations, consider simulating a noisy random process:

```
> (sample <- seq(1, 10) + rnorm(10))
    [1] -0.1878978 1.6700122 2.2756831 4.1454326
    [5] 5.8902614 7.1992164 9.1854318
    [9] 8.7372579 8.7256403
```

This adds a random noise (using the rnorm function) with mean 0 and standard deviation 1 (the default) to each of the 10 numbers 1..10. Note that both vectors have the same length (10), so they are added elementwise: the first to the first, the second to the second and so forth

If one vector is shorter than the other, its elements are re-cycled as needed:

```
> (samp <- seq(1, 10) + rnorm(5))
    [1] -1.23919739 0.03765046 2.24047546 4.89287818
    [5] 4.59977712 3.76080261 5.03765046 7.24047546
    [9] 9.89287818 9.59977712
```

This perturbs the first five numbers in the sequence the same as the second five.

A simple example of re-cycling is the computation of sample variance directly from the definition, rather than with the var function:

```
> (sample <- seq(1:8))
[1] 1 2 3 4 5 6 7 8
> (sample - mean(sample))
[1] -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
> (sample - mean(sample))^2
[1] 12.25
> sum((sample - mean(sample))^2)
[1] 42
> sum((sample - mean(sample))^2)/(length(sample)-1)
[1] 6
> var(sample)
[1] 6
```

In the expression sample - mean(sample), the mean mean(sample) (a scalar) is being subtracted from sample (a vector). The scalar is a oneelement vector; it is shorter than the eight-element sample vector, so it is re-cycled: the same mean value is subtracted from each element of the sample vector in turn; the result is a vector of the same length as the sample. Then this entire vector is squared with the \wedge operator; this also is applied element-wise.

The sum and length functions are examples of functions that summarise a vector and reduce it to a scalar.

Other functions transform one vector into another. Useful examples are sort, which sorts the vector, and rank, which returns a vector with the rank (order) of each element of the original vector:

```
> data(trees)
> trees$Volume
    [1] 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9
[11] 24.2 21.0 21.4 21.3 19.1 22.2 33.8 27.4 25.7 24.9 34.5
[22] 31.7 36.3 38.3 42.6 55.4 55.7 58.3 51.5 51.0 77.0
> sort(trees$Volume)
[1] 10.2 10.3 10.3 15.6 16.4 18.2 18.8 19.1 19.7 19.9
[11] 21.0 21.3 21.4 22.2 22.6 24.2 24.9 25.7 27.4 31.7 33.8
[22] 34.5 36.3 38.3 42.6 51.0 51.5 55.4 55.7 58.3 77.0
> rank(trees$Volume)
[1] 2.5}22.5 1.0 5.0 7.0 9.0 4.0 6.0 15.0 10.0
[11] 16.0 11.0 13.0 12.0 8.0 14.0 21.0 19.0 18.0 17.0 22.0
[22] 20.0 23.0 24.0 25.0 28.0 29.0 30.0 27.0 26.0 31.0
```

Note how rank averages tied ranks by default; this can be changed by the optional ties.method argument.

This example also illustrates the \$ operator for extracting fields from dataframes; see §4.7.

4.5 Vector and list data structures

Many S functions create complicated data structures, whose structure must be known in order to use the results in further operations. For example, the sort function sorts a vector; when called with the optional index=TRUE argument it also returns the ordering index vector:

```
> ss <- sort(samp, index=TRUE)
> str(ss)
List of 2
    $ x : num [1:10] -1.2392 0.0377 2.2405 3.7608 ...
    $ ix: int [1:10] 1 2 3 6 5 4 7 8 10 9
```

This example shows the very important str function, which displays the S structure of an object.

Lists In this case the object is a list, which in S is an arbitrary collection of other objects. Here the list consists of two objects: a ten-element vector of sorted values ss $\$ x$ and a ten-element vector of the indices ss $\$ i x$, which are the positions in the original list where the corresponding sorted value was found. We can display just one element of the list if we want:

```
> ss$ix
    [1] 11 2 
```

This shows the syntax for accessing named components of a data frame or list using the \$ operator: object \$ component, where the \$ indicates that the component (or field) is to be found within the named object.

We can combine this with the vector indexing operation:

```
> ss$ix[length(ss$ix)]
```

[1] 9

So the largest value in the sample sequence is found in the ninth position. This example shows how expressions may contain other expressions, and S evaluates them from the inside-out, just like in mathematics. In this case:

- The innermost expression is ss\$ix, which is the vector of indices in object ss;
- The next enclosing expression is length (...); the length function returns the length of its argument, which is the vector ss\$ix (the innermost expression);
- The next enclosing expression is ss\$ix[...], which converts the result of the expression length (ss\$ix) to a subscript and extracts that element from the vector ss\$ix.

The result is the array position of the maximum element. We could go one step further to get the actual value of this maximum, which is in the vector ss\$x:
> samp[ss\$ix[length(ss\$ix)]]
[1] 9.599777
but of course we could have gotten this result much more simply with the max function as $\max (s s \$ x$) or even $\max (s a m p)$.

4.6 Arrays and matrices

An array is simply a vector with an associated dimension attribute, to give its shape. Vectors in the mathematical sense are one-dimensional arrays in S; matrices are two-dimensional arrays; higher dimensions are possible.

For example, consider the sample confusion matrix of Congalton et al. [6], also used as an example by Skidmore [53] and Rossiter [43]: ${ }^{27}$

		Reference Class			
		A	B	C	
	A	35	14	11	1
Mapped	B	4	11	3	0
Class	C	12	9	38	4
	D	2	5	12	2

This can be entered as a list in row-major order:

```
> cm <- c(35,14,11,1,4,11,3,0,12,9,38,4,2,5,12,2)
> cm
\({ }^{27}\) This matrix is also used as an example in \(\S 6.1\)
```

```
    [1] 35 14 11 1. 1 4 11 3
> dim(cm)
NULL
```

Initially, the list has no dimensions; these may be added with the dim function:

```
> dim(cm) <- c(4, 4)
> cm
    [,1] [,2] [,3] [,4]
[1,] 35 4 12 
[2,] 14 14 11 
[3,] 
[4,] 1 1 0 4
> dim(cm)
[1] 4 4
> attributes(cm)
$dim
[1] 4 4
> attr(cm, "dim")
[1] 4 4
```

The attributes function shows any object's attributes; in this case the object only has one, its dimension; this can also be read with the attr or dim function.

Note that the list was converted to a matrix in column-major order, following the usual mathematical convention that a matrix is made up of column vectors. The t (transpose) function must be used to specify row-major order:

	[,1]	[,2]	[,3]	[,4]
[1,]	35	14	11	1
[2,]	4	11	3	0
[3,]	12	9	38	
[4,]	2	5	12	

A new matrix can also be created with the matrix function, which in its simplest form fills a matrix of the specified dimensions (rows, columns) with the value of its first argument:

(m <- matrix (0, 5, 3))			
[1,]	0	0	0
[2,]	0	0	0
[3,]	0	0	0
[4,]	0	0	0
[5,]	0	0	0

This value may also be a vector:

```
> (m <- matrix(1:15, 5, 3, byrow=T))
```

 [,1] [,2] [,3]
 | $[1]$, | 1 | 2 | 3 |
| :--- | ---: | ---: | ---: |
| $[2]$, | 4 | 5 | 6 |
| $[3]$, | 7 | 8 | 9 |
| $[4]$, | 10 | 11 | 12 |
| $[5]$, | 13 | 14 | 15 |

$>(m$ <- matrix $(1: 5,5,3))$
[,1] [,2] [,3]
[1,] $1 \begin{array}{lll} & 1 & 1\end{array}$
$[2] \quad 2 \quad 2 \quad$,
$[3] \quad 3 \quad 3 \quad$,
$\begin{array}{llll}{[3,]} & 4 & 4 & 4 \\ {[5,]} & 5 & 5 & 5\end{array}$

In this last example the shorter vector $1: 5$ is re-cycled as many times as needed to match the dimensions of the matrix; in effect it fills each column with the same sequence.

A matrix element's rows and column are given by the row and col functions, which are also vectorized and so can be applied to an entire matrix:

$\operatorname{col}(\mathrm{m})$			
	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	2	3
$[2]$,	1	2	3
$[3]$,	1	2	3
$[4]$,	1	2	3
$[5]$,	1	2	3

The diag function applied to an existing matrix extracts its diagonal as a vector:

```
> (d <- diag(cm))
```

[1] $351138 \quad 2$

The diag function applied to a vector creates a square matrix with the vector on the diagonal:

(d <- diag(seq(1:4)))				
	[,1]	[,2]	[,3]	[,4]
[1,]	1	0	0	0
[2,]	0	2	0	0
[3,]	0	0	3	0
[4,]	0	0	0	4

And finally diag with a scalar argument creates an indentity matrix of the specified size:

$>(d)<-\operatorname{diag}(3))$			
	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	0	0
$[2]$,	0	1	0
$[3]$,	0	0	1

Arithmetic operators such as * operate element-wise on matrices as on
any vector; if matrix multiplication is desired the \%*\% operator must be used:

> $\mathrm{cm} * \mathrm{~cm}$				
	[,1]	[,2]	[,3]	[,4]
[1,]	1225	196	121	1
[2,]	16	121	9	0
[3,]	144	81	1444	16
[4,]	4	25	144	4
> cm\%*\%cm				
	[,1]	[,2]	[,3]	[,4]
[1,]	1415	748	857	81
[2,]	220	204	191	16
[3,]	920	629	1651	172
[4,]	238	201	517	54
> cm\%*\%c ($1,2,3,4$)				
[,1]				
[1,] 100				
[2,] 35				
[3,] 160				
[4,]	56			

As the last example shows, \%*\% also multiplies matrices and vectors.
Matrix A matrix can be inverted with the solve function, usually with little acinversion curacy loss; in the following example the round function is used to show that we recover an identity matrix:

Solving linear The same solve function applied to a matrix A and column vector b solves the linear equation $\mathrm{b}=\mathrm{Ax}$ for x :
equations

```
> b <- c(1, 2, 3, 4)
> (x <- solve(cm, b))
[1] -0.08569845 0.29135255 -0.28736142 3.08148559
> cm %*% x
            [,1]
[1,] 1
[2,] 2
```

```
[3,] 3
[4,] 4
```

Applying functions to matrix margins

The apply function applies a function to the margins of a matrix, i.e. the rows (1) or columns (2). For example, to compute the row and column sums of the confusion matrix, use apply with the sum function as the function to be applied:

```
> (rsum <- apply(cm, 1, sum))
[1] 61 18 63 21
> (csum <- apply(cm, 2, sum))
[1] 53 39 64 7
```

These can be used, along with the diag function, to compute the producer's and user's classification accuracies, since diag (cm) gives the correctlyclassified observations:

```
> (pa <- round(diag(cm)/csum, 2))
[1] 0.66 0.28 0.59 0.29
> (ua <- round(diag(cm)/rsum, 2))
[1] 0.57 0.61 0.60 0.10
```

The apply function has several variants: 1app7y and sapply to apply a user-written or built-in function to each element of a list, tapply to apply a function to groups of values given by some combination of factor levels, and by, a simplified version of this. For example, here is how to standardize a matrix "by hand", i.e., subtract the mean of each column and divide by the standard deviation of each column:

```
> apply(cm, 2, function(x) sapply(x, function(i) (i-mean(x))/sd(x)))
            [,1] [,2] [,3] [,4]
[1,] 1.381930 -0.10742 -0.24678 -0.689
[2,] -0.087464 1.39642 -0.44420 -0.053
[3,] -0.297377 -0.32225 1.46421 1.431
[4,] -0.997089 -0.96676 -0.77323-0.689
```

The outer app1y applies a function to the second margin (i.e., columns). The function is defined with the function command.

The structure is clearer if braces are used (optional here because each function only has one command) and the command is written on several lines to show the matching braces and parentheses:

```
> apply(cm, 2, function(x)
+ {
+ sapply(x, function(i)
                        { (i-mean(x))/sd(x)
                            } # end function
                            ) # end sapply
    } # end function
    ) # end apply
```

This particular result could have been better achieved with the scale
"scale a matrix" function, which in addition to scaling a matrix columnwise (with or without centring, with or without scaling) returns attributes showing the central values (means) and scaling values (standard deviations) used:

```
> scale(cm)
            [,1] [,2] [,3] [,4]
[1,] 1.381930 -0.10742 -0.24678 -0.689
[2,] -0.087464 1.39642 -0.44420-0.053
[3,] -0.297377 -0.32225 1.46421 1.431
[4,] -0.997089 -0.96676 -0.77323-0.689
attr(,"scaled:center")
[1] 15.25 4.50 15.75 5.25
attr(,"scaled:scale")
[1] 14.2916 4.6547 15.1959 4.7170
```

Other There are also functions to compute the determinant (det), eigenvalues matrix and eigenvectors (eigen), the singular value decomposition (svd), the QR functions decomposition (qr), and the Choleski factorization (chol); these use longstanding numerical codes from LINPACK, LAPACK, and EISPACK.

4.7 Data frames

The fundamental S data structure for statistical modelling is the data frame. This can be thought of as a matrix where the rows are cases, called observations by S (whether or not they were field observations), and the columns are the variables. In standard database terminology, these are records and fields, respectively. Rows are generally accessed by the row number (although they can have names), and columns by the variable name (although they can also be accessed by number). A data frame can also be considerd a list whose members are the fields; these can be accessed with the [[]] (list access) operator.

Sample data R comes with many example datasets (§3.8) organized as data frames; let's load one (trees) and examine its structure and several ways to access its components:

```
> ?trees
> data(trees)
> str(trees)
`data.frame': 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 ...
$ Height: num 70 65 63 72 81 83 66 75 80 75 \ldots..
$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 ...
```

The help text tells us that this data set contains measurements of the girth (diameter in inches ${ }^{28}$, measured at $4.5 \mathrm{ft}^{29}$ height), height (feet) and timber

[^12]volume (cubic feet ${ }^{30}$) in 31 felled black cherry trees. The data frame has 31 observations (rows, cases, records) each of which has three variables (columns, attributes, fields). Their names can be retrieved or changed by the names function. For example, to name the fields Var.1, Var. 2 etc. we could use the paste function to build the names into a list and then assign this list to the names attribute of the data frame:

```
> (saved.names <- names(trees))
[1] "Girth" "Height" "Volume"
> (names(trees) <- paste("Var", 1:dim(trees)[2], sep="."))
[1] "Var.1" "Var.2" "Var.3''
> names(trees)[1] <- "Perimeter"
> names(trees)
[1] "Perimeter" "V.2" "V.3"
> (names(trees) <- saved.names)
[1] "Girth" "Height" "Volume"
> rm(saved.names)
```

Note in the paste function how the shorter vector "Var" was re-cycled to match the longer vector 1: dim(trees) [2]. This was just an example of how to name fields; at the end we restore the original names, which we had saved in a variable which, since we no longer need it, we remove from the workspace with the rm function.

The data frame can accessed various ways:

```
> # most common: by field name
> trees$Height
    [1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69
[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80
[29] 80 80 87
> # the result is a vector, can select elements of it
> trees$Height[1:5]
    [1] 70 65 63 72 81
        # but this is also a list element
> trees[[2]]
    [1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69
[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80
[ 29] 80 80 87
> trees[[2]][1:5]
[1] 70 65 63 72 81
> # as a matrix, first by row....
> trees[1,]
        Girth Height Volume
1 8.3 70 10.3
> # ... then by column
> trees[,2]
> trees[[2]]
    [1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69
[15] 75 74 85 86 71 64 78 80 74 72 77 81 82 80
[ 29] 80 80 87
> # get one element
> trees[1,2]
[1] 70
    30 1 ft'3}=28.3168 dm 3'
```

```
> trees[1,"Height"]
[1] 70
> trees[1,]$Height
[1] 70
```

The forms like $\$$ Height use the $\$$ operator to select a named field within the frame. The forms like [1, 2] show that this is just a matrix with column names, leading to forms like trees[1,"Height"]. The forms like trees [1,] \$Height show that each row (observation, case) can be considered a list with named items. The forms like trees [[2]] show that the data frame is also a list whose elements can be accessed with the [[]] operator.

Attaching data frames to the search path To simplify access to named columns of data frames, S provides an attach function that makes the names visible in the outer namespace:

```
> attach(trees)
> Height[1:5]
[1] 70 65 63 72 81
```

Building a data frame S provides the data.frame function for creating data frames from smaller objects, usually vectors. As a simple example, suppose the number of trees in a plot has been measured at five plots in each of two transects on a regular spacing. We enter the x-coördinate as one list, the y-coördinate as another, and the number of trees in each plot as the third:

```
> x <- rep(seq(182,183, length=5), 2)*1000
> y <- rep(c(381000, 310300), 5)
> n.trees <- c(10, 12, 22, 4, 12, 15, 7, 18, 2, 16)
> (ds <- data.frame(x, y, n.trees))
            x y n.trees
182000 381000 10
2 182250 310300 12
3 182500 381000 22
4 182750 310300 4
5 183000 381000 12
6 182000 310300 15
7 182250 381000 7
8 182500 310300 18
9 182750 381000 2
10 183000 310300 16
```

Note the use of the rep function to repeat a sequence. Also note that an arithmetic expression (in this case $* 1000$) can be applied to an entire vector (in this case rep $(\operatorname{seq}(182,183,1 e n g t h=5), 2)$).

In practice, this data frame would probably be prepared outside R and then imported, see §6.

Adding rows to a data frame The rbind ("row bind") function is used to add rows to a data frame, and to combine two data frames with the same structure. For example, to add one more trees to the data frame:

```
> (ds <- rbind(ds, c(183500, 381000, 15)))
1}182000381000 10
2 182250 310300 12
3 182500 381000 22
4 182750 310300 4
5}183000381000 1
6 182000 310300 15
7 182250 381000 7
8 182500 310300 18
9 182750 381000 2
10183000 310300 16
11183500 381000 15
```

This can also be accomplished by directly assigning to the next row:

```
> ds[12,] <- c(183400, 381200, 18)
> ds
    x y n.trees
1 182000 381000 10
2 182250 310300 12
3 182500 381000 22
4 182750 310300 4
5 183000 381000 12
6 182000 310300 15
7 182250 381000 7
8 182500 310300 18
9 182750 381000 2
10183000 310300 16
11 183500 381000 12
12 183400 381200 18
```

Adding fields to a data frame A vector with the same number of rows as an existing data frame may be added to it with the cbind ("column bind") function. For example, we could compute a height-to-girth ratio for the trees (a measure of a tree's shape) and add it as a new field to the data frame; we illustrate this with the trees example dataset introduced in §4.7:

```
> attach(trees)
> HG.Ratio <- Height/Girth; str(HG.Ratio)
    num [1:31] 8.43 7.56 7.16 6.86 7.57 ...
> trees <- cbind(trees, HG.Ratio); str(trees)
    data.frame': 31 obs. of 4 variables:
    $ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 ...
    $ Height : num 70 65 63 72 81 83 66 75 80 75 \ldots..
    $ Volume : num 10.3 10.3 10.2 16.4 18.8 19.7 ...
    $ HG.Ratio: num 8.43 7.56 7.16 6.86 7.57 ..
> rm(HG.Ratio)
```

Note that this new field is not visible in an attached frame; the frame must be detached (with the detach function) and re-attached:

```
> summary(HG.Ratio)
Error: Object "HG.Ratio" not found
> detach(trees); attach(trees)
> summary(HG.Ratio)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    4.22 4.70 6.00 5.99 6.84 8.43
```

Sorting a data frame This is most easily accomplished with the order function, naming the field(s) on which to sort, and then using the returned indices to extract rows of the data frame in sorted order:

```
> trees[order(trees$Height, trees$Girth),]
    Girth Height Volume
        8.8 63 10.2
        13.8 64 24.9
2 8.6 65 10.3
4 10.5 72 16.4
24}10.
```



```
18
31 20.6 87 77.0
```

Note that the trees are first sorted by height, then any ties in height are sorted by girth.

4.8 Factors

Some variables are categorical: they can take only a defined set of values. In S these are called factors and are of two types: unordered (nominal) and ordered (ordinal). An example of the first is a soil type, of the second soil structure grade, from "none" through "weak" to "strong" and "very strong"; there is a natural order in the second case but not in the first. Many analyses in R depend on factors being correctly identified; some such as table (§4.15) only work with categorical variables.

Factors are defined with the factor and ordered functions. They may be converted from existing character or numeric vectors with the as.factor and as.ordered function; these are often used after data import if the read. table or related functions could not correctly identify factors; see §6.3 for an example. The levels of an existing factor are extracted with the leve1s function.

For example, suppose we have given three tests to each of three students and we want to rank the students. We might enter the data frame as follows (see also §6.1):

```
> student <- rep(1:3, 3)
> score <- c(9, 6.5, 8, 8, 7.5, 6, 9.5, 8, 7)
> tests <- data.frame(cbind(student, score))
> str(tests)
data.frame': 9 obs. of 2 variables:
$ student: num 1 2 3 1 2 3 1 2 3
$ score : num 9 6.5 8 8 7.5 6 9.5 8 7
```

We have the data but the student is just listed by a number; the table function won't work and if we try to predict the score from the student using the 1 m function (see §4.17) we get nonsense:

```
> 1m(score ~ student, data=tests)
Coefficients:
(Intercept) student
    9.556 -0.917
```

The problem is that the student is considered as a continuous variable when in fact it is a factor. We do much better if we make the appropriate conversion:

```
> tests$student <- as.factor(tests$student)
> str(tests)
data.frame': 9 obs. of 2 variables:
$ student: Factor w/ 3 leve1s "1","2","3": 1 2 3 1 2 3 1 2 3
$ score : num 9 6.5 8 8 7.5 6 9.5 8 7
> 1m(score ~ student, data=tests)
Coefficients:
(Intercept) student2 student3
    8.83 -1.50 -1.83
```

This is a meaningful one-way linear model, showing the difference in mean scores of students 2 and 3 from student 1 (the intercept).

Factor names can be any string; so to be more descriptive we could have assigned names with the labels argument to the factor function:

```
> tests$student <- factor(tests$student, labe1s=c("Harley", "Doy1e", "JD"))
> str(tests)
'data.frame': 9 obs. of 2 variables:
    $ student: Factor w/ 3 levels "Harley","Doyle",..: 1 2 3 1 2 3 1 2 3
    $ score : num 9 6.5 8 8 7.5 6 9.5 8 7
> table(tests)
    score
student 6 6.5 7 7.5 8 9 9.5
    Harley 0 0 0 0 1 1 1
    Doy7e 0 1 0 1 1 0 0
    JD 1 1 0
```

An existing factor can be recoded with an additional call to factor and different labels:

```
> tests$student <- factor(tests$student, labels=c("John", "Paul", "George"))
> str(tests)
`data.frame': 9 obs. of 2 variables:
```

```
$ student: Factor w/ 3 levels "John","Paul",..: 1 2 3 1 2 3 1 2 3
$ score : num 9 6.5 8 8 7.5 6 9.5 8 7
> table(tests)
    score
student 6 6.5 7 7.5 8 9 9.5
    John 0
    Paul 0 1 0 1 1 0 0
    George 1 0 1 0 1 0 0
```

The levels have the same internal numbers but different labels. This use of factor with the optional labels argument does not change the order of the factors, which will be presented in the original order. If for example we want to present them alphabetically, we need to re-order the levels, extracting them with the levels function in the order we want (as indicated by subscripts), and then setting these (in the new order) with the optional levels argument to factor:

```
> tests$student <- factor(tests$student, leve1s=1eve1s(tests$student)[c(3,1,2)])
> str(tests)
'data.frame': 9 obs. of 2 variables:
    $ student: Factor w/ 3 levels "George","John",..: 2 3 1 2 3 1 2 3 1
    $ score : num 9 6.5 8 8 7.5 6 9.5 8 7
> table(tests)
            score
student 6 6.5 7 7.5 8 9 9.5
    George 1 0 1 0 1 0 0
    John 0
    Paul 0 1 0 1 1 0 0
```

Now the three students are presented in alphabetic order, because the underlying codes have been re-ordered. The car package contains a useful recode function which also allows grouping of factors.

Factors require special care in statistical models; see §4.17.1.

4.9 Selecting subsets

We often need to examine subsets of our data, for example to perform a separate analysis for several strata defined by some factor, or to exclude outliers defined by some criterion.

Selecting known elements If we know the observation numbers, we simply name them as the first subscript, using the [] (select array elements) operator:

```
trees[1:3,]
    Girth Height Volume
        8.3 70 10.3
        8.6 65 10.3
        8.8 63 10.2
    trees[c(1, 3, 5),]
    Girth Height Volume
```

1	8.3	70	10.3
3	8.8	63	10.2
5	10.7	81	18.8
$>$	trees[seq(1,	31, by $=10)$,]	
Girth			
Height	Volume		
1	8.3	70	10.3
11	11.3	79	24.2
21	14.0	78	34.5
31	20.6	87	77.0

A negative subscript in this syntax excludes the named rows and includes all the others:

```
> trees[-(1:27),]
    Girth Height Volume
28 17.9 80 58.3
```



```
31 20.6 87 77.0
```

Selecting with a logical expression The simplest way to select subsets is with a logical expression on the row subscript which gives the criterion. For example, in the trees example dataset introduced in $\S 4.7$, there is only one tree with volume greater than 58 cubic feet, and it is substantially larger; we can see these in order with the sort function:

```
> attach(trees)
> sort(Volume)
    [1] 10.2 10.3 10.3 15.6 16.4 18.2 18.8 19.1 19.7
    [11] 19.9 21.0 21.3 21.4 22.2 22.6 24.2 24.9 25.7
    [21] 27.4 31.7 33.8 34.5 36.3 38.3 42.6 51.0 51.5
    [31] 55.4 55.7 58.3 77.0
```

To analyze the data without this "unusual" tree, we use a logical expression to select rows (observations), here using the < (less than) logical comparaison operator, and then the [] (select array elements) operator to extract the array elements that are selected:

```
> tr <- trees[Volume < 60,]
```

Note that there is no condition for the second subscript, so all columns are selected.

To make a list of the observation numbers where a certain condition is met, use the which function:

```
> which(trees$Volume > 60)
[1] 31
> trees[which(trees$Volume > 60),]
    Girth Height Volume
31 20.6 87 77
```

Logical expressions may be combined with logical operators such as \& (logical AND) and | (logical OR), and their truth sense inverted with ! (logical NOT). For example, to select trees with volumes between 20 and 40 cubic feet:

```
> tr <- trees[Volume >=20 & Volume <= 40,]
```

Note that \& like S arithmetical operators, is vectorized, i.e. it operates on each pair of elements of the two logical vectors separately.

Parentheses should be used if you are unclear about operator precedence. Since the logical comparaison operators (e.g. >=) have precedence over binary logical operators (e.g. \&), the previous expression is equivalent to:

```
> tr <- trees[(Volume >=20) & (Volume <= 40),]
```

Another way to select elements is to make a subset, with the subset function:

```
> (tr.small <- subset(trees, Volume < 18))
```

 Girth Height Volume
 $\begin{array}{llll}1 & 8.3 & 70 & 10.3\end{array}$
$\begin{array}{llll}2 & 8.6 & 65 & 10.3\end{array}$
$\begin{array}{llll}3 & 8.8 & 63 & 10.2\end{array}$
$\begin{array}{llll}4 & 10.5 & 72 & 16.4\end{array}$
$\begin{array}{llll}7 & 11.0 & 66 & 15.6\end{array}$

Selecting random elements of an array Random elements of a vector can be selected with the sample function:

```
> trees[sort(sample(1:dim(trees)[1], 5)), ]
    Girth Height Volume
```



```
18}13.3\quad86 27.
22 14.2 80 31.7
23 14.5 74 36.3
26 17.3 81 55.4
```

Each call to sample will give a different result.
By default sampling is without replacement, so the same element can not be selected more than once; for sampling with replacement use the replace $=$ T optional argument.

In this example, the command dim(trees) uses the dim function to give the dimensions of the data frame (rows and columns); the first element of this two-element list is the number of rows: dim(trees) [1].

Splitting on a factor Another common operation is to split a dataset into several strata defined by some factor. For this, S provides the split func-
tion, which we illustrate with the iris dataset which has one factor, the species of Iris:

```
> data(iris); str(iris)
    data.frame': 150 obs. of 5 variables:
    $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
    $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
    $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
    $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
    $ Species : Factor w/ 3 levels "setosa","versic..",..: 1 1 ...
> attach(iris)
> ir.s <- split(iris, Species); str(ir.s)
List of 3
    $ setosa :`data.frame': 50 obs. of 5 variables:
        ..$ Sepal.Length: num [1:50] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 ...
        ..$ Sepal.Width : num [1:50] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 ...
        ..$ Petal.Length: num [1:50] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 ...
        ..$ Petal.Width : num [1:50] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 ...
        ..$ Species : Factor w/ 3 levels "setosa","versic..",..: 1 1 ...
    $ versicolor:`data.frame': 50 obs. of 5 variables:
        ..$ Sepal.Length: num [1:50] 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 ...
        ..$ Sepal.Width : num [1:50] 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 ...
        ..$ Petal.Length: num [1:50] 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 ...
        ..$ Petal.Width : num [1:50] 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 ...
        ..$ Species : Factor w/ 3 levels "setosa","versic..",..: 2 2 ...
    $ virginica :`data.frame': 50 obs. of 5 variables:
        ..$ Sepal.Length: num [1:50] 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 ...
        ..$ Sepal.Width : num [1:50] 3.3 2.7 3 2.9 3 3 2.5 2.9 2.5 ...
        ..$ Petal.Length: num [1:50] 6 5.1 5.9 5.6 5.8 6.6 4.5 6.3 ...
        ..$ Petal.Width : num [1:50] 2.5 1.9 2.1 1.8 2.2 2.1 1.7 1.8 ...
        ..$ Species : Factor w/ 3 levels "setosa","versic..",..: 3 3 ...
```

The split function builds a list of data frames named by the level of the factor on which the original data frame was split. Here the original 150 observations have been split into three lists of 50, one for each species. These can be accessed by name:

$>$	summary (ir.s $\$$ setosa $\$$ Petal. Length)				
Min. 1 lst Qu.	Median	Mean	3rd Qu.	Max.	
1.00	1.40	1.50	1.46	1.58	1.90

4.9.1 Simultaneous operations on subsets

We often want to apply some computation to all subsets of a data frame. For example, to compute the mean petal length of the iris data set for each species separately, we could first split the set as shown in the previous section (§4.9), compute each subset's mean, and join them in one vector. This can be accomplished in one step using the by function:

```
> by(Petal.Length, Species, mean)
INDICES: setosa
[1] 1.462
INDICES: versicolor
[1] }4.2
```

```
INDICES: virginica
```

[1] 5.552

In this example, we applied the mean function to the Petal. Length field in the attached data frame, grouping the petal lengths by the Species categorical factor.

A function can be applied to several fields at the same time, and the results can be saved to the workspace:

```
> iris.m <- by(iris[,1:4], Species, mean)
> class(iris.m)
[1] "by"
> str(iris.m)
List of 3
    $ setosa : Named num [1:4] 5.006 3.428 1.462 0.246
    ..- attr(*, "names")= chr [1:4] "Sepa1.Length" "Sepa1.Width" ...
    $ versicolor: Named num [1:4] 5.94 2.77 4.26 1.33
        ..- attr(*, "names")= chr [1:4] "Sepa1.Length" "Sepal.Width" ...
    $ virginica : Named num [1:4] 6.59 2.97 5.55 2.03
    ..- attr(*, "names")= chr [1:4] "Sepa1.Length" "Sepa1.Width" ...
    - attr(*, "dim")= int 3
    - attr(*, "dimnames")=List of 1
    ..$ Species: chr [1:3] "setosa" "versicolor" "virginica"
    - attr(*, "cal1")= language by.data.frame(data = iris[, 1:4],
                                    INDICES = Species, FUN = mean)
    - attr(*, "class")= chr "by"
> iris.m$setosa
Sepal.Length Sepal.Width Peta1.Length Petal.Width
    5.006 3.428 1.462 0.246
> iris.m$setosa[3]
Petal.Length
    1.462
> iris.m$setosa["Peta1.Length"]
Petal.Length
    1.462
```

As this example shows, the result is one list for each level of the grouping factor (here, the Iris species). Each list is a vector with named elements (the dimnames attribute).

4.10 Rearranging data

As explained above (§4.7), the data frame is the object class on which most analysis is performed. Sometimes the same data must be arranged different ways into data frames, depending on what we consider the observations and columns.

A typical re-arrangement is stacking and its inverse, unstacking. In stacking, several variables are combined into one, coded by the original variable name; unstacking is the reverse.

For example, consider the data from a small plant growth experiment:

```
> data(PlantGrowth); str(PlantGrowth)
    'data.frame': 30 obs. of 2 variables:
    $ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 ...
    $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 ...
```

There were two treatments and one control, and the weights are given in one column. If we want to find the maximum growth in the control group, we could select just the controls and then find the maximum:

```
> max(PlantGrowth$weight[PlantGrowth$group == "ctr1"])
[1] 6.11
```

But we could also unstack this two-column frame into a frame with three variables, one for each treatment, and then find the maximum of one (new) column; for this we use the unstack function:

```
> pg <- unstack(PlantGrowth, weight ~ group; str(pg)
`data.frame': 10 obs. of 3 variables:
    $ ctr1: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14
    $ trt1: num 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69
    $ trt2: num 6.31 5.12 5.54 5.5 5.37 5.29 4.92 6.15 5.8 5.26
> max(pg$ctrl)
[1] 6.11
```

The names of the groups in the unstacked frame become the names of the variables in the stacked frame; the formula weight \sim group told the unstack function that group was the column with the new column names.

This process also works in reverse, when we have a frame with several variables to make into one, we use the stack function:

```
> pg.stacked <- stack(pg); str(pg.stacked)
'data.frame': 30 obs. of 2 variables:
$ values: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 ...
$ ind : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 ...
> names(pg.stacked) <- c("weight", "group"); str(pg.stacked)
`data.frame': 30 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 ...
$ group : Factor w/ 3 levels "ctr1","trt1",..: 1 1 1 1 1 1 ...
```

The stacked frame has two columns with default names value (for the variables which were combined) and ind (for their names); these can be changed with the names function.

A more general function for data re-shaping is reshape.

4.11 Random numbers and simulation

R includes functions to evaluate a cumulative distribution function (CDF), the probability density function (PDF) and the quantiles, and to draw random samples, from a large number of distributions including the uniform (R name unif), normal (R name norm), Student's t (R name t), binomial (R
name binom), Poisson (R name pois), and many others; see Chapter 8 of [36] for a complete list.

The names of the functions are built from two parts:

1. A prefix indicating the type of function: p for the $C D F, d$ for the density, q for the quantile, and r for random samples;
2. The R name of the distribution, as listed above, e.g. norm for the normal distribution.

So the functions for the normal distribution are:
p pnorm for the CDF;
d dnorm for the density;
q qnorm for the quantiles (inverse probability);
r rnorm to draw random numbers.

For example, to find the proportion of people in a normally-distributed population with mean height 170 cm and standard deviation 15 cm shorter than 200 cm use pnorm:

```
> pnorm(200, 170, 15)
[1] 0.9772499
```

To plot the bell-shaped normal curve use dnorm:

```
> q <- seq(-3, 3, by=.05)
> plot(q, dnorm(q), type="1", xlab="z", ylab="Prob(z)")
```

To find which normal score corresponds to a list of critical Type I error probabilities use qnorm:

```
> alpha <- c(0.1, 0.05, 0.01, 0.001)
> qnorm(1-alpha/2)
[1] 1.644854 1.959964 2.575829 3.290527
```

Finally, to simulate sampling ten individuals from a normally-distributed population with mean height 170 cm and standard deviation 15 cm , with a measurement precision of 1 cm , use rnorm draw the sample and then round the results to the nearest integer:

```
> sort(round(rnorm(10, 170, 15)))
    [1] 147 159 166 169 169 174 176 180 183 185
```

Each time this command is issued it will give different results, because the sample is random:

```
> sort(round(rnorm(10, 170, 15)))
    [1] 155 167 170 177 181 182 185 186 188 199
```

To start a simulation at the same point (e.g. for testing) use the set. seed function:

```
> set.seed(61921)
> sort(round(rnorm(10, 170, 15)))
    [1] 129 157 157 166 168 170 173 175 185 193
> set.seed(61921)
> sort(round(rnorm(10, 170, 15)))
    [1] 129 157 157 166 168 170 173 175 185 193
```

Now the results are the same every time.

4.12 Character strings

R can work with character vectors, also known as strings. These are often used in graphics as labels, titles, and explanatory text. A string is created by the " quote operator:

```
> (labe1 <- "A good graph")
[1] "A good graph"
```

Strings can be built from smaller pieces with the paste function; parts can be extracted or replaced with the substring function; strings can be split into pieces with the strsplit function:

```
> paste(labe1, ":", 15, "x", 20, "cm")
[1] "A nice graph : 15 x 20 cm"
> (labels <- paste("В", 1:8, sep=""))
    [1] "B1" "B2" "B3" "B4" "B5" "B6" "B7" "B8"
> substring(labe1, 1, 4)
[1] "A go"
> substring(labe1, 3) <- "nice"; labe1
[1] "A nice graph"
> strsplit(labe1, " ")
[[1]]
[1] "A" "nice" "graph"
> unlist(strsplit(label, " "))
[1] "A" "nice" "graph"
> un1ist(strsplit(labe1, " "))[3]
[1] "graph
```

Note the use of the unlist function to convert the list (of one element) returned by strsplit into a vector.

Numbers or factors can be converted to strings with the as.character function; however this conversion is performed automatically by many functions, so an explicit conversion is rarely needed.

4.13 Objects and classes

S is an object-oriented computer language: everything in S (including variables, results of expressions, results of statistical models, and functions) is an object, each with a class, which says what the object is and also controls the way in which it may be manipulated. The class of an object may be inspected with the class function:

```
> class(1m)
[1] "function"
> class(letters)
[1] "character"
> class(seq(1:10))
[1] "integer"
> class(seq(1,10, by=.01))
[1] "numeric"
> class(diag(10))
[1] "matrix"
> class(iris)
[1] "data.frame"
> class(iris$Petal.Length)
[1] "numeric"
> class(iris$Species)
[1] "factor"
> class(iris$Petal.Length > 2)
[1] "logical"
> class(lm(iris$Petal.Width ~ iris$Petal.Length))
[1] "1m''
> class(hist(iris$Petal.Width))
[1] "histogram"
> class(table(iris$Species))
[1] "table"
```

The letters built-in constant in this example is a convenient way to get the 26 lower-case Roman letters; for upper-case use LETTERS.

As the last three examples show, many S functions create their own classes. These then can be used by generic functions such as summary to determine appropriate behaviour:

```
> summary(iris$Petal.Length)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    1.00 1.60 4.35 3.76 5.10
> summary(iris$Species)
    setosa versicolor virginica
            50 50 50
> summary(lm(iris$Petal.Width ~ iris$Petal.Length))
Ca11:
1m(formula = iris$Petal.Width ~ iris$Petal.Length)
Residuals:
    Min 1Q Median 3Q Max
-0.565 -0.124 -0.019 0.133 0.643
```

```
Coefficients:
\begin{tabular}{lcrrr} 
& Estimate & Std. Error t value & \(\operatorname{Pr}(>\mid \mathrm{t\mid})\) \\
(Intercept) & -0.36308 & 0.03976 & -9.13 & \(4.7 \mathrm{e}-16\) \\
iris\$Petal.Length & 0.41576 & 0.00958 & 43.39 & \(<2 \mathrm{e}-16\)
\end{tabular}
Residual standard error: 0.206 on 148 degrees of freedom
Multiple R-Squared: 0.927,Adjusted R-squared: 0.927
F-statistic: 1.88e+03 on 1 and 148 DF, p-value: <2e-16
> summary(table(iris$Species))
Number of cases in table: 150
Number of factors: 1
```

S has functions for testing if an object is in a specific class or mode, and for converting modes or classes, as long as such a conversion makes sense. These have the form is. (test) or as. (convert), followed by the class name. For example:

```
> is.factor(iris$Petal.Width)
[1] FALSE
> is.factor(iris$Species)
[1] TRUE
> as.factor(iris$Petal.Width)
    [1] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.1
[145] 2.5 2.3 1.9 2 2.3 1.8
22 Levels: 0.1 0.2 0.3 0.4 0.5 0.6 1 1.1 1.2 1.3 1.4 ... 2.5
> as.numeric(iris$Species)
    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 3 3
```

The is.factor and is.numeric class test functions return a logical value (TRUE or FALSE) depending on the class their argument. The as.factor class conversion function determined the unique values of petal length (22) and then coded each observation; this is not too useful here; in practice you would use the cut function. The as.numeric conversion function extracts the level number of the factor for each object; this can be useful if we want to give a numeric argument derived from the factor
4.13.1 The S3 and S4 class systems

S has two class systems, referred to as $S 3$ (old-style) and $S 4$ (new-style). Most R functions still use S 3 classes, as presented in the previous section, but most new and rewritten packages use the more powerful and modern S4 classes. The difference between the two systems is readily apparent in the output of both the class and str functions.

A good example of S4 classes is the class structure of the sp spatial statistics package [34]. First we look at an R object that is an old-style (S3) class. Note the use of the require function instead of library; this ensures that the library is loaded only once.

```
> require(sp)
> data(meuse)
class(meuse)
[1] "data.frame"
> str(meuse)
data.frame': 155 obs. of 14 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 \ldots..
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...
```

The sample data meuse is imported as an S3 class, namely a data.frame. Notice that the coördinates of each point are listed as fields. However, sp has defined some S4 classes to make the spatial nature of the data explicit.
sp also provides a coordinates function to set the spatial coördinates and thereby create explict spatial data.

```
> coordinates(meuse) <- ~ x + y
    # alternate command format: coordinates(meuse) <- c("x", "y")
class(meuse)
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
> str(meuse)
Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
    ..@ data :Forma1 class 'AttributeList' [package "sp"] with 1 slots
    .. .. ..@ att:List of 12
    .. .. .. ..$ cadmium: num [1:155] 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
    .. .. .. ..$ dist.m : num [1:155] 50 30 150 270 380 470 240 120 240 420 ...
    ..@ coords.nrs : int [1:2] 1 2
    ..@ coords : num [1:155, 1:2] 181072 181025 181165 181298 181307 ...
    .. ..- attr(*, "dimnames")=List of 2
    .. .. ..$ : NULL
    .. .. ..$ : chr [1:2] "x" "y"
    ..@ bbox : num [1:2, 1:2] 178605 329714 181390 333611
    .. ..- attr(*, "dimnames")=List of 2
    .. .. ..$ : chr [1:2] "x" "y"
    .. .. ..$ : chr [1:2] "min" "max"
    ..@ proj4string:Forma1 class 'CRS' [package "sp"] with 1 slots
    .. .. ..@ projargs: chr NA
```

The object meuse has been promoted to an S4 class Spatia1PointsDataFrame, which is shown as being a formal class defined by sp .

The class hierarchy may be examined with the getClass function:

```
> getClass("SpatialPointsDataFrame")
Slots:
Name: data coords.nrs coords bbox proj4string
Class: data.frame numeric matrix matrix CRS
Extends:
```

```
Class "SpatialPoints", directly
Class "Spatial", by class "SpatialPoints", distance 2
Known Subclasses:
Class "SpatialPixelsDataFrame", directly, with explicit coerce
```

This shows that this class inherits from class SpatialPoints and in turn can be extended as class SpatialPixelsDataFrame.

S4 classes have named slots, marked by the @ sign in the output of str and also shown in the output of getClass; these can also be listed with the slotNames function:

```
> slotNames(meuse)
[1] "data" "coords.nrs" "coords" "bbox" "proj4string"
```

The contents of these slots are explained in the help for the $S 4$ class:

```
> ?"SpatialPointsDataFrame-class"
```

Each slot is either a primitive S object (e.g. slot bbox which is a matrix) or another S4 class (e.g. slot data which is an object of class AttributeList also defined by the $s p$ package):

```
> class(meuse@bbox)
[1] "matrix"
> class(meuse@data)
[1] "AttributeList"
attr(,"package")
[1] "sp"
```

Slots may be accessed directly with the @ operator, just as fields in data frames are accessed with the $\$$ operator. For example, to extract the bounding box (limiting coördinates) of this spatial data set:

```
> meuse@bbox
    min max
x 178605 181390
y 329714 333611
> meuse@bbox['x",'min"]
[1] 178605
```

However, it is better practice to use access methods:

```
> bbox(meuse)
    min max
x 178605 181390
y 329714 333611
```

Each S4 class has a set of methods that apply to it; bbox is an example that applies not only to objects of class SpatialPointsDataFrame, but to objects of the generalised class from which class SpatialPointsDataFrame is specialised, namely class SpatialPoints and class Spatial.

To determine the methods that can apply to a class, review the help, using the class?<class name> syntax:

```
> class?SpatialPointsDataFrame
> class?SpatialPoints
> class?Spatial
```

As this example shows, classes may be organised in an inheritance structure, so that the behaviour of a more generalised class is automatically inherited by a more specialised class; these are said to extend the base class.

For example class Spatia1PointsDataFrame extends class SpatialPoints, which in turn extends the base class Spatia1. These have appropriate slots and methods:

Spatia1 Only has a bounding box (slot bbox and projection (slot proj4string); no spatial objects as such;

SpatialPoints Also has coördinates (slot coords) of each point; at this level of hierarchy there are also class SpatialLines and class SpatialPolygons;

SpatialPointsDataFrame Also has attributes (slot data) for each point;
SpatialGridDataFrame Points are on a regular grid, inherited from class GridTopology as well as class Spatia1PointsDataFrame.

The real power of this approach is seen when generic methods are applied to objects of the various classes; each class then specialises the generic method appropriately. For example, the spplot plotting method gives a different kind of plot for each class that inherits from class Spatial; we can see this with the showMethods method:

```
> showMethods(spplot)
Function "spplot":
obj = "SpatialPixelsDataFrame"
obj = "SpatialGridDataFrame"
obj = "SpatialPolygonsDataFrame"
obj = "SpatialLinesDataFrame"
obj = "SpatialPointsDataFrame"
```

For more on the S4 class system, see Chambers [3, Ch. 7 \& 8] and Venables \& Ripley [56, Ch. 5].

4.14 Descriptive statistics

Numeric vectors can be described by a set of functions with self-evident names, e.g. min, max, median, mean, length:

```
> data(trees); attach(trees)
```

```
> min(Volume); max(Volume); median(Volume);
+ mean(Volume); length(Volume)
[1] 10.2
[1] 77
[1] 24.2
[1] 30.17097
[1] 31
```

Another descriptive function is quantile:

```
> quantile(Volume)
    0% 25% 50% 75% 100%
10.2 19.4 24.2 37.3 77.0
> quantile(Volume, .1)
    10%
15.6
> quantile(Volume, seq(0,1,by=.1))
    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10.2 15.6 18.8 19.9 21.4 24.2 27.4 34.5 42.6 55.4 77.0
```

The summary function applied to data frames combines several of these descriptive functions:

```
> summary(Volume)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
```


Some summary functions are vectorized and can be applied to an entire data frame:

```
> mean(trees)
    Girth Height Volume
13.24839 76.00000 30.17097
> summary(trees)
    Girth Height Volume
    Min. : 8.30 Min. :63 Min. :10.20
    1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
    Median :12.90 Median :76 Median :24.20
    Mean :13.25 Mean :76 Mean :30.17
    3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
    Max. :20.60 Max. :87 Max. :77.00
```

Others are not, but can be applied to margins of a matrix or data frame with the apply function:

```
> apply(trees, 2, median)
    Girth Height Volume
    12.9 76.0 24.2
```

The margin is specified in the second argument: 1 for rows, 2 for columns (fields in the case of data frames).

Surprisingly, base R has no functions for skewness and kurtosis; these are provided by the e1071 package written by TU Wien ${ }^{31}$.

```
> require(e1071)
> skewness(trees$Volume)
[1] 1.0133
> kurtosis(trees$Volume)
[1] 0.24604
```

The kurtosis here is "excess" kurtosis, i.e., subtracting 3 from the kurtosis.

4.15 Classification tables

For data items that are classified by one or more factors, the table function counts the number of observations at each factor level or combination of levels. We illustrate this with the meuse dataset included with the sp package. This dataset includes four factors:

```
> require(sp); data(meuse); str(meuse)
    `data.frame': 155 obs. of 14 variables:
    $ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
    $ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
    $ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
    $ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 ...
> attach(meuse)
> table(ffreq)
ffreq
    1 2 3
8448 23
> round(100*table(ffreq)/length(ffreq), 1)
ffreq
    1 2 3
54.2 31.0 14.8
> table(ffreq, landuse)
    landuse
ffreq Aa Ab Ag Ah Am B Bw DEN Fh Fw Ga SPO STA Tv W
        1
        2
        3}1
```

The last example is the cross-classification or contingency table showing which land uses are associated with which flood frequency classes.

The χ^{2} test for conditional independence may be performed with the chisq.test function:
> chisq.test(ffreq, lime)
Pearson's Chi-squared test
data: ffreq and lime

[^13]```
X-squared = 26.81, df = 2, p-value = 1.508e-06
```

Both the $\chi^{2}$ statistic and the probability that a value this large could occur by chance in the null hypothesis of no association is true (the "p-value") are given; the second is from the $\chi^{2}$ table with the appropriate degrees of freedom ("df"). Here it is highly unlikely, meaning the flood frequency and liming are not independent factors.

### 4.16 Sets

S has several functions for working with lists (including vectors) as sets, i.e. a collection of elements; these include the is.element, union, intersect, setdiff, setequal functions. The unique function removes duplicate elements from a list; the duplicated function returns the indices of the duplicate elements in the original list.

The setdiff function can be used to select the complement of a defined set. For example, in $\S 4.9$ we selected random elements of the trees example dataset. We repeat that here; suppose this is a subsample, perhaps for calibration of some model. We select $2 / 3$ of the trees for this set at random, rounded down to the nearest integer with the floor function:

```
dim(trees)[1]
[1] 31 3
> floor(dim(trees)[1]*2/3)
[1] 20
> (tr.calib <- trees[sort(sample(1:dim(trees)[1], floor(dim(trees)[1]*2/3))),])
 Girth Height Volume
 8.6 65 10.3
4 10.5 72 16.4
30}18.0\quad80\quad51.
```

If we now want to select the validation set, i.e. the remaining trees, we use the setdiff function on the two sets of row names (extracted with the rownames function:

```
> rownames(trees)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15"
[16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"
[31] "31"
> rownames(tr.calib)
 [1] "2" "4" "5" "8" "10" "11" "12" "13" "14" "16" "18" "20" "21" "22" "23"
[16] "26" "27" "28" "29" "30"
> setdiff(rownames(trees), rownames(tr.calib))
 [1] "1" "3" "6" "7" "9" "15" "17" "19" "24" "25" "31"
> (tr.valid <- trees[setdiff(rownames(trees), rownames(tr.calib)),])
 Girth Height Volume
1 8.3 70 10.3
3 8.8
6
31 20.6 87 77.0
```

```
> dim(tr.calib)
[1] 20 3
> dim(tr.valid)
[1] 11 3
```

The dataframe has been split into mutually-exclusive frames for calibration (20 observations) and validation (11 observations).

### 4.17 Statistical models in S

Statistical models in S are specified in symbolic form with model formulae. These formulae are arguments to many statistical functions, most notably the 1 m (linear models) and g 7 m (generalised linear models) functions, but also in base graphics ( $\$ 5.1$ ) functions such as p 1 ot and boxplot and trellis graphics (§5.2) functions such as levelplot.

The simplest form is where a (mathematically) dependent variable is (mathematically) explained by one (mathematically) independent variable; like all model formulae this uses the $\sim$ formula operator to separate the left (dependent) from the right (independent) sides of the expression:

```
> (mode1 <- 1m(trees$Volume ~ trees$Height))
Ca11:
1m(formula = trees$Volume ~ trees$Height)
Coefficients:
 (Intercept) trees$Height
 -87.12 1.54
```

This is to be read like a mathematical function, where the left-hand side is the result ("dependent") and the right-hand side is the expression ("independent"). In other words, a formula is read as:

- a response variable (left-hand side) ...
- ... is explained by (the $\sim$ symbol) ...
- ...a formula including one or more predictor variables

In this example, the tree volume is to be explained as a linear function of its height; this is just a first-order linear regression, with the best-fit least-squares line $y=-87.12+1.54 x$ : for every foot increase in height, the volume increases by $1.54 \mathrm{ft}^{3}$; also, a zero-height tree would have a negative volume ${ }^{32}$.

If the data frame has been attached, this can be written more simply:
> attach (trees)
${ }^{32}$ Nicely illustrating the risks of extrapolating outside the range of calibration; this data set only has trees from 63 to 87 feet tall, so the fitted relation says nothing about shorter trees

```
> model <- 1m(Volume ~ Height)
```

but even if not, the variable names can be referred to a frame with the data= named argument:

```
> model <- 1m(Volume ~ Height, data=trees)
```

Additive effects More complicated models include additive effects, using the + formula operator:
> model <- 1m(Volume ~ Height + Girth, data=trees)

Note this is not an arithmetic addition, but rather a special use in the model notation. Here the tree volume is explained by by both its height and girth, considered as independent predictors.

Interactions The : formula operator is used to indicate interactions; usually these are used in addition to additive terms:
> mode1 <- 1m(Volume ~ Height + Girth + Height:Girth, data=trees)

Here the tree volume is explained by both its height and girth, as well as their interaction, i.e. that the effect of girth is different at different heights.

The * formula operator is shorthand for all linear terms and interactions of the named independent variables, so that the previous example could have been more simply written as:

```
> model <- 1m(Volume ~ Height * Girth, data=trees)
```

The $\wedge$ formula operator is used to indicate predictor crossing to the specified degree:

```
> mode1 <- 1m(Volume ~ (Height + Girth)^2, data=trees)
```

Here the $\wedge 2$ expands to all interactions between the named predictors, since there are only two; this is equivlent to Height + Girth + Height:Girth, which in this two-predictor case is also the same as Height * Girth.

Removing terms Sometimes it is convenient to specify a model and then remove a term from it with the - formula operator. As a somewhat artificial example, to model tree volume by only tree girth and its interaction with height:

```
> model <- 1m(Volume ~ Height*Girth - Height, data=trees)
```

This is equivalent to:

```
> mode1 <- 1m(Volume ~ Girth + Girth:Height, data=trees)
```

The - formula operator is often used to remove the intercept; see below.

Nested models The / operator is used to specify that the second-named predictor is nested within the first-named predictor, i.e. levels of the nested predictor are not independent factors. Nested models are often used in designed experiments such as split-plot designs or replicated measurements within an experimental unit. This is also used for the analysis of covariance (ANCOVA), where the covariates are nested within the treatment; in this case the intercept should be removed (see next $\mathbb{\Pi}$ ).

No intercept The intercept term (e.g. the mean) is implicit in model formulas. For regression through the origin, it must be explicitly removed with the - formula operator, in this case the implied intercept, with the expression -1 . Or, the origin can be named explicitly with the + formula operator, with the expression +0 . For example, it's certainly true that a tree with no girth has no height, so if we want to force the regression of height on girth to go through $(0,0)$ :

```
> model <- 1m(Height ~ Girth - 1, data=trees)
> mode1 <- 1m(Height ~ 0 + Girth, data=trees)
```

Note: Although this seems logical, in the range of timber trees, this may give a poorer predictive relation than allowing a (physically impossible) intercept and only predicting in the range of the calibration data.

Arithmetic operations in formulas Since the characters + , *, ^, and / have special meaning in formulas, they must be "quoted" with the I operator if they are to interpreted as arithmetic operators. For example, to model tree volume from the height-to-girth ratio:
> mode1 <- 1m(Volume ~ I (Height / Girth), data=trees)

To model volume as the square of girth:
> model <- 1m(Volume ~ I (Girth^2), data=trees)

This is only needed if there is a danger of mis-interpretation; most functions can be used directly in formulas, e.g. the log function to compute natural logarithms. For example, to fit a log-log regression of tree height by width:

```
> mode1 <- 1m(log(Height) ~ log(Girth))
```

For further description of model formulae, see the help topic:
> ?formula

The design matrix For full control of linear modelling, R offers the ability to extract or build design matrices of linear models; this is discussed in most regression texts, for example Christensen [4].

The design matrix of a model is extracted with the mode1.matrix function:

```
mode1 <- 1m(Volume ~ Height + Girth, data=trees)
(X <- model.matrix(model))
 (Intercept) Height Girth
 1 70 8.3
 1 65 8.6
 1 80 18.0
30
```

This matrix contains the values of the predictor variables for each observation. This provides a good check on your understanding of the model structure. The matrix can be used to directly compute the least-squares linear solution:

$$
\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

using the $t$ (matrix transpose) and solve (matrix inversion) function, and the $\% \%$ (matrix multiplication) operator. For example, to directly compute the regression coefficients for the model of tree volume predicted by height and girth in the trees dataset:

```
> Y <- trees$Volume
> (beta <- solve(t(X) %*% X) %*% t(X) %*% Y)
 [,1]
(Intercept) -57.98766
Height 0.33925
Girth 4.70816
> # check this is the same result as from 1m()
> 1m(trees$Volume ~ trees$Height + trees$Girth)
Coefficients:
(Intercept) trees$Height trees$Girth
 -57.988 0.339 4.708
```

The direct computation may be numerically unstable and is certainly slow; 1 m uses more sophisticated numerical functions.
4.17.1 Models with categorical predictors

The 1 m and g 7 m functions are also used for models with categorical predictors and for mixed models, as well as for models using only continuous predictors. The categorical variables must be ordered or unordered S factors; this can be checked with the is.factor function or examined directly with the str function.

Factors are included in the design matrix as contrasts which divide the observations according to the classifying factors. This is quite a technical subject, treated thoroughly in standard linear modelling texts such as those by Venables \& Ripley [57], Fox [18], Christensen [4] and Draper \& Smith [14]. The practical importance of contrasts is mainly the interpretation of the results that is possible with a given contrast, and secondly in the computational stability.

One of R's environment options is the default contrast type for unordered and ordered factors; these can be viewed and changed with the options function. Contrasts for specific factors can be viewed and set with the contrasts function, using the contr.helmert, contr.poly, contr.sum, and contr. treatment functions to build contrast matrices.

```
> options("contrasts")
$contrasts
 unordered ordered
"contr.treatment" "contr.poly"
```

Polynomial contrasts assume equal feature-space distance between levels of the ordered predictor; this may not be justified and so you may want to change the contrast type.

For example, the meuse soil pollution dataset includes a factor for flooding frequency; this is an unordered factor but the three levels are naturally ordered from least to most flooding. So we might want to change the data type.

```
> data(meuse)
> str(meuse$ffreq)
 Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 ...
> contrasts(meuse$ffreq)
 2 3
10
2 0
3 0 1
> lm(log(meuse$1ead) ~ meuse$ffreq))
Coefficients:
(Intercept) ffreq2 ffreq3
 5.106 -0.666 -0.626
> meuse$ffreq <- as.ordered(meuse$ffreq)
> str(meuse$ffreq)
 Ord.factor w/ 3 levels "1"<"2"<"3": 1 1 1 1 1 1 1 1 1 1 ...
> contrasts(meuse$ffreq)
 .L .Q
1 -7.0711e-01 0.40825
2 -9.0738e-17 -0.81650
3 7.0711e-01 0.40825
> 1m(log(meuse$lead) ~ meuse$ffreq))
Coefficients:
 (Intercept) meuse$ffreq.L meuse$ffreq.Q
 4.675 -0.443 0.288
```

The unordered factor has treatments contrasts (sometimes called "dummy
variables") whereas the ordered factor has orthogonal polynomial contrasts. These result in different fitted coefficients.

### 4.17.2 Analysis of Variance (ANOVA)

The results of linear models can be expressed in the traditional language of ANOVA as found in many textbooks with the aov function; this calls 7 m and formats its results in a traditional ANOVA table:

```
> model <- aov(Volume ~ Height + Girth, data=trees)
> class(mode1)
[1] "aov" "1m"
> summary (mode1)
 Df Sum Sq Mean Sq F value Pr(>F)
Height 1
Girth 1 4783 4783 317< 2e-16
Residuals 28 422 15
```

Two models on the same dataset may be compared with the anova function; this is one way to test if the more complicated model is significantly better than the simpler one:

```
> model.1 <- aov(Volume ~ Height + Girth, data=trees)
> model.2 <- aov(Volume ~ Height * Girth, data=trees)
> anova(mode1.1, mode1.2)
Analysis of Variance Table
Mode1 1: Volume ~ Height + Girth
Mode1 2: Volume ~ Height * Girth
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 28422
2 27 198 1
```

In this case the interaction term of the more complicated model is highly significant.

### 4.18 Model output

The result of a 7 m (linear models) function is a data structure with detailed information about the model, how it was fitted, and its results. It can be viewed directly with the str function, but it is better to access the model with a set of extractor functions: coefficients to extract a list with the model coefficients, fitted to extract a vector of the fitted values (what the model predicts for each observation), residuals to extract a vector of the residuals at each observation, and formula to extract the model formula:

```
> model <- 1m(Volume ~ Height * Girth, data=trees)
> coefficients(mode1)
 (Intercept) Height Girth Height:Girth
 69.39632 -1.29708 -5.85585 0.13465
> fitted(mode1)
 1 2 5 %..
```

```
 8.2311 9.9974 10.8010 16.3186 18.3800 ...
> residuals(mode1)
 1 rrrrrr
 2.068855 0.302589 -0.600998 0.081368 0.420047 ...
> formula(mode1)
Volume ~ Height * Girth
```

The results are best reviewed with the summary generic function, which for linear models is specialized into summary. 1 m :

```
> summary(mode1)
Ca11:
1m(formula = Volume ~ Height * Girth, data = trees)
Residuals:
 Min 1Q Median 3Q Max
-6.582 -1.067 0.303 1.564 4.665
Coefficients:
 Estimate Std. Error t value Pr(> |t|)
(Intercept) 69.3963 23.8358 2.91 0.00713
Height -1.2971 0.3098 -4.19}00.0002
Girth }\begin{array}{lrlll}{-5.8558}&{1.9213}&{-3.05}&{0.00511}
Height:Girth 0.1347 0.0244 5.52 7.5e-06
Residual standard error: 2.71 on 27 degrees of freedom
Multiple R-Squared: 0.976,Adjusted R-squared: 0.973
F-statistic: 359 on 3 and 27 DF, p-value: <2e-16
```

This provides the most important information about the model; for more insight consult textbooks which explain linear modelling, e.g. Venables \& Ripley [57], Fox [18], Christensen [4] or Draper \& Smith [14]:

- The model formula with which 1 m was called;
- A summary of the residuals; by definition the mean is zero so is not reported;
- The model coefficients (first column);
- The standard error associated with each coefficient (second column); these can be used to construct confidence intervals;
- The significance level of each coefficient (third column); this is the probability that rejecting the null hypothesis for the listed coefficient would be a mistake;
- The residual standard error, which is defined as the square root of the estimated variance of the random error: $\sigma^{2}=(1 /(n-p)) * \sum\left(r_{i}{ }^{2}\right)$ where $r_{i}$ is one of the $n$ residuals and $p$ is the number of coefficients.
- The coefficient of determination $R^{2}$, both the unadjusted fraction of variance explained by the model $R^{2}=1-($ Residual SS/Total SS) and
the coefficient adjusted for the number of parameters in the model,

$$
1-\left[(n-1) /(n-p) *\left(1-R^{2}\right)\right] .
$$

The AIC (Akaike's An Information Criterion) function is often used to compare models; the lower AIC is better:

```
> AIC(lm(Volume ~ Height * Girth))
[1] 155.47
> AIC(lm(Volume ~ Height + Girth))
[1] 176.91
> AIC(1m(Volume ~ Girth))
[1] 181.64
> AIC(1m(Volume ~ 1))
[1] 264.53
```

In this example the successively more complicated models have lower AIC, i.e. provide more information.

### 4.18.1 Model diagnostics

The model summary (\$4.18) shows the overall fit of the model and a summary of the residuals, but gives little insight into difficulties with the model (e.g. non-linearity, heteroscedascity of the residuals). A graphical presentation of some common diagnostic plots is given by the plot function applied to the model object (note that the generic plot function in this case automatically calls the specific p 1 ot .1 m function):

```
> mode1 <- 1m(Volume ~ Height * Girth, data=trees)
> par(mfrow=c(2,2)) # set up a 2x2 matrix for the 4 diagnostic graphs
> plot(model)
> par(mfrow=c(1,1)) # reset the graphics device to show just 1 graph
```

This shows four plots (Figure 4): (1) residuals vs. fitted; (2) normal QQ plot of the residuals; (3) scale vs. location of residuals; (4) residuals vs. leverage. The intepretation of these is explained in many regression textbooks. The par function sets up a matrix of graphs in one figure; here there are four diagnostic graphs produced by the default plot. 1 m function, so a 2 x 2 grid is set up. See §5.4 for more information.

Many other diagnostics are available. There are several functions to directly access these from the model itself: dfbetas, dffits, covratio, cooks.distance and hatvalues; methdods rstandard and rstudent return the standardized and Studentized residuals, respectively. These diagnostic measures are explained in regression texts [e.g. 14, 18]; many of these were developed or expanded by Cook \& Weisberg [8].

For example, to plot the "hat" values (leverage) for each point, with the number of the most influential observations:

```
> h <- hatvalues(mode1)
> plot(h, type="h")
```



Figure 4: Regression diagnostic plots

```
> text(h, ifelse(h > 3*mean(h), seq(1:length(h)),""), pos=2)
```

A direct way to access diagnostics is with the influence.measures function applied to the fitted model:

```
> inf1 <- influence.measures(mode1)
> str(infl)
List of 3
 $ infmat: num [1:31, 1:8] 0.23213 0.06511 -0.15754 0.00173 -0.02461 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:31] "1" "2" "3" "4" ...
 $: chr [1:8] "dfb.1_" "dfb.Hght" "dfb.Grth" "dfb.Hg:G" ...
 $ is.inf: logi [1:31, 1:8] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:31] "1" "2" "3" "4" ...
 $: chr [1:8] "dfb.1_" "dfb.Hght" "dfb.Grth" "dfb.Hg:G" ...
 $ cal1 : language 1m(formula = Volume ~ Height * Girth, data = trees)
 - attr(*, "class")= chr "infl"
```

The key field here is is.inf, which specifies which observations were especially influential in the fit, using eight different measures of influence, which are listed as attributes of this field.

```
> attr(inf1$infmat, "dimnames")[[2]]
[1] "dfb.1_" "dfb.Hght" "dfb.Grth" "dfb.Hg:G" "dffit" "cov.r"
[7] "cook.d" "hat"
```

The most common use here is to list the observations for which any of the influence measures were excessive:

```
> infl$is.inf[which(apply(inf1$is.inf, 1, any)) ,]
 dfb.1_ dfb.Hght dfb.Grth dfb.Hg:G dffit cov.r cook.d hat
2 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
3 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
18 FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
20 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
31 FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
```

This example illustrates the use of the which function to return the indices in a vector where a logical condition is true, and the any function to perform a logical or on a set of logical vectors, in this case the eight diagnostics. In this example, observation 31 has a high leverage, 18 a high DFFITS value, and all five high COVRATIO.

Notice also the use of the app7y function to apply the any "is any element of the vector TRUE?" function to each row.

### 4.18.2 Model-based prediction

The fitted function only gives values for the observations; often we want to predict at other values. For this the predict generic function is used; in the case of linear models this specialises to the predict. 1 m function. The first argument is the fitted model and the second is a data frame in which to look for variables with which to predict; these must have the same names as in the model formula. Both confidence and prediction intervals may be requested, with a user-specified confidence level.

For example, to predict tree volumes for all combinations of heights (in 10 foot increments) and girths (in 5 inch radius increments) ${ }^{33}$, along with the $99 \%$ confidence intervals of this prediction:

```
> mode1 <- 1m(Volume ~ Height * Girth, data=trees)
new.data <- data.frame(expand.grid(Height = seq(50, 100, by=10),
 Girth = seq(5, 25, by=5)))
> pred <- predict(mode1, new.data, interval="prediction",
 leve1=0.99)
 # add the predictor values for easy interpretation
pred <- cbind(new.data, pred)
str(pred)
\({ }^{33}\) Some of these combinations would result in strange looking trees!
```

```
data.frame': 30 obs. of 5 variables:
$ Height: num 50 60 70 80 90 100 50 60 70 80 ...
$ Girth : num 5 5 5 5 5 5 10 10 10 10 ...
$ fit : num 8.93 2.69 -3.55 -9.79 -16.03 ...
$ 1wr : num -7.37 -9.37 -12.74 -18.89 -27.88 ...
$ upr : num 25.222 14.743 5.639 -0.685 -4.167 ...
 # fits for trees 50 feet tall
> pred[pred$Height==50,]
 fit lwr upr Height Girth
1 8.9265 -7.3694 25.222 50 5
7 13.3109 3.0322 23.590 50 10
13 17.6952 5.7180 29.672 50 15
19 22.0796 2.6126 41.547 50 20
25 26.4639 -2.0348 54.963 50 25
```


### 4.19 Advanced statistical modelling

The 1 m function is the workhorse of modelling in $S$, because of the importance of linear models and its versatility. However, R has many other modelling functions, including:
. 1 m implements weighted least squares if the weights are specified as an optional argument;

1oess for local fitting;

- g7m for generalised linear models;
- r1m and 1qs (in the MASS package) for robust fitting of linear models;
. 1m.ridge (also in the MASS package) for ridge regression;
- n1s for non-linear least squares fitting;
- step for stepwise regression; this is a dangerous procedure when applied blindly; step can select the "best" model, based on AIC, using forward or backward selection and a user-specified stopping and starting points;
- The p1s package [27] implements partial least squares regression (PLSR) and principal components regression (PCR); these are often used in spectroscopy and chemometrics;
- The boot package provides bootstrapping functions;
- Principal components of multivariate matrices are computed by the prcomp function; the results can be visualised with the biplot and screeplot functions.

There are many other modelling functions; see $\S 10.3$ for some ideas on how to find the one you want. The advanced text of Venables \& Ripley [57]
has chapters on many sophisticated functions, all with theory, references, and S code. Many of these functions are implemented in the MASS package.

### 4.20 Missing values

A common problem in a statistical dataset is that not all variables are recorded for all records. R uses a special missing value value for all data types, represented as NA, which stands for 'not available'. Within R, it may be assigned to a variable.

For example, suppose the volume of the first tree in the trees dataset is unknown:

```
> trees$Volume[1] <- NA
> str(trees)
`data.frame': 31 obs. of 3 variables:
 $ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 ...
 $ Height: num 70 65 63 72 81 83 66 75 80 75 ...
 $ Volume: num NA 10.3 10.2 16.4 18.8 19.7 15.6 ...
> summary(trees$Volume)
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
 10.2 19.8
```

As the example shows, some functions (like summary) can deal with NA's, but others can't. For example, if we try to compute the Pearson's correlation between tree volume and girth, using the cor function, with the missing value included:

```
> cor(trees$Volume, trees$Girth)
Error in cor(trees$Volume, trees$Girth) :
 missing observations in cov/cor
```

This message is explained in the help for cov, where several options are given for dealing with missing values within the function, the most common of which is to include a case in the computation only if no variables are missing:

```
> cor(trees$Volume, trees$Girth, use="complete.obs")
[1] 0.967397
```

To find out which cases have any missing value, S provides the complete. cases function:
> complete.cases(trees)
[1] false true true
[14] true true
[27] TRUE TRUE TRUE TRUE TRUE
This shows that the first case (record) is not complete.
The na. omit function removes cases with a missing value in any variable:

```
> trees.complete <- na.omit(trees)
> str(trees.complete)
'data.frame': 30 obs. of 3 variables:
$ Girth : num 8.6 8.8 10.5 10.7 10.8 11 11 ...
$ Height: num 65 63 72 81 83 66 75 80 75 79 ...
$ Volume: num 10.3 10.2 16.4 18.8 19.7 15.6 _..
```

The first observation, with the missing volume, was removed.

### 4.21 Control structures and looping

$S$ is a powerful programming language with Algol-like syntax ${ }^{34}$ and control structures.

Single statements may be grouped between the braces \{ and \}, separated either by new lines or the command separator ;. The value of the $\{$ and $\}$ expression is the value of its last statement.

The if ...else control structure allows conditional execution. These can be nested, i.e. the statement for either the if or else can itself contain a if ...else control structure.

The for, while, and repeat functions allow looping. Note however that because of R's many vectorized functions looping is much less common in $R$ than in non-vectorized languages such as $C$.

For example, to convert the sample confusion matrix from counts to proportions, you might be tempted to try this:

```
> cmp <- cm
> for (i in 1:1ength(cm)) cmp[i] <- cm[i]/sum(cm)
> cmp
 [,1] [,2] [,3] [,4]
[1,] 0.21472393 0.08588957 0.06748466 0.006134969
[2,] 0.02453988 0.06748466 0.01840491 0.000000000
[3,] 0.07361963 0.05521472 0.23312883 0.024539877
[4,] 0.01226994 0.03067485 0.07361963 0.012269939
```

But you can get the same result with a vectorized operation:

```
> cmp <- cm/sum(cm)
```

See Chapter 9 of [36] for more details.
An example of both the for and if ...else control structures is the following code to find the closest sample point to a given point. This also illustrates the data.frame function to create a new data frame, and the runif function to draw random numbers, by default in the range $0 \ldots 1$.
${ }^{34}$ also used in C and its derivatives such as C++ and Java; of Algol it has been aptly said that it was a great improvement over its successors.

Note also the use of the ifelse function to select one of two alternatives, in this case the colour to plot, based on some truth condition.

We also plot the sample points and target point, showing the nearest point and shift. This uses the plot, points, text and arrows base graphics functions. The result is shown in Figure 5.

```
simulate ten sample points
> n.pts <- 10
> sample.pts <- data.frame(x = runif(n.pts), y = runif(n.pts))
simulate the given point
new.pt <- data.frame(x = runif(1), y = runif(1))
> print(paste("Target point: x=", round(new.pt$x,4), ", y=", round(new.pt$y,4)))
[1] "Target point: x= 0.0756 , y= 0.8697"
the distance to the nearest point can't be further on a 1x1 grid
min.dist <- sqrt(2); close.pt <- NULL
> for (pt in 1:n.pts)
+ d <- sqrt((sample.pts[pt,"x"] - new.pt$x)^2 + (sample.pts[pt,"y"] - new.pt$y)^2);
if (d < min.dist)
 min.dist <- d;
 closest.pt <- pt;
 print(paste("Point ",pt," is closer: d=", round(d,4)))
 else
 print(paste("Point ",pt,"is not closer"))
[1] "Point 1 is closer: d= 0.4066"
[1] "Point 2 is not closer"
[1] "Point 3 is closer: d= 0.1478"
[1] "Point 4 is not closer"
[1] "Point 5 is not closer"
[1] "Point 6 is not closer"
[1] "Point 7 is not closer"
[1] "Point 8 is not closer"
[1] "Point 9 is not closer"
[1] "Point }10\mathrm{ is not closer"
> print(paste("Closest point: x=", round(sample.pts[closest.pt,"x"],4), ",
 y=", round(sample.pts[closest.pt,"y"],4)))
[1] "Closest point: x= 0.2061 , y= 0.8003"
> plot(sample.pts, xlim=c(0,1), ylim=c (0,1), pch=20,
 col=ifelse(row.names(sample.pts) == closest.pt, "red", "green"),
 main="Finding the closest point")
text(sample.pts, row.names(sample.pts), pos=3)
points(new.pt, pch=20, col="blue", cex=1.2)
text(new.pt, "target point", pos=3, col="blue")
arrows(new.pt$x, new.pt$y, sample.pts[closest.pt,"x"],
 sample.pts[closest.pt,"y"], length=0.05)
```


### 4.22 User-defined functions

An R user can use the function function to define functions with arguments, including optional arguments with default values. See the example in §C and a good introduction in Chapter 10 of [36]. These then are objects in the workspace which can be called.

For example, here's a function to compute the harmonic mean of a vector;


Figure 5: Finding the closest point
this is defined as

$$
\bar{v}_{h}=\left(\prod_{i=1 \ldots n} v_{i}\right)^{1 / n}
$$

where $n$ is the length of the vector $v$, but is more reliably computed by taking logarithms, dividing by the length, and exponentiating:

```
> hm <- function(v) exp(sum(log(v))/length(v))
> hm(1:99)
[1] 37.6231
> mean(1:99)
[1] 50
```

As it stands, this function does not check its arguments; it only makes sense for a vector of positive numbers:
$>h m(c(-1,-2,1,2))$
[1] NaN
Warning message:
NaNs produced in: $\log (x)$
To correct this behaviour we write a multi-line function with a conditional statement and the return function to leave the function:

```
> hm <- function(v) {
 if (!is.numeric(v)) {
 print("Argument must be numeric"); return(NULL)
 }
 else if (any(v <= 0)) {
```

```
 print("Al1 elements must be positive"); return(NULL)
 }
 else return(exp(sum(log(v))/length(v)))
 }
> class(hm)
[1] "function"
> hm
function(v) {
 }
> hm(letters)
[1] "Argument must be numeric"
NULL
> hm(c(-1, -2, 1, 2))
[1] "A11 elements must be positive"
NULL
> hm(1:99)
[1] 37.6231
```

Note the use of the any function to check if any elements of the argument vector are not positive. Also note how simply typing the function name lists the function object (this is shorthand for the print function); to call the function you must supply the argument list.

Note also the use of the if ...else control structure for conditional execution; these can be nested, i.e. the statement for either the if or else can itself contain a if . . .else control structure.

### 4.23 Computing on the language

As explained in the R Language Definition:
" $R$ belongs to a class of programming languages in which subroutines have the ability to modify or construct other subroutines and evaluate the result as an integral part of the language itself." [38, Ch. 6]

This may seem quite exotic, but it has some practical applications even for the non-programmer R user, in addition to the deeper applications explained in the Definition.

For example, consider the problem of summarising a set of variables that are named B1, B2, $\ldots$ B256 ${ }^{35}$. To avoid writing $m[1]$ <- mean(B1), $m[2]$ <- mean(B2) etc. we'd like to loop through the numbers and form the variable name (with the B prefix and a number) and perform the operation. We do this in three steps:

1. Build up a syntactically-correct string to be evaluated, using the paste function;
2. Parse this into an R language object with the parse function;

[^14]3. Evaluate it with the eval function.

```
> # demonstrate how the string is built up
> paste("m[", b, "] <- mean(B", b, ")", sep="")
Error in paste("m[", b, "] <- mean(B", b, ")", sep = "") :
object "b" not found
> # must define a value for b to see how this works
b <- 4
> paste("m[", b, "] <- mean(B", b, ")", sep="")
[1] "m[4] <- mean(B4)"
> # what does this look like as a parse language object?
> parse(text=paste("m[", b, "] <- mean(B", b, ")", sep=""))
expression(m[4] <- mean(B4))
> # initialise the results vector
> m <- NULL
evaluate this one expression
> eval(parse(text=paste("m[", b, "] <- mean(B", b, ")", sep="")))
Error in mean(B4) : object "B4" not found
must define this variable to compute its mean
B4 <- 0:100
> eval(parse(text=paste("m[", b, "] <- mean(B", b, ")", sep="")))
 # result so far
> m
[1] NA NA NA 50
 # apply to all 256 variables; need B1 .. B256 defined
> for (b in 1:256)
 eval(
 parse(
 text =
 paste("m[", b, "] <- mean(B", b, ")", sep="")
)
)
```

Note that the for expression in this example does not need to be written on separate lines; it is so written here for clarity.

The result of the parse function is an expression; it is also possible to create an R expression, ready to be evaluated with the eval function, with the expression function. For example:

```
> tmp <- expression(2*pi/r)
> r <- 3
> eval(tmp)
[1] 2.0944
```


## 5 R graphics

R provides a rich environment for statistical visualisation [28]. There are two graphics systems: the base system (in the graphics package, loaded by default when R starts) and the trellis system (in the 1attice package).

R graphics are highly customizable; see each method's help page for details and (for base graphics) the help page for graphics parameters: ?par. Except for casual use, it’s best to create a script (§3.5) with the graphics commands; this can then be edited, and it also provides a way to produce the exact same graph later.

Multiple graphs can be placed in the same window for display or printing; see $\S 5.4$, and several graphics windows can be opened at the same time; see §5.3.

To get a quick appreciation of R graphics, run the demostration programs:

```
> demo(graphics)
> demo(image)
> demo(lattice)
```


### 5.1 Base graphics

A technical introduction to base graphics is given in Chapter 12 of [36]. Here we give an example of building up a sophisticated plot step-by-step, starting with the defaults and customizing.

The example is a scatter plot of petal length vs. width from the iris data set. A default scatterplot of two variables is produced by the plot. default method, which is automatically used by the generic plot command if two equal-length vectors are given as arguments:

```
> data(iris)
> str(iris)
'data.frame': }150\mathrm{ obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 ...
> attach(iris)
> plot(Petal.Length, Petal.Width)
```

In this form, the x - and y -axes are given by the first and second arguments, respectively. The same plot can be produced using a formula $\$ 4.17$ showing the dependence, in which case the y -axis is given as the dependent variable on the left-hand side of the formula:

```
> plot(Petal.Width ~ Petal.Length)
```



Figure 6: Default scatterplot

This default plot is shown in Figure 6. It is informative but not so attractive. We can customize the plotting symbol (pch argument), its colour and size (col and cex arguments), the axis labels ( $x>a b$ and $y>a b$ arguments), and graph title (main argument).

Plotting symbols can be specified either by a single character (e.g. "*" for an asterisk) or an integer code for one of a set of graphics symbols. Figure 7 shows the symbols and their codes. Note that symbols 21-26 also have a fill (background) colour, specified by the bg argument; the main colour specified by the col argument specifies the border.

See $\S 5.5$ for details on how to specify colours.
We now produce a customized plot, showing the species:

```
> plot(Petal.Length, Petal.Width, pch=(21:23)[as.numeric(Species)], cex=1.2,
+ xlab="Petal length (cm)", ylab="Petal width (cm)",
+ main="Anderson Iris data",
+ col=c("slateblue", "firebrick", "darkolivegreen")[as.numeric(Species)]
+)
```

It's clear that the species are of different sizes (Setosa smallest, Versicolor in the middle, Virginica largest) but that the ratio of petal length to width is about the same in all three.


Figure 7: Plotting symbols

Note the use of the as.numeric method to coerce the Species, which is a factor, to the corresponding level number (here, 1, 2 and 3), and then the use of this number to index a list of printing characters (pch argument) and colours (col argument).

The plot generic method is an example of a high-level plotting method which begins a new graph. Once the coördinate system is set up by plot, several mid-level plotting methods are available to add elements to the graph, such as lines, points, and text; Table 1 lists the principal methods; see the help for each one for more details.

| abline | Add a Straight Line |
| :--- | :--- |
| arrows | Add Arrows |
| axis | Add an Axis |
| box | Draw a framing Box |
| grid | Add a Grid |
| legend | Add Legends |
| lines | Add Connected Line Segments |
| points | Write Text into the Margins |
| polygon | Add Points |
| rect | Draw Polygons |
| rug | Draw Rectangles |
| segments | Add a Rug |
| symbols | Add Line Segments |
| text | Draw Symbols |
| title | Add Text |
|  | Plot Annotation |

Table 1: Methods for adding to an existing base graphics plot
For example, to add horizontal and vertical lines at the mean and median
centroids, use the abline method:

```
> abline(v=mean(Petal.Length), 1ty=2, col="red")
> abline(h=mean(Peta1.Width), 1ty=2, col="red")
> abline(v=median(Petal.Length), 1ty=2, col="blue")
> abline(h=median(Petal.Width), 1ty=2, col="blue")
```

The 1ty argument specifies the line type (style). These can be specified as a code ( $0=$ blank, $1=$ solid, $2=$ dashed, $3=$ dotted, $4=$ dotdash, $5=$ longdash, 6=twodash) or as a descriptive name "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or "twodash").

To add light gray dotted grid lines at the axis ticks, use the grid method:

To add the mean and median centroids as large filled diamonds, use the points method:

```
> points(mean(Petal.Length), mean(Petal.Width),
cex=2, pch=23, col="black", bg="red")
> points(median(Petal.Length), median(Petal.Width),
+ cex=2, pch=23, col="black", bg="blue")
```

Titles and axis labels can be added with the title method, if they were not already specified as arguments to the plot method:

```
> title(sub="Centroids: mean (green) and median (gray)")
```

Text can be added anywhere in the plot with the text method; the first two arguments are the coördinates as shown on the axes, the third argument is the text, and optional arguments specify the position of the text relative to the coördinates, the colour, text size, and font:

```
> text(1, 2.4, "Three species of Iris", pos=4, col="navyb7ue")
```

A special kind of text is the legend, added with the legend method;

```
legend(1, 2.4, levels(Species), pch=21:23, bty="n",
+ col=c("slateblue", "firebrick", "darkolivegreen"))
```

The abline method can also add lines computed from a model, for example the least-squares regression (using the 1 m method) and a robust regression (using the lqs method of the MASS package):

```
> abline(lm(Petal.Width ~ Petal.Length), 1ty="longdash", col="red")
> require(MASS) # for lqs function
> abline(1qs(Peta1.Width ~ Petal.Length), 1ty=2, col="blue")
```

This customized plot is shown in Figure 8.


Figure 8: Custom scatterplot
5.1.1 Mathematical notation in base graphics

To include mathematical notation in one of the graphics functions that draw text, for example text, axis or title, there is a special syntax explained in the help for the plotmath function. The trick is to turn the argument into an R expression by using the expression function; in this case the text functions interpret the argument as a mathematical expression and the output will be formatted according to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-like rules. It is possible to produce many mathematical symbols, sub- or superscripts, fractions, operators, greek letters etc.; run demo(plotmath) to see examples.

The expression function turns its argument into an $R$ expression, ready to be evaluated with the eval function; more on this in §4.23.

Figure 9 shows an example of a graph with superscripts, e.g., " $R^{2}$ ", and math. notation, e.g. Greek letters such as $\beta$ and a summation, produced with the following code. Note the use of the substitute function to place a numeric value (computed on-the-fly from a linear model result) into a text string, along with math. symbols. Note also the alignment of the text
with the pos "position" argument to the text function.

```
> plot(single$SW ~single$SA, pch=as.numeric(single$spp),
 xlab=expression(paste("Stem area, ", plain(cm)^2)),
 ylab=expression(paste("Sapwood area, ", plain(cm)^2)),
 xlim=c(0,150), ylim=c(0,90))
> abline(0,coefficients(m.al1.sw.sa.spp.i.st)[1])
> title(main="Sapwood area vs. stem area, smaller trees")
> for (i in 2:9) {
 ab1ine(0, coefficients(m.al1.sw.sa.spp.i.st)[1]
 +coefficients(m.al1.sw.sa.spp.i.st)[i],1ty=i-1)
 }
> 1egend(x=0,y=90, 1egend=spp, pch=c(2:1ength(spp),1), 1ty=c(2:1ength(spp),1))
text(150,0,"S formula: 1m(SW ~ SA/spp - 1)",pos=2)
> text(150,6,substitute(plain(R)^2 == x,
 list(x=round(summary(m.al1.sw.sa.spp.i.st)$adj.r.squared,3))), pos=2)
> text(150,12, expression(paste(plain(Mode1),
 ~~ y == beta[1]*s + sum(beta[2]*x[k], k==1, n)
 + epsilon)),
pos=2)
```


## Sapwood area vs. stem area, smaller trees



Figure 9: Scatterplot with math symbols, legend and model lines

### 5.1.2 Returning results from graphics methods

Many high-level graphics methods return results, which may be assigned to an S object or used directly in an expression. For example, the hist method returns the break and mid points, counts and densities:

```
> data(trees)
> h <- hist(trees$Volume)
str(h)
List of 7
$ breaks : num [1:8] 10 20 30 40 50 60 70 80
$ counts : int [1:7] 10 9 5 1 5 0 1
$ intensities: num [1:7] 0.03226 0.02903 0.01613 0.00323 0.01613 ...
$ density : num [1:7] 0.03226 0.02903 0.01613 0.00323 0.01613 ...
$ mids : num [1:7] 15 25 35 45 55 65 75
$ xname : chr "trees$Volume"
$ equidist : logi TRUE
- attr(*, "class")= chr "histogram"
> (hist(trees$Volume))$mids
[1] 15 25 35 45 55 65 75
```


### 5.1.3 Types of base graphics plots

Table 2 lists the principal plot types; see the help for each one for more details.

| assocplot |  |
| :--- | :--- |
| barplot |  |
| boxplot | Association Plots |
| contour | Bar Plots |
| coplot | Box Plots |
| dotchart | Contour Plots |
| fil1ed.contour | Conditioning Plots |
| fourfoldplot | Cleveland Dot Plots |
| hist | Level (Contour) Plots |
| image | Fourfold Plots |
| matplot | Histograms |
| mosaicplot | Display a Colour Image |
| pairs | Plot Columns of Matrices |
| persp | Mosaic Plots |
| plot | Scatterplot Matrices |
| stars | Perspective (3D) Plots |
| stem | Generic X-Y Plotting |
| stripchart | Star (Spider/Radar) Plots |
| sunflowerplot | Stem-and-Leaf Plots |

Table 2: Base graphics plot types
Figure 10 shows examples of a boxplot, a conditioning plot, a pairwise scatterplot, and a star plot, all applied to the Anderson iris dataset.

```
> boxplot(Petal.Length ~ Species, horizontal=T,
```

```
+ col="lightb1ue", boxwex=.5,
+ xlab="Peta1 length (cm)", ylab="Species",
+ main="Grouped box plot")
coplot(Petal.Width ~ Petal.Length | Species,
 col=as.numeric(Species), pch=as.numeric(Species))
 pairs(iris[,1:4], col=as.numeric(Species),
 main='Pairwise scatterplot')
 stars(iris[,1:4], key.loc=c(2,35), mar=c(2, 2, 10, 2),
 + main="Star plot of individuals", frame=T)
```



Figure 10: Some interesting base graphics plots
plots, for example scatterplot and scatterplot.matrix in the car package and truehist in the MASS package.
5.1.4 Interacting with base graphics plots

If the output graphics device is a screen, e.g. as initialised with the windows method, it is possible to query the graph with the identify method for scatterplots. This reads the position of the graphics pointer when the left mouse button is pressed, and searches the coördinates given as its for the closest point in the plot. If this point is close enough to the pointer, its index is added to a list to be returned, once the right mouse button is pressed.

The coördinate pairs for identify is normally the same as the scatterplot:

```
plot(Peta1.Length, Petal.Width)
> (p <- identify(Petal.Length, Petal.Width))
[1] 44 65 99
> iris[p,]
 Sepa1.Length Sepa1.Width Peta1.Length Petal.Width Species
44 5.0 0.5 3.5 1.6 0.6 setosa
65 5.6 2.9 3.6 1.3 versicolor
99 5.1 2.5 3.0 1.1 versicolor
```

This is quite useful for identifying unusual points in the plot.

### 5.2 Trellis graphics

The Trellis graphics system is a framework for data visualization developed at Bell Labs (where S originated) based on the ideas in Cleveland [5]. It was implemented in S-PLUS and then in R with the lattice package; its design and basic use are well-explained by its author Sarkar [50] in the $R$ Newsletter. It is harder to learn than $R$ base graphics, but can produce higher-quality graphics, especially for multivariate visualisation when the relationship between variables changes with some grouping factor; this is called conditioning the graph on the factor. It uses formulae similar to the statistical formulae introduced in $\S 4.17$ to specify the variables to be plotted and their relation in the plot. Customization of Trellis graphics parameters (for example, default background and symbol colours) is explained in §5.2.6.

### 5.2.1 Univariate plots

As a simple example, consider the iris dataset. To produce a kernel density plot (a sophisticated histogram) on the whole dataset, use the densityplot method:

```
> densityplot(~ Petal.Length, data=iris)
```

The $\sim$ operator here has no left-hand side, since there is no dependent variable in the plot; it is univariate. The petal length is the independent variable, and we get one plot; this is shown shown on the left side of Figure 11.


Figure 11: Trellis density plots, without and with a conditioning factor

To add conditioning, we use the | operator, which can be read as "conditioned on" the variable(s) named on its right side:

```
> densityplot(~ Petal.Length | Species, data=iris)
```

Here there is one panel per species; this is shown shown on the right side of Figure 11. We can clearly see that the multi-modal distribution of the entire data set is due to the different distributions for each species.

### 5.2.2 Bivariate plots

The workhorse here is the xyplot method, now with a dependent (y-axis) and independent (x-axis) variable; this can also be conditioned on one or more grouping factors:

```
> xyplot(Petal.Width ~ Petal.Length, data=iris,
+ groups=Species, auto.key=T)
> xyplot(Petal.Width ~ Petal.Length | Species, data=iris,
+ groups=Species)
```

These are shown in Figure 12. Note the use of the groups argument to specify a different graphic treatment (in this case colour) for each species, and the auto. key argument to get a simple key to the colours used for each species.


Figure 12: Trellis scatter plots, without and with a conditioning factor

### 5.2.3 Triivariate plots

The most useful plots here are the levelplot and contourplot methods for 2D plotting of one response variable on two continuous dependent variables (for example, elevation vs. two coördinates), the wi reframe method for a 3D version of this, and the cloud method for a 3D scatterplot of three variables. All can be conditioned on a factor. Figure 13 shows some examples, produced by the following code:

```
p11 <- cloud(Sepa1.Length ~ Petal.Length * Petal.Width,
 groups=Species,
 data=iris, pch=20, main="Anderson Iris data, all species",
 screen=list(z=30, x=-60))
data(volcano)
p12 <- wireframe(volcano,
 shade = TRUE, aspect = c(61/87, 0.4),
 light.source = c(10, 0, 10), zoom=1.1, box=F,
 scales=1ist(draw=F), xlab="", ylab="", zlab="",
 main="Wireframe plot, Maunga Whau Volcano, Auckland")
p13 <- levelplot(volcano,
 col.regions=gray(0:16/16),
 main="Levelplot, Maunga Whau Volcano, Auckland")
p14 <- contourplot(volcano, at=seq(floor(min(volcano)/10)*10,
```

```
ceiling(max(volcano)/10)*10, by=10),
main="Contourplot, Maunga Whau Volcano, Auckland",
 sub="contour interva1 10 m",
 region=T,
 col.regions=terrain.colors(100))
print(p11, split=c(1,1,2,2), more=T)
print(pl2, split=c(2,1,2,2), more=T)
print(pl3, split=c(1,2,2,2), more=T)
print(p14, split=c(2,2,2,2), more=F)
> rm(pl1, pl2, pl3, pl4)
```



Figure 13: Trellis trivariate plots

Note that the volcano data set is just a matrix of elevations:

```
> str(volcano)
 num [1:87, 1:61] 100 101 102 103 104 105 105 106 107 108 ...
```

The levelplot method converts this into one response variable (the $z$ values) and two predictors, i.e. the row and column of the matrix. (the $x$ and $y$ values).

This example shows that high-level 1attice methods do not themselves draw a graph; they return an object of class tre11is which can be printed with the print method. R's default behaviour when working interactively (at the console) is to print the results of any expression except an assignment, so the casual user doesn't see this behaviour. It is however quite useful to place multiple graphs on the same page as illustrated here and explained in more detail in §5.4.

### 5.2.4 Panel functions

A Trellis plot must be constructed in one go, unlike in the base graphics package, where elements can be added later. Each additional element beyond the default is specified by a so-called panel function. For example, suppose we want to add a least-squares regression line as well as regression lines for each species to the scatterplot of petal width and length:

```
> xyplot(Petal.Width ~ Peta1.Length, data=iris,
+ col=c("darkgreen", "navyblue", "firebrick")
+ [as.numeric(iris$Species)], pch=20,
+ xlab="Peta1 length", ylab="Peta1 width",
+ main="Anderson Iris data",
+ pane1 = function(x, y, ...) {
+ panel.fill(col="antiquewhite3")
+ panel.xyplot(x, y, ...);
+ panel.abline(7m(y ~ x), col="black");
+ for (lv1 in 1:1ength(levels(Species))) {
+ panel.abline(lm(y ~ x,
+ subset=(Species==leve1s(Species)[1v1]))
+ col=c("darkgreen", "navyblue", "firebrick")[1v1],
+ 1ty=2)
+ }
+ })
```

This plot is shown in Figure 14.
The pane 1 argument is used whenever we want to control the appearance of the panel beyond the default plot. Here it is a function, which takes as arguments the dummy variables x and y , which represent the two variables of the $x-y$ plot. The ... argument to the panel passes through all the extra arguments specified previously, e.g. data=iris. Within the un-named panel function, several pre-defined panel functions are called to add graphic elements. These all have names beginning with pane1.. First we use pane1.fill to change the main plot background,


Figure 14: Trellis scatter plot with some added elements
then panel.xyplot to draw the points; note that this must be called explicitly if there is a panel function. Then we add the regression lines with panel.abline. Note the use of the for loop to add one line for each species.

See ?pane1.functions and the explanation of the pane1 parameter in ?xyplot for details.

### 5.2.5 Types of Trellis graphics plots

Table 3 lists the principal plot types; see the help for each one for more details.

### 5.2.6 Adjusting Trellis graphics parameters

The Trellis graphics environment as implemented in the lattice package sets reasonable defaults for its graphics parameters, based on the output device (screen, PDF file ...). Changing these requires three steps: (1) retrieve the parameters into a data structure in memory; (2) modify them;

Univariate

| assocplot barchart bwplot densityplot dotplot histogram qqmath <br> stripplot | ```Association Plots bar plots box and whisker plots kernel density plots dot plots histograms quantile plots against mathematical dis- tributions 1-dimensional scatterplot``` |
| :---: | :---: |
| Bivariate |  |
| qq <br> xyplot | $\mathrm{q}-\mathrm{q}$ plot for comparing two distributions scatter plots |
| Trivariate |  |
| leve1plot contourplot cloud wi reframe | level plots contour plots 3-D scatter plots 3-D surfaces |
| Hypervariate |  |
| splom <br> paralle1 | scatterplot matrix parallel coördinate plots |
| Miscellaneous |  |
| $\begin{aligned} & \text { rfs } \\ & \text { tmd } \end{aligned}$ | residual and fitted value plot Tukey Mean-Difference plot |

Table 3: Trellis graphics plot types
(3) write the modified parameters back as permanent options.

Parameters are retrieved with the trellis.par.get method and set with the trellis.par.set method. In the following example we change the 'superposition' symbol which is used in the xyplot method to show groups of points, as in the example just above.

The current settings are shown graphically by the show. settings method.

```
> show.settings()
> options <- trellis.par.get()
names(options)
 [1] "grid.pars" "fontsize" "background"
 [4] "clip" "add.line" "add.text"
[7] "plot.polygon" "box.dot" "box.rectangle"
[10] "box.umbre11a" "dot.line" "dot.symbol"
[13] "plot.line" "plot.symbol" "reference.line"
[16] "strip.background" "strip.shingle" "strip.border"
[19] "superpose.line" "superpose.symbol"
[22] "regions"
 "shade.colors" "axis.line"
[25] "axis.text" "axis.components"
[28] "layout.widths
 "box.3d"
 "par.zlab.text"
```

[^15]```
[34] "par.sub.text"
> options$superpose.symbol
$alpha
[1] 1 1 1 1 1 1 1
$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8
$col
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000" "orange"
[6] "#00ff00" "brown"
$font
[1] 1 1 1 1 1 1 1
$pch
[1] 1 1 1 1 1 1 1 1 1
$fil1
[1] "transparent" "transparent" "transparent" "transparent"
[5] "transparent" "transparent" "transparent"
> options$superpose.symbol$pch
[1] 1 1 1 1 1 1 1
> options$superpose.symbol$pch <- 20
> options$superpose.symbol$co1 <- c("blue","green","red","magenta",
+ "cyan","black","grey")
> options$superpose.symbol$cex <- 1.4
> trellis.par.set("superpose.symbol", options$superpose.symbol)
> xyplot(Sepal.Width ~ Sepal.Length, group=Species, iris)
```

There are a large number of options, each with sub-options. For example, the superposition symbol has a character code (pch), a vector of colours (col), a vector of fonts (font), and a character expansion fraction (cex). These can all be set and then written back as shown. Subsequent graphs use the changed parameters.

Colour options are often specified with colour ramps; see $\S 5.5$ for details.

5.3 Multiple graphics windows

To open several graphics windows at the same time, use the windows method. R opens the first graphics window automatically in response to the first graphics method such as plot or hist; in the following example we assume no such commands have yet been given.

```
> dev.list()
NULL
> windows()
> dev.list()
windows
    2
> dev.cur()
windows
    2
```

At this point, there is only one window and it is, of course, the current graphics device, i.e. number 2 (for some reason, 1 is not used). The results of any plotting commands will be displayed in this window.

Now we open another window; it becomes the current window:

```
> windows()
> dev.list()
windows windows
    2 3
> dev.cur()
windows
    3
```

At this point, any plot commands will go to the most recently-opened window, i.e. number 3.
5.3.1 Switching between windows

The dev.set method specifies which graphics device to use for the next graphics output. For example, to compare scatterplots of tree volume vs. two possible predictors (height and girth) in adjacent windows:

```
> dev.set(2)
> plot(Height, Volume)
> dev.set(3)
> plot(Girth, Volume)
```


5.4 Multiple graphs in the same window

This depends on the graphics system: base or trellis (§5.2), as implemented in the lattice R package. You can determine which system is used by a given graphics command at the top of its help page. For example:

```
> ?boxplot
```

shows the page title as boxplot (graphics) indicating that it's in the base graphics package, whereas

```
> ?xyplot
```

shows the page title as xyplot (1attice) indicating that it's a trellis plot.

5.4.1 Base graphics

The parameters of the active graphics device are set with the par method. One of these parameters is the number of rows and columns of indivual plots in the device. By default this is (1, 1), i.e. one plot per device. You can set up a matrix of any size with the $\operatorname{par}(\mathrm{mfrow}=\ldots)$ or $\operatorname{par}(\mathrm{mfcol}=$...) commands. The difference is the order in which figures will be drawn, either row- or column-wise.

For example, to set up a two-by-two matrix of four histograms, and fill them from left-to-right, top-to-bottom:

```
# the `par' method refers to the active device
par(mfrow=c(2, 2))
hist(rnorm(100)); hist(rbinom(100, 20, .5))
hist(rpois(100, 1)); hist(runif(100))
par(mfrow=c(1,1))
# next plot will fill the window
```


5.4.2 Trellis graphics

A trellis (§5.2) graphics window can also be split, but in this case the print method of the lattice package must be used on an object of class trellis (which might be built in the same command), using the split = optional argument to specify the position (x and y) within a matrix of plots. For all but the last plot on a page the more=T argument must be specified.

Repeating the previous example:

```
> print(histogram(rnorm(100)), split=c(1,1,2,2), more=T);
print(histogram(rbinom(100, 20, .5)), split=c(2,1,2,2), more=T);
print(histogram(rpois(100, 1)), split=c(1,2,2,2), more=T);
print(histogram(runif(100)), split=c(2,2,2,2), more=F)
```

A more elegant way to do this is to create plots with any lattice method, including levelplot, xyplot, and histogram, but instead of displaying them directly, saving them (using the assignment operator <-) as trellis objects (this is the object type created by lattice graphics methods), and then print them with lattice's print method. The advantage is that the same plot can be printed in a group of several plots, alone, or on different devices, without having to be recomputed.

For example:

```
h1 <- histogram(rnorm(100), col="1ightblue");
h2 <- histogram(rbinom(100, 20, .5), col="snow3");
h3 <- histogram(rpois(100, 1), col="springgreen1");
h4 <- histogram(runif(100), col="red4");
print(h1, split=c(1,1,2,2), more=T);
print(h2, split=c(2,1,2,2), more=T);
print(h3, split=c(1,2,2,2), more=T);
print(h4, split=c(2,2,2,2), more=F);
rm(h1, h2, h3, h4)
```

If you are printing to a file, more=F will end the page. The next call to the print method will start a new page. This is useful to produce a multi-page PDF file.

5.5 Colours

Both base (§5.1) and Trellis (§5.2) graphics have many places where colours can be specified, often with the col (foreground colour) or bg (background
colour) optional arguments to graphics methods such as plot.
Colours may be specified either by name, by code (colour specification), or by their numeric position in the active colour palette. There are a large number of named colours, but only eight of these in the default palette.

To get a list of possible colour names use the colours method; to see the numeric colours in the active palette use the palette method:

```
> colours()
    [1] "white" "aliceblue" "antiquewhite"
    [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
[655] "yellow3" "yellow4" "yellowgreen"
> colours()[655]
[1] "yellow3"
> palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta"
[7] "yellow" "gray"
> palette()[4]
[1] "blue"
```

The named colours can be visualised as a bar graph (Figure 15):

```
> tmp <- seq(1:length(colors()))
> plot(tmp, rep(1, length(tmp)), type="h", lwd=2,
        col=colors()[tmp], y\im=c(0,1), x\ab="Colour number")
```


Figure 15: Available colours
Then an individual colour number can be identified interactively by leftclicking on the vertical colour bar at the midpoint; right-click anywhere in the graph when done:

```
> abline(h=0.5, 7wd=3) # to aim at
> selected <- identify(tmp, rep(0.5, length(tmp)))
> selected # colour number
```

```
> colors()[selected] # colour name
```

The Red, Green, Blue of any colour can be examined with the col2rgb method:

```
> co12rgb("ye1low3")
    [,1]
red 205
green 205
blue
```

Single colours can be created with the rgb method, specifying Red, Green and Blue contributions each in the range $0 \ldots 1$ (completely absent saturated):

```
rgb(0.25 0.5, 0)
[1] "#408000'
```

There are several built-in colour ramps (sequences of colours that give a pleasing visual impression); these are returned by the heat.colors, terrain. colors, topo.colors, and cm. colors methods; another palette is provided by the bpy.colors method of the sp package. ${ }^{36}$ These all return a vector of colours from defined endpoints, according to the number of levels requested:

```
> terrain.colors(5)
[1] "#00A600" "#E6E600" "#EAB64E" "#EEB99F" "#F2F2F2"
> terrain.colors(10)
    [1] "#00A600" "#2DB600" "#63C600" "#A0D600" "#E6E600" "#E8C32E"
    [7] "#EBB25E" "#EDB48E" "#FOC9CO" "#F2F2F2"
> terrain.colors(10)[1]
    [1] "#00A600"
```

The hexidecimal codes here represent Red, Green, and Blue; from 00 (no colour) to FF (full colour); thus there are $256^{3}=16777216$ possible colours.

Grey scales use the slightly different gray method; its argument is a vector of values between $0 \ldots 1$ giving the gray level:

```
> gray(seq(0, 1, by=.125))
[1] "#000000" "#202020" "#404040" "#606060" "#808080" "#9F9F9F"
[7] "#BFBFBF" "#DFDFDF" "#FFFFFF"
> gray(0:8 / 8)
[1] "#000000" "#202020" "#404040" "#606060" "#808080" "#9F9F9F"
[7] "#BFBFBF" "#DFDFDF" "#FFFFFF"
> gray(c(0, .2, .3, 1))
[1] "#000000" "#333333" "#4D4D4D" "#FFFFFF"
> col2rgb(gray(0.4))
                        [,1]
red 102
green }10
blue 102
    36 Note the American spelling of 'colour'.
```

Custom colour ramps can be produced with the hsv and rainbow methods; see their help for details.

All of these ramps can be indexed to get individual colours. They are most useful, however, when these colours are linked to data values. For example, to plot soil sample points in the meuse soil pollution data set, with the points coloured in order of their rank (from least to most polluted by cadmium):

```
> library(sp)
> data(meuse)
> attach(meuse)
> xyplot(y ~ x , data=meuse, asp="iso", pch=20,cex=2,
    col=topo.colors(length(cadmium))[rank(cadmium)])
```

This plot is shown in Figure 16. Note the use of the asp argument to xyplot to specify the aspect (ratio of axes), in this case proportional to the two scales ("isometric").

Figure 16: Example of a colour ramp
The key methods here are topo.colors to return a range of colours from dark blue through light pink, length to find the number of points and from this set the length of the colour ramp, and rank to return the rank of
each sample, based on its cadmium content: the lowest pollution is rank 1, and so on to the most polluted with rank equal to the number of samples. Then the correct colour for each sample is extracted from the vector with the [] (subscript) operator.

6 Preparing your own data for R

R comes with many interesting example datasets (§3.8), but of course you are most interested in your own data. There are many ways to prepare this for R ; a comprehensive guide is given in the online \mathbf{R} Data Import/Export manual ${ }^{37}$, also provided as a PDF file [37].

6.1 Preparing data directly in R

A small dataset may be entered directly in R in several ways. Here we illustrate this with the winning times from the 100 m footrace in the modern Olympic games [55], which we will assemble into a data frame, with the cases being each year and the fields being the year number, the men's winning time, and the women's winning time.

One method is to assign a vector directly to a variable. In the case of regular data, this can be easily accomplished with the seq or rep functions. For irregular data, the c function must be used to create a list.

```
> yr <- seq(1900,2004,4) # produces 1900, 1904, 1908, ... 2004
> men <- c(11, 11, 10.8, 10.8, NA, 10.8, 10.6, 10.8, 10.3,
+ 10.3, NA, NA,
+ 10.3, 10.4, 10.5, 10.2, 10, 9.95, 10.14, 10.06,
+ 10.25, 9.99, 9.92, 9.96, 9.84, 9.87, 9.85)
```

Note the + continuation prompt from R; as long as the list was not completed (not enough) to match the open (), R could determine that the expression was not complete, and prompted for more input.

Also note the use of the special NA value to indicate a missing value; no Olympic games were held in 1916, 1940 or 1944, so there is no time for those years.

Vectors can also be entered with the scan function. This waits for you to type at the console, until a blank line is entered. It shows the number of the next data item as a continuation prompt:

```
women <- scan()
NA NA NA NA NA NA NA
12.2 11.9 11.5 NA NA
11.9 11.5 11.5 11 11.4 11.08 11.07 11.08 11.06 10.97
10.54 10.82 10.94 10.75 10.93
28:
```

When the 28 was displayed, the user pressed the "Enter" key, and R realised the list was complete.

The three vectors are then gathered a data frame, and the local copies are discarded. By default the fields in the frame are named from the local

[^16]variables, but new names can be given with the fie1dname = variable syntax. For example:

```
> oly.100 <- data.frame(year=yr, men, women)
> str(oly.100)
'data.frame': 27 obs. of 3 variables:
$ year : num 1900 1904 1908 1912 1916 ...
$ men : num 11 11 10.8 10.8 NA 10.8 10.6 10.8 10.3 10.3 ...
$ women: num NA NA NA NA NA NA NA 12.2 11.9 11.5 ...
> rm(yr, men, women)
```

To enter a matrix, first enter the data with the scan function or as a list with the c function, and then place it in matrix form with the matrix ("create a matrix") function. We illustrate this with the sample confusion matrix of Congalton et al. [6], also used as an example by Skidmore [53] and Rossiter [43]. ${ }^{38}$ This example also illustrates the rownames and colnames functions to assign (or read) the row and column names of a matrix.

```
> cm <- scan()
1 : 35 14 11 1 4 11 3 0 12 9 38 4 2 5 12 2
17:
> cm <- matrix(cm, 4, 4, byrow=T)
> cm
    [,1] [,2] [,3] [,4]
[1,] }3
[2,] 
[3,] }12\begin{array}{lllll}{[2,}&{9}&{38}&{4}
[4,] 2 5 12 2
> colnames(cm) <- c ("A", "B", "C", "D")
> rownames(cm) <- LETTERS[1:4]
> cm
    A B C D
A 35 14 11 1
B 4 11 3 0
C 12 9 38 4
D 2 5 12 2
> cm[1, ]
A B C D
35 14 11 1
> cm["A", "C"]
[1] 11
```

Note the use of the byrow optional argument to the matrix function, to indicate that we entered the data by row, also the use of the rownames and colnames functions to label the matrix with upper-case letters supplied conveniently by the LETTERS built-in constant.

6.2 A GUI data editor

The fix function provides a simple graphical data editor for data frames. It can be used to correct data entry mistakes or to build new data frames.

[^17]For example, to edit the sample trees dataset:

```
> data(trees)
> fix(trees)
```

This opens the data editor window (Figure 17). Warning!: any changes made to the frame will be stored in the object. You can change data values, add rows, add columns (new variables), change column names, and (if you give the optional edit. row. names $=\mathrm{T}$ argument) change row names.

R Data Editor Girth Height Volume var4 var5 var6 1 8.3 70 10.3 2 8.6 65 10.3 3 8.8 63 10.2 4 10.5 72 16.4 5 10.7 81 18.8 6 10.8 83 19.7 7 11 66 15.6 8 11 75 18.2 9 11.1 80 22.6 10 11.2 75 19.9 11 11.3 79 24.2 12 11.4 76 21

Figure 17: R graphical data editor
To edit a new data frame, you must first create it as a null data frame using the as.data.frame function, and then call the fix function:

```
> myNewFrame <- as.data.frame(NULL)
> fix(myNewFrame)
```


6.3 Importing data from a CSV file

The Comma-Separated Values or "CSV" file is a common interchange format which can be prepared in many ways. For example, a CSV file can be created directly as a text file, using Notepad or some other plain-text editor. However, it is common to have data already in a spreadsheet such as Excel. In this case the procedure is as follows:

1. Prepare the data as an Excel spreadsheet with named columns;
2. Export from Excel to a (CSV) file, using Excel's File | Save As ... menu item;
3. Import into R with the read.csv function;
4. Adjust data types in R if necessary.

We illustrate this with a simplified version of the meuse dataset from the gstat and sp packages, which has been prepared to illustrate some issues with import.

Here is a small CSV file written by Excel and viewed in a plain text editor such as Notepad:

```
x,y,cadmium,elev,dist,om, ffreq, soil,lime,landuse
181072,333611,11.7,7.909,0.00135803,13.6,1,1,1, Ah
181025,333558,8.6,6.983,0.0122243,14,1,1,1,Ah
181165,333537,6.5,7.8,0.103029,13,1,1,1,Ah
181298,333484,2.6,7.655,0.190094,8,1,2,0,Ga
181307,333330,2.8,7.48,0.27709,8.7,1,2,0,Ah
181390,333260,3,7.791,0.364067,7.8,1,2,0,Ga
```

Note that:

- There is one line per observation (record);
- Each record consists of the same number of fields, which are separated by commas;
- The first line has the same number of fields as the others but consists of the field names.

Suppose this file is named examp1e.csv. To read into R, we first change to the directory where the file is stored and then read into an R object with the read. csv function ${ }^{39}$.

```
> ds <- read.csv("example.csv")
> str(ds)
'data.frame': 6 obs. of 10 variables:
$ x : int 181072 181025 181165 181298 ...
$ y : int 333611 333558 333537 333484 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3
$ elev: num 7.91 6.98 7.80 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 ...
$ om : num 13.6 14 13 8 8.7 7.8
$ ffreq : int 1 1 1 1 1 1
$ soil : int 1 1 1 2 2 2
$ lime : int 111 0 0 0
$ landuse: Factor w/ 2 levels "Ah","Ga": 1 1 1 2 1 2
```

R could determine that 1 anduse is a factor (categorical variable), because it was non-numeric. It could also determine the variable names from the first row. The other factors were not recognized, and in fact they have different R data types, which we now assign, using the as. $*$ functions to change data types:

```
> ds$soil <- as.factor(ds$soi1)
> ds$ffreq <- as.ordered(ds$ffreq)
```

[^18]```
> ds$7ime <- as.logical(ds$lime)
> str(ds)
'data.frame': 6 obs. of 10 variables:
$ x : int 181072 181025 181165 181298 ...
$ y : int 333611 333558 333537 333484 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3
$ elev : num 7.91 6.98 7.80 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 ...
$ om : num 13.6 14 13 8 8.7 7.8
$ ffreq : Ord.factor w/ 3 levels "1"<"2"<"3": 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 ...
$ lime : logi TRUE TRUE TRUE FALSE FALSE FALSE
$ landuse: Factor w/ 2 levels "Ah","Ga": 1 1 1 2 1 2
```

Using the correct data type is important for many modelling methods; here we inform R that 1ime was either applied (logical TRUE, associated by R with the number 1) or not (logical FALSE, associated by R with the number 0 ); that there are three soil types arbitrarily named " 1 ", " 2 " and " 3 " 40 (not in any order); and that there are three flood frequency classes named " 1 ", " 2 " and " 3 ", and these are in this order, from most to least flooded (n.b. we know this from the data documentation, not from anything we can see in the CSV file).

Missing values Missing values are expressed in CSV files by the two letters NA (without quotes). For example:

```
x,y,cadmium,elev,dist,om,ffreq, soil,lime,landuse
181072,333611,NA,7.909,0.00135803,NA,1,1,1,Ah
181025,333558,8.6,6.983,0.0122243,14,1,1,1,Ah
```

In the first record neither the cadmium concentration nor organic matter proportion are known; these will be imported as missing values, symbolized in R by NA.

Matrices A matrix can also be prepared as a CSV file (perhaps exported from Excel) and imported into R with the read.csv function. The matrix can also be prepared with row and column labels,

For example here is the CSV file for a small confusion matrix, as prepared in a text editor; the first row has the column names (reference classes) and each of the other rows begins with the row name (mapped class); there is no entry for the very first column of the first row:

```
,"A","B","C","D"
"A", 35,14,11,1
"B",4,11,3,0
"C",12,9,38,4
"D",2,5,12,2
```

Suppose this file is named cm.csv; it can be read in as follows; note that

[^19]we inform R that the row names are in the first column, and convert the default class (data frame) to a matrix with the as.matrix function. The attributes function shows the correct data type and attributes, here the dimension names for the rows and columns.

```
> cm <- as.matrix(read.csv("cm.csv", row.names=1))
> cm
 A B C D
A 35 14 11 1
B 4 11 3 0
C 12 9 38 4
D 2 5 12 2
> class(cm)
[1] "matrix"
> attributes(cm)
$dim
[1] 4 4
$dimnames
$dimnames[[1]]
[1] "A" "B" "C" "D"
$dimnames[[2]]
[1] "A" "B" "C" "D"
```


### 6.4 Importing images

Some data, such as satellite imagery, is naturally organized as a matrix of data values on a regular grid. Many export formats write a header of several lines, giving information on the file contents, followed by the data values as one long vector or else with each row of the imagery as a row in the text file. An example is the ESRI asciigrid format.

Here is a small example of a 12 by 12 image, stored as ASCII text file image.grd. We display it within $R$ with the file.show function:

```
> file.show("image.grd")
NCOLS 12
NROWS 12
XLLCORNER 180000
YLLCORNER 331000
CELLSIZE 40
NODATA_VALUE -9999
141 148 159 166 176 186 192 195 201 206 211 215
143 153 160 170 177 188 198 204 206 212 218 222
147}154164164 172 182 189 199 209 215 218 224 230
151 159 166 176 183 193 201 211 221 227 230 235
153 163 170 177 188 195 205 212 222 232 238 241
153 164 175 182 189 199 206 217 224 234 244 250
153 164 176 186 193 201 211 218 228 235 245 256
157 164 176 188 198 205 212 222 230 240 247 256
159 169 176 188 199 209 217 224 234 241 245 245
159 170 180 188 199 211 221 228 232 234 234 234
163 170 182 192 199 211 221 222 222 222 222 223
166 175 182 193 204 209 211 211 211 211 211 214
```

This format is documented by ESRI; there are six header lines with selfexplanatory names, followed by one row per image row.

This specific format can be read directly into a spatial object with the read. asciigrid function of the sp package; however here we show how to read it using basic R commands.

The scan function, which we used above (§6.1) to read from the keyboard, can also be used to read from text files, if the first argument is the optional file. Lines can be skipped with the optional skip argument; and the number of lines to read can be specified with the optional $n 7$ ines argument. The value to take as the missing values (NA in $R$ ) is specified with the optional na.strings argument. The separator between values is by default white space; that can be changed with the optional sep argument. Finally, scan expects to read double-precision numbers; this can be changed with the optional what argument.

In this example, we first read in the dimensions of the image. The header lines have both character strings (e.g. NCOLS) and numbers (e.g. 12); we read them into a character vector and then extract the number with the as. numeric function. Note that we read the second line by specifying skip=1 and then n1ines=1:

```
> ncol <- scan(file="image.grd", nlines=1, what="character")
> ncol
[1] "NCOLS" "12"
> ncol <- as.numeric(ncol[2])
> ncol
[1] 12
> (nrow <- as.numeric(scan(file="image.grd", skip=1, n7ines=1, what="character")[2]))
[1] }1
```

Now we read the image data into a matrix, as one vector:

```
> img <- scan(file="image.grd", skip=6, na.strings="-9999")
Read 144 items
> summary(img)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 141 176 202 200 222 256
> class(img)
[1] "numeric"
```

Although this small image has no missing values, in general we may expect them, so we need to specify the format of the missing values.

Finally, we specify the dimensions and format of the image, thereby promoting it to a matrix, with the matrix function. By default R interprets a matrix in column-major order (each column is a vector); but the image is stored by convention in row-major order; therefore we specify the optional byrow=T argument.

```
> img <- matrix(img, nrow, ncol, byrow=T)
```

```
> class(img)
[1] "matrix"
> str(img)
num [1:12, 1:12] 141 143 147 151 153 153 153 157 159 159 ...
```


## 7 Exporting from R

Data frames are easily exported from R. For all the possibilities, see the R Data Import/Export manual. Here we explain the most common operation: exporting a data frame to a CSV file. This format can be read into Excel, ILWIS, and many other programs.

A common reason for exporting is that you have computed some result in $R$ which you want to use in another program. For example, suppose you've computed a kriging interpolation with the krige function of the gstat package:

```
load sp library to support spatial classes
> # load gstat for variograms and kriging
> library(sp); library(gstat)
load sample data and interpolation grid
> data(meuse); data(meuse.grid)
convert these to spatial objects
coordinates(meuse) <- ~ x + y; coordinates(meuse.grid) <- ~ x + y
krige using a known variogram model
> kxy <- krige(log(lead)~x+y, locations=meuse,
+ newdata=meuse.grid, maxdist=800,
+ mode1=vgm(0.34, "Sph", 1140, 0.08))
[using universal kriging]
> str(as.data.frame(kxy))
data.frame': 3103 obs. of 4 variables:
$ x : num 181180 181140 181180 181220 181100 ...
$ y : num 333740 333700 333700 333700 333660 \ldots..
$ var1.pred: num 5.72 5.68 5.61 5.54 5.67 ...
$ var1.var : num 0.293 0.225 0.239 0.257 0.173 ...
```

Note the use of the coordinates function to promote the meuse and meuse.grid data frames to objects of class SpatialPointsDataFrame as required by the krige function, and the as.data.frame function to extract the data frame from the kriged object as required by the write. table function.

To export this data frame we use the write.table function, specifying that a comma separate the fields by using the optional sep=", " argument:

```
write.table(round(as.data.frame(kxy), 4), file="KrigeResult.csv",
+ sep=",", quote=T, row.names=F,
+ col.names=c("E", "N", "LPb", "LPb.var"))
```

In this example the precision of the output was limited with the round function, and named the fields with the col. names=optional argument to write.table. We also specified that no row names be written, with the optionaol row. names=F argument, and that any strings be quoted with the optional quote $=$ T argument.

Here are the first few lines of the file KrigeResult.csv viewed in a plaintext editor such as Notepad:
"E', "N", "LPb", "LPb.var"
181180,333740,5.7214,0.2932
181140,333700, 5.6772,0.2254
181180,333700, 5.6064,0.2391

## 8 Reproducible data analysis

Since R is a programming language, it can be used to write scripts (§3.5) which can then be run at any time to reproduce the analysis. This is especially useful if the data changes, or to apply the same analysis to a different dataset. It also allows the exact same figure to be produced.

A step further is to integrate the R analysis into a text document. Rather than cutting and pasting, a better approach is to prepare the text document with $\mathrm{AT}_{\mathrm{E}} \mathrm{X}[23,22]^{41}$ and incorporate executable R code into the document. This ingenious approach is known generically as "Weaving" or "literate programming" [21], and has been implemented for R as "Sweave" [24, 25].

Note: A similar approach is taken by the more recent knitr package ${ }^{42}$.
This approach has three steps: (1) preparing the source NoWeb document; (2) compiling this with Sweave into a $\mathrm{ET}_{\mathrm{EX}}$ source file; (3) compiling the ${ }^{\text {ET }} \mathrm{EX}$ source into a PDF document. Following is a brief introduction; for an extended discussion see Rossiter [47].

### 8.1 The NoWeb document

This is plain-text file with extension .Rnw ("R NoWeb"). It contains two kinds of commands:

1. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ commands, as in a standard $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document;
2. R commands, to be executed.

The R commands are placed in code chunks, delimited with the special symbols «»= to begin a chunk, and @ to end one.

Here is a minimal example, suppose this is in a text file named example. Rnw:

```
\documentclass{article}
\usepackage[pdftex,final]{graphicx}
\usepackage{Sweave}
\begin{document}
\title{Sweaving for reproducible data analysis}
\author{A Nonymous}
\date{14-November-2010}
\maketitle
Here is a simple example of R and Sweave:
<<>>=
data(trees)
str(trees)
summary(7m(Volume ~ Height*Girth, data=trees))$adj.r.squared
41 http://www.7atex-project.org/
42 http://yihui.name/knitr/
```

```
@
\end{document}
```

The $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ commands begin with $\backslash$, e.g., $\backslash$ documentclass. The R code is written as if at the R console, but between the <<>>= (beginning a code chunk) and the @ (ending it), e.g., data(trees). Everything else is text, e.g., Here is a simple example.

This is processed in R with the Sweave function, which takes as its argument the name of the NoWeb file:

```
> Sweave("example.Rnw")
```

The result is a ${ }^{2 T E X}$ input file, with the standard file extension .tex and the same first part of the name, where the NoWeb chunks have been evaluated. and formatted as both input and output. In this example the file is named example.tex.

### 8.2 The ${ }^{\mathrm{AT}} \mathrm{E} X$ document

This is now just a standard ETEX )inputfile.RcodehasbeenformattedinaspecialSchunk$\mathrm{AT}_{\mathrm{E}}\mathrm{X}$enviroment,providedbythe$\mathrm{ET}_{\mathrm{E}}\mathrm{X}$Sweavepackage,asspecificedinthe\usepackage\{Sweave\}declarationinthepreamble.Inthisexamplewehavethefollowingfile:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\documentclass{article}
\usepackage[pdftex,final]{graphicx}
\usepackage{Sweave}
\begin{document}
\title{Sweaving for reproducible data analysis}
\author{A Nonymous}
\date{14-November-2010}
\maketitle
Here is a simple example of R and Sweave:
\begin{Schunk}
\begin{Sinput}
R> data(trees)
R> str(trees)
\end{Sinput}
\begin{Soutput}
'data.frame': 31 obs. of 3 variables:
 $ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...
 $ Height: num 70 65 63 72 81 83 66 75 80 75 \ldots..
 $ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...
\end{Soutput}
\begin{Sinput}
R> summary(7m(Volume ~ Height * Girth, data = trees))$adj.r.squared
\end{Sinput}
\begin{Soutput}
[1] 0.97285
\end{Soutput}
\end{Schunk}
\end{document}
```

Note how the input code has been parsed and placed in the special Sinput ETEX environment, e.g.:

```
\begin{Sinput}
> summary(7m(Volume ~ Height * Girth, data = trees))$adj.r.squared
\end{Sinput}
```

The code was executed by R, and the code that would produce output on the console was added to the document, again in a special $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ environment, Soutput.
\begin\{Soutput\} }
[1] 0.97285
\end\{Soutput\} }
There is no cut-and-paste here! The code was executed by R and produced the output. "What you asked for, you got." The $\mathrm{LT} T_{\mathrm{E}} \mathrm{X}$ environments are defined in the Sweave $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ package; this was specified in the preamble.

### 8.3 The PDF document

The $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ document produced by Sweave is then processed as any $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document, usually to to produce a PDF. Figure 18 shows the output from this example.

## Sweaving for reproducible data analysis

## A Nonymous

14-November-2010

Here is a simple example of R and Sweave:

```
R> data(trees)
R> str(trees)
'data.frame': 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...
$ Height: num 70 65 63 72 81 83 66 75 80 75 \ldots..
$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...
R> summary(lm(Volume ~ Height * Girth, data = trees))$adj.r.squared
[1] 0.97285
```

Figure 18: Example PDF produced by Sweave and $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ Notice how the R input is formatted differently from the R output.

### 8.4 Graphics in Sweave

Since R produces graphs, Sweave can also produce them and incorporate them into documents. See Rossiter [47], Leisch [24, 25] and the Sweave web site ${ }^{43}$ for many examples.

[^20]
## 9 Learning R

The present document explains the basics of using R (§3), the S language (§4), R graphics (§5), and the on-line help system (§3.2.2). There are many other resources for learning and applying $R$; this section explains the most useful.

### 9.1 Task views

Many applications are covered in on-line Task Views ${ }^{44}$. These are a summary by a task maintainer of the facilities in R to accomplish certain tasks. For example, Roger Bivand maintains a task view "Analysis of Spatial Data" ${ }^{45}$ which discusses how to represent spatial data in $R$, how to read and write it, how to analyze point patterns, and geostatistical analysis. Another useful task view is "Multivariate Statistics" ${ }^{46}$ maintained by Paul Hewson.

The contributed documentation at CRAN ${ }^{47}$ has many introductions and reference cards for specific kinds of analysis, for example regression analysis ${ }^{48}$ and time-series analysis ${ }^{49}$.

### 9.2 R tutorials and introductions

From the R console, you can follow the introductory course "An Introduction to R" as follows.

1. Select menu command Help | Htm1 help; a web page will appear in your web browser.
2. In this web page, select the link "An Introduction to R"; another web page will appear.

You will probably want to start with the section "Appendix A: A sample session" (scroll down the web page to find this in the table of contents). This will give you some familiarity with the style of R sessions and more importantly some instant feedback on what actually happens. Don't worry if you don't understand everything; this is just to give you a feel for how R works and what it can do. For individual commands, it is always best to look at its help topic.

Translations The introductory tutorial or similar has been translated to many languages, including Chinese, Croatian, Farsi, French, German, Hungarian, Italian,

[^21]Japanese，Spanish，Polish，Portuguese and Vietnamese；these can be ac－ cessed by following the＂CRAN＂link on the R Project home page ${ }^{50}$ ，and then＂Contributed documentation＂and＂other languages＂．

A good introduction to R concepts is the 100－page＂ R for Beginners＂by Emmanuel Paradis of the University of Montpellier（ F ）［30］．This is also availble in his native French［32］and in a Spanish translation［31］；Correa \＆González［9］．is a Spanish－language introduction to R graphics．Dalgaard ［11］is a clearly－written introductory statistics textbook，using R in all ex－ amples．Another useful introduction is＂simpleR＂by John Verzani of the City University of New York［58］，also available as a set of web pages（§9．5）． This shows how to use R for the usual univariate and bivariate statistics and tests，linear regression，and ANOVA．It has since been updated as a commercial textbook［59］．

```
中文中国语言文件可以在网站《R文档》 }\mp@subsup{}{}{51}\mathrm{ 找到。也有一个《R语言中文论
坛》52
```


## 9．3 Textbooks using R

e－books in the Crawley［10］is a good introduction to many kinds of analysis using R，with ITC library emphasis on statistical modelling．

Other books The introductory text of Dalgaard［11］was mentioned above．Venables \＆ in the Ripley［57］present a wide variety of up－to－date statistical methods（includ－

ITC library

UseR！series tical texts，with many examples of R code；among the topics are time series ［26］，data prepration［54］，spatial data analysis［2］，Bayesian data anlysis ［1］，Lattice graphics［51］，dynamic visualization［7］，wavelet analysis［29］， and non－linear regression［41］．

It is increasingly common for sophisticated statistics texts to use R to illustrate their concepts；an example is the geostatistics text of Diggle \＆ Ribeiro Jr．［13］，which uses the authors＇geoR package［39］．So theory and practice go hand－in－hand．

[^22]The text of Shumway \& Stoffer [52] on time-series analysis uses R code for illustration; they also provide an on-line tutorial at the book's supporting website ${ }^{55}$.

### 9.4 Technical notes using R

I have written several technical notes on statistical topics, using R to compute and graph; these are all available as PDF files on-line ${ }^{56}$. If you work through these and use them as starting points for your own analysis, you will have a good basis in R . One note [48] is designed as a tutorial on R and the S language. Another [46] is designed to show as many R techniques as possible: exploratory data analysis, univariate statistics, bivariate correlation and regression, multivariate analysis including PCA, and some geostatistics. Others are more specialised:

- land cover change with logistic regression [49];
. assessing map accuracy [43];
- co-kriging [45];
- fitting rational functions to time series [44];
- optimal partitioning of soil transects [42].


### 9.5 Web Pages to learn R

- http://www.rseek.org/

The "RSeek" website is a unified portal to R discussion lists, books, FAQ, R Journal, user-contributed documentation, etc.

Figure 19 shows the results of an RSeek search.

- http://www.maths.bath.ac.uk/~jjf23/book/
"Practical Regression and Anova in R" by Julian Faraway (University of Bath, UK); this has been updated into two commerical textbooks: [16, 17]
-http://rgm2.1ab.nig.ac.jp/RGM2/
"R Graphical Manual", a huge collection of graphs produced with R, all with source code
- http://addictedtor.free.fr/graphiques/

[^23]

Figure 19: Results of an RSeek search
"Addicted to R" graphics gallery, also with source code

### 9.6 Keeping up with developments in R

$R$ is a dynamic environment, with a large number of dedicated scientists working to make it both a rich statistical computing environment and a modern programming language. Almost every day brings new and modified packages added to CRAN. New versions of the $R$ base appear regularly, about twice a year. This means the R user needs to invest some time to keep up with developments:

- Read the $\mathbf{R}$ Journal ${ }^{57}$. This is issued about four times a year, and is announced on R home page. It is an attractive PDF document with news, announcements, tutorials, programmer's tips, bibliographies and much more. Prior to 2009 it was known as the R Newsletter; this is archived along with the Journal. Many important developments in R were and are explained, and illustrated with examples, in the Journal and Newsletter.
- Subscribe to one or more mailing lists: follow the "Mailing Lists" link on the R Project home page. The most relevant for most ITC users are:
- R-announce: major announcements, e.g. new versions

[^24]－R－help：discussion about problems using R，and their solutions． The R gurus monitor this list and reply as necessary．A search through the archives is a good way to see if your problem was already discussed．You can access this search via the Search link on the R home page ${ }^{58}$ ，or from within R with the RSiteSearch method：

```
> RSiteSearch("logistic and ROC",
+ restrict="Rhelp02a", sortby = "date:1ate")
A search query has been submitted to http://search.r-project.org
The results page should open in your browser shortly
```

Figure 20 shows the results of this search．

```
 R site search: <logistic and ROC>
4 甾 (1) A A C + R http://search.r-project.org/cgi-bin/namazu.cgi?query=logistic+and+ROC& Q Google
m my del.icious post to del.icio.us ITC \ A5v Wikipedia Scholarpedia Rv 中文v Sciencev Moneyv XinHuav DGR v
```


## R Site Search

```
Note：more than two search terms may fail．
Query：logistic and ROC
Search！［How to search］
Display： 20 Description：normal \＃Sort：by date，latest on top
Target：
Functions
\(\square\) Documents
\(\checkmark\) R－help 2002－
\(\square\) Rhelp 1997－2001
```


## Results：

```
References：［ logistic： 2939 ］［ ROC： 379 ］
Total 50 documents matching your query．
1．［R］pseudo \(\mathbf{R}\) square and／or \(\mathbf{C}\) statistic in \(\mathbf{R}\) logistic regression from Chuck Cleland on 2008－03－27（stdin）（score： 1 ） Author：Chuck Cleland（ccleland） Date：Tue， 01 Apr 2008 08：47：48－0500
［R］pseudo R square and／or C statistic in R logistic regression This message：［ Message body ］［ More options ］Related messages：［ Tribo Laboy：＂\([\mathrm{R}]\) Rule for accessing attributes？＂Next message ］［ http：／／finzi．psych．upenn．edu／R／Rhelp02a／archive／125833．html（ 8,951 bytes）
2．［R］Systematically biased count data regression model from Steven McKinney on 2007－08－09（stdin）（score：1） Author：Steven McKinney（smckinney）＂\(\gg\)＜meta name＝＂Subject＂content＝＂\([R]\) Systematically biased count data regression model＂ ／＞＜meta name＝＂Date＂content＝＂2007－08－09＂\(/>\)＜style type \(=\)＂text／css Date：Fri， 31 Aug 2007 20：14：08－0500
［R］Systematically biased count data regression model This message：［ Message body ］［ More options ］Related messages：［ gallon li ＂［R］compute ROC curve？＂Next message ］［ Felix Andrews：＂［R］Sea
http：／／finzi．psych．upenn．edu／R／Rhelp02a／archive／106735．html（19，480 bytes）
```

Figure 20：Results of an $R$ site search
－Attend the useR！user＇s conference every two years since 2004．The papers from these meetings are available on－line ${ }^{59}$ ．

[^25]
## 10 Frequently-asked questions

### 10.1 Help! I got an error, what did I do wrong?

1. Read the error message carefully. Often it says exactly what is wrong. For example:
```
> x <- rnorm(100)
> summary(X)
Error in summary(X) : Object "X" not found
```

This means exactly what it says: there is no object named X in the workspace nor in attached data frames, so R could not find it when it tried to execute the summary method. In this case the solution is clear: the variable is a lower-case x , not an upper-case X :

```
> summary(x)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.750 -0.561 -0.070 -0.014 0.745 2.350
```

2. If the command involves an external file, make sure your R session is in the right directory, or else use the full path name. For example, the read.csv method requires a file name:
```
> dlv <- read.csv("dlv.csv")
Error in file(file, "r") : unable to open connection
In addition: Warning message:
cannot open file 'dlv.csv'
```

The "unable to open connection" message means that the file could not be found.

Check the current working directory with the getwd method, and see if the file is there with the list.files method (or, you could look for the file in Windows Explorer):

```
> getwd()
[1] "/Users/rossiter/ds/DavisGeostats"
> list.files(pattern="dlv.csv")
character(0)
```

In fact this file is in another directory. One way is to give the full path name; note the use of the front slash / as in Unix; R interprets this correctly for MS-Windows:

```
> dlv <- read.csv("/Users/rossiter/ds/DLV/dlv.csv")
> dim(dlv)
[1] 88 33
```

Another way is to change the working directory with the setwd method:

```
> setwd("/Users/rossiter/ds/DLV")
```

```
> getwd()
[1] "/Users/rossiter/ds/DLV"
> dlv <- read.csv("dlv.csv")
> dim(d7v)
[1] 88 33
```

3. A common problem is the attempt to use a method that is in an unloaded package:

For example, suppose we try to run a resistant regression with the 1qs method:

```
> lqs(lead ~ om, data=meuse)
Error: couldn't find function "lqs"
```

This error has two possible causes: either there is no such method anywhere (for example, if it had been misspelled 1qr), or the method is available in an unloaded package.

To find out if the method is available in any package, search for the topic with the he 1 p. search method:

```
> help.search("lqs")
```

In this case, the list of matches to the search term "1qs" shows two, both associated with package MASS.

Once the required package is loaded, the method is available:

```
> library(MASS)
> lqs(lead ~ om, data=meuse)
Coefficients:
(Intercept) om
 -19.9 15.4
Scale estimates 46.9 45.9
```

4. If the command which produced the error is compound, break it down into small pieces, beginning with the innermost command and then working outwards.
5. Review the documentation for the command; it may explain situations in which an error will be produced. For example, if we try to compute the non-parametric correlation between lead and organic matter in the Meuse data set, we get an error:
```
> library(gstat); data(meuse)
> cor(meuse$7ead, meuse$om, method="spearman")
Error in cor(lead, om) : missing observations in cov/cor
> ?cor
```

The help for cor says: "If use is "all.obs", then the presence of missing observations will produce an error"; in the usage section it
shows that use = "a11.obs" is the default; so we must have some missing values. We can check for these with the is.na method:

```
> sum(is.na(lead)); sum(is.na(om))
[1] 0
[1] 2
```

There are two missing values of organic matter (but none of lead). Then we must decide how to deal with them; one way is to compute the correlation without the missing cases:

```
> cor(lead, om, method="spearman", use="complete")
[1] 0.59759
```


### 10.2 Why didn't my command(s) do what I expected?

Because R does what you said, not what you meant! Some ideas to make the two match:

1. Review the on-line documentation for the command to see what the command actually does. Pay especial attention to the arguments and any defaults. All methods have examples; experiment with these to make sure you understand what the method really does.
2. Look for the same commands in a tutorial or text and follow the examples.
3. Break down the command into smaller parts; make sure each part does what you think.
4. Experiment with test data or "toy" examples to understand how the command really works.
5. Look at the data structures with str and class: sometimes it has a different structure than you thought.
6. Look at your data with summary, head, or print. Maybe your data is not what you thought.
7. A common problem occurs when a variable defined in the workspace, also called a local variable, has the same name as a field in a data frame. The local variable is found by R when it looks for the name, and masks the field name.
```
> data(trees); str(trees)
'data.frame': 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 ...
$ Height: num 70 65 63 72 81 83 66 75 80 75 ...
$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 ...
> (Volume <- sample(1:31))
 [1] 6 7 7 3 21 22 1 24 9
```

```
[19] 18 10 23 15 12 27 16 2 26 17 28 4 25
> attach(trees)
> cor(Volume, Girth)
[1] 0.30725
```

This is not the expected value; it is very low, and we know that a tree's volume should be fairly well correlated with its girth. What is wrong? Listing the workspace gives a clue:

```
> 1s()
[1] "Volume" "trees"
```

The name Volume occurs twice: once as a local variable, visible with 1 s (), and once as a field name, visible with str (trees). Even though the trees frame is attached, the Volume field is masked by the Volume local variable, which in this case is just a random permutation of the integers from 1 to 31, so the cor method gives an incorrect result.

One way around this problem is to name the field explicitly within its frame using \$, e.g. trees\$Volume:

```
> cor(trees$Volume, Girth)
[1] 0.96712
```

Another way is to delete the workspace variable with rm(); this makes the field name in the attached frame visible:

```
> rm(Volume)
> cor(Volume, Girth)
[1] 0.96712
```

Another way is to use names for local variables that do not conflict with field names in the attached data frames.

### 10.3 How do I find the method to do what I want?

R has a very rich set of methods, and there are often several ways to accomplish the same thing, especially with contributed packages.

1. Look at the help pages for methods you do know; they often list related methods. For example, the help page for the linear models method (?1m) gives related methods for prediction, summary, regression diagnostics, analysis of variance, and generalised linear models, with hyperlinks (in the HTML help) to directly access their help.
2. Search for keywords. For example help. search("sequence") lists methods to generate sequences, vectors of sequences, and sequences of dates for time-series analysis.
3. Look at the Task Views ${ }^{60}$. These are a summary of the facilities in $R$ to accomplish certain tasks (multivariate methods, spatial statistics ...), including the names of the applicable packages and methods.
4. Review the tutorials (§9.2); they cover many common methods.
5. The contributed documentation at $\mathrm{CRAN}^{61}$ has many introductions and reference cards for specific kinds of analysis, for example the brief reference cards by Vito Ricci for regression analysis ${ }^{62}$ and timeseries analysis ${ }^{63}$.
6. Many textbooks use R to illustrate their discussion (§9.3), e.g., [11, $19,57,15,13$ ]; you can adapt their examples to your needs.
7. If you don't find what you're looking for, perhaps the method is in a contributed package which has not yet been installed on your system. You can search for it on CRAN (the R archive) ${ }^{64}$.

For example, the von Mises distribution is the circular analogue of the normal distribution [12, p. 322]. On R with the default installation, a search for this term with the help.search method will give no results:

```
> help.search("von Mises")
No help files found with alias or concept or title
 matching 'von Mises'
```

However, you can search the R archive for the term "Von Mises" with the RSiteSearch method:

```
> RSiteSearch("von Mises")
> RSiteSearch("von Mises", restrict="functions")
```

The second form restricts the search to just functions; by default documentation and the R-help mailing list archives are also searched. This opens the search page http://search.r-project.org/ in a browser.

In this case, several matches are shown, including two packages. A review of their contents shows that the circular package for circular statistics is the more complete, so it should be installed on your system (§A.1).

Once the new package is installed, its contents are available to be searched, and this time the term "von Mises" is found. Several methods in the circular package are relevant:

[^26]```
> help.search("von Mises")
dmixedvonmises(circular)
    Mixture of von Mises Distributions
mle.vonmises(circular)
    von Mises Maximum Likelihood Estimates
m7e.vonmises.bootstrap.ci(circular)
    Bootstrap Confidence Intervals
pp.plot(circular)
    von Mises Probability-Probability Plot
dvonmises(circular)
    von Mises Density Function
```

You can get help on any of these by loading the package and viewing the help:

```
> library(circular)
```

> ?dvonmises

10.4 Memory problems

Information on memory usage is returned by the object. size method for individual objects, and the gc ("garbage collection") method for the whole workspace:

```
> object.size(meuse)
[1] 23344
> gc()
    used (Mb) gc trigger (Mb) max used (Mb)
Nce11s 486087 13.0 818163 21.9 818163 21.9
Vce11s 326301 2.5 905753 7.0 905753 7.0
```

If you work with large objects, such as images, you may well exceed R's default memory limits:

```
> tmp <- matrix(1, 10000, 100000)
Error in matrix matrix(1, 10000, 1e+05) : cannot allocate vector of length 1000000000
```

There are other, similar, messages you may see. This topic is discussed in the help page for memory limits:

```
> help("Memory-limits")
```

MS-Windows limits the total memory that can be allocated to R; this can be reviewed with the memory.size method (on Windows only); with the optional max=TRUE argument it shows the maximum vector than can be allocated; the memory.limit method (on Windows only) shows the total memory that can be allocated for all objects:

```
> # running on MS-Windows
> memory.size(max=T)
[1] 917176320
> memory.limit()
[1] 1038856192
```

This is about 874 Mb for one object and almost 1 Gb total.
Memory can be increased up to about 2 Gb under Windows and indefinitely under better-designed operating systems; see the help:
> ?Memory

The easiest way to increase memory in Windows is by adding a commandline option to the Target field of a desktop shortcut or Start menu item. For example:
"C:\Program File\R\R-2.5.1\bin\Rgui.exe" --LANGUAGE=de --max-mem-size=2Gb
(Just for fun we specify a German-language GUI with the LANGUAGE flag.)
After re-starting R from the shortcut:
> memory.limit()
[1] 21474835648

If you are doing serious image processing, MS-Windows is unlikely to be a satisfactory platform. Fortunately, almost all your R code will run unchanged in R running under an OS that does not limit memory, such as some variety of Unix.

10.5 What version of R am I running?

The R.version system variable contains this information; if you want to report a possible program error it is always necessary to specify this:

```
> R.version
platform x86_64-apple-darwin9.8.0
arch x86_64
os darwin9.8.0
system x86_64, darwin9.8.0
status
major 2
minor 15.0
year 2012
month 03
day 30
svn rev 58871
language R
version.string R version 2.15.0 (2012-03-30)
```

To determine the version of an installed package (whether loaded or not), use the he1p method with the optional package= argument:

```
> help(package="sp")
Information on package 'sp'
```

Description:

Package:	sp
Version:	0.9-98
Date:	2012-03-26
Title:	classes and methods for spatial data
Author:	Edzer Pebesma edzer.pebesma@uni-muenster.de, Roger Bivand Roger.Bivand@nhh.no
Depends:	R (>= 2.10.0), methods, graphics
Suggests:	lattice, RColorBrewer, rgdal, rgeos (>= 0.1-8)
Imports:	utils, lattice, grid
Index:	
CRS-class	Class "CRS" of coordinate reference system arguments
DMS-class	Class "DMS" for degree, minute, decimal second values
zerodist	find point pairs with equal spatial coordinates

To find all packages loaded at a given time, use the sessionInfo command:

```
> sessionInfo()
R version 2.15.0 (2012-03-30)
Platform: x86_64-app7e-darwin9.8.0/x86_64 (64-bit)
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base
other attached packages:
[1] gstat_1.0-10 spacetime_0.6-2 xts_0.8-6
[4] zoo_1.7-7 sp_0.9-98
loaded via a namespace (and not attached):
[1] grid_2.15.0 lattice_0.20-6 tc7tk_2.15.0 tools_2.15.0
```


10.6 What statistical procedure should I use?

This of course depends on your application field, your research questions, and your dataset. You should always refer to textbooks and research papers. R is a computer program to carry out your computations, not a statistical wizard to design them.

Within R, each help page gives references to textbooks or articles which you should consult if you are unsure about the theory behind the method or its options. For example:

```
> help("g7m")
```

'glm' is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

References:
Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear mode1s. Chapter 6 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth \& Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

You can also look up technical terms in your favourite statistics textbook.
One of R's strongest points is that you are not limited to "textbook" or "routine" methods; you can use the most modern techniques that you see referenced in papers, usually with contributed packages. As a last resort, you can program a procedure yourself.

A Obtaining your own copy of R

You may want your own copy of R for your portable computer, your home computer, or your organisation's computer or network. This is free and legal; not only that, it is encouraged!

Within ITC, R, RStudio and Tinn-R can be installed via the Software Manager. The latter two should be installed after installing R itself.

From anywhere in the world, everything R is found via the R Project Home Page ${ }^{65}$, which has links to:

- Download R and additional packages from CRAN (The Comprehensive R ArchiveNetwork) ${ }^{66}$; the first time you attempt to download you will be asked to select a mirror, i.e. one of the many servers that host the R distribution;
- Installation instructions;
- Manuals;
- Frequently Asked Questions (FAQ);
- The R Journal, including innovative statistical applications, clever uses of R, and R programming.

Installing R for Windows To install R on Windows, download the setup program from CRAN by following the links for "Windows", then the "base" package, then selecting the setup program, the exact name depending on the version). Download the file (about 32 Mb) and run it; this will install R and its base packages.

This link will redirect to the current Windows binary release:
http://mirrors.dotsrc.org/cran/bin/windows/base/release.htm.

Note for Windows system managers: the "R Windows FAQ" in the same directory as the setup program has extensive information on administering R for Windows.

The setup installs the base R system and some of the most common libraries (Table 4).

[^27]| base | The R Base Package |
| :---: | :---: |
| chron | Chronological objects which can handle dates and times |
| class | Functions for classification |
| cluster | Functions for clustering |
| datasets | The R Datasets Package |
| foreign | Read data stored by Minitab, S, SAS, SPSS, Stata, |
| graphics | The R Graphics Package |
| grDevices | The R graphics devices;s upport for colours and fonts |
| grid | The Grid Graphics Package |
| KernSmooth | Functions for kernel smoothing |
| lattice | Lattice Graphics |
| MASS | Main Library of Venables and Ripley's MASS |
| methods | Formal Methods and Classes |
| mle | Maximum likelihood estimation |
| multcomp | Multiple Tests and Simultaneous Confidence Intervals |
| mvtnorm | Multivariate Normal and T Distribution |
| nlme | Linear and nonlinear mixed effects models |
| nnet | Feed-forward neural networks |
| rgl | 3D visualization device system (OpenGL) |
| rpart | Recursive partitioning |
| SparseM | Sparse Linear Algebra |
| spatial | Functions for Kriging and point pattern analysis |
| splines | Regression Spline Functions and Classes |
| stats | The R Stats Package (includes classical tests, exploratory data anlysis, smoothing and local methods for regression, multivariate analysis, non-linear least squares, time series analysis) |
| stepfun | Step Functions, including Empirical Distributions |
| survival | Survival analysis, including penalised likelihood. |
| utils | R Utilities |

Table 4: Packages in the base R distribution for Windows; libraries loaded when R starts are shown in boldface.

It also installs six manuals in both PDF and HTML format: (1) An Introduction to R; (2) R Installation and Administration; (3) R Language Definition; (4) Reference Index; (5) R Data Import/Export; (6) Writing R Extensions.

Other operating systems For Mac OS/X or other Unix-based system, follow the appropriate links from the CRAN home page and read the installation instructions. The GUI for the Mac OS/X version has a code editor, data editor, data browser, and native Quartz graphics.

Cross-platform RStudio is explained in §3.3.
The JGR project at the University of Augsburg (D) ${ }^{67}$ has developed a Javabased GUI which runs on any platform with industry-standard Java Runtime Engine, including Mac OS X and most Windows systems. This includes the iplots interactive graphics package.

A. 1 Installing new packages

The ITC network installation includes the optional packages requested by ITC users. If you need to install packages on your own copy of R, use the Packages | Insta11 Package(s) from CRAN ... menu item while connected to the Internet. You need administrator privledges on your system; if you can install the base program, you can install packages.

A brief description and full documentation of the available packages is available from the CRAN home page; click on the link for "Packages".

If you need a new package on the ITC network, contact the person who maintains the R distribution ${ }^{68}$.

A. 2 Customizing your installation

Many aspects of R's interactive behaviour can be changed to suit your preferences. For example, you can set up your own copy of R to load libraries at startup, and you can also change many default options. You do this by creating a file named. Rprofile either in your home directory, or in a working directory from which you will start R, or both. The second of these is used if it exists, otherwise the master copy in the home directory.

To see the current options setings, use the options function without any arguments; it's easier to review these by viewing its structure. Individual settings can then be viewed by their field name.

```
> str(options())
```

List of 45

[^28]```
$ prompt : chr "> "
$ continue : chr "+ "
$ htm7help : logi TRUE
> options()$digits
[1] 5
```

Here is an example .Rprofile which sets some options and loads some libraries that will always be used in a project:

```
options(show.signif.stars = FALSE);
options(htm1.help=TRUE);
options(digits = 5);
options(prompt = "R> "); options(continue = "R+ ");
options(timeout = 20);
library(gstat); library(lattice);
 # optional: function to run at startup
.First <- function() {
 print("Welcome to R, you've made a wise choice") };
 # optional: function to run at shutdown
.Last <- function() { graphics.off(); print("Get a life!") }
```


## A. 3 R in different human languages

R's menus and messages have been translated to several common languages; the codes of these are listed as folders under folder share/locale in the R installation.

MS-Windows If your system is set up to work in a non-English language (e.g. Spanish, code es), R GUI will automatically display its menus, and R its messages, in that language.

If you'd like R to work in a different language than your overall system, the simplest method is to:

1. Create a desktop shortcut to R Gui (probably created during installation);
2. Open its properties;
3. In the the Target field, add the environment variable LANGUAGE and the code for the language you want; for example to force English: LANGUAGE=en. Note the format: upper-case variable name, language name exactly as in the list of available languages, no quotes; the whole thing after the program name.

See the R for Windows FAQ Questions 2.2 and 2.15 for more details; this FAQ is available via the Help menu in RGui.

Mac OS/X The R for Mac OS X FAQ ${ }^{69}$ explains that R detects the language settings from the Language \& Text section of the System Preferences, and presents translated messages and GUI if they are available in the selected language. The Formats information for numbers is also used.

This can be over-ridden on a system-wide basis (not per-session). by setting the force. LANG defaults setting. For example, to force the US English text on a system running another language, open the Terminal (i.e., a shell) and enter this command:

```
defaults write org.R-project.R force.LANG en_US.UTF-8
```

Other languages and encodings can be specified with the International Organization for Standardization (ISO) standard for the identification of languages (ISO 639-1 or -2 ) ${ }^{70}$ and locales (ISO 3166-1).

## B An example script

This is an example of a moderately complicated script, which gives both a numerical and a visual impression of the variability of small random samples. The output is shown in Figure 21 on the following page. If you want to experiment with the script, cut-and-paste it into a text editor (for example, Tinn-R or the built-in editor of RStudio or R console), modify it as you like (for example, change the sample size $n$ or the number of replications), save it as a command file, and run it with the source function as explained in §3.5.

You prepare this with a plain-text editor as a text file, for example plot4. $\mathrm{R}^{71}$ and then "source" it into R , which executes the commands immediately.

```
> source("plot4.R")
```

If you want to change the plotting parameters, you have to change the script and re-source it. The next section offers a better solution.

A note on R style It is good practice to make all parameters into variables at the beginning of the script, so they can be easily adjusted. If you find yourself repeating the same number in many expressions, it probably should be converted to a variable. Examples here are the sample size and parameters of the normal distribution. You could write:

```
v <- rnorm(30, 180, 20)
hist(v, breaks = seq(800, 280, by=(20/3)))
points(x, dnorm(x, 180, 20)*(30*(20/3)))
```

${ }^{69}$ http://cran.r-project.org/bin/macosx/RMacOSX-FAQ.htm1 70 http://www.loc.gov/standards/iso639-2/php/English_list.php
${ }^{71}$ The . R file extension is customary for R scripts.
but it is more elegant to write:

```
n <- 30; mu <- 180; sd <- 20; bin.width <- sd/3
v <- rnorm(n, mu, sd)
hist(v, breaks = seq(mu-5*sd, mu+5*sd, by=bin.width))
points(x, dnorm(x, mu, sd)*(n*bin.width))
```

```
visualise the variability of small random samples
 # sample size
n <- 30
 # number of plot rows, columns
rows <- 2; cols <- 2; reps <- rows*cols
 # parameters of the normal distribution
mu <- 180; sd <- 20
par(mfrow=c(rows, cols))
sdd <- 3.5
 # compute bin width from s.d and
 # the number of bars for each
bin.width=sd/3
 # scale x-axis
x.min <- mu-(sdd*sd); x.max <- mu+(sdd*sd)
 # scale y-axis
y.max <- n*0.5*bin.width/sd
 # compute and display each graph
for (i in 1:reps) {
 v <- rnorm(n, mu, sd)
 hist(v, xlim=c(x.min,x.max), ylim=c(0, y.max),
 breaks = seq(mu-5*sd, mu+5*sd, by=bin.width),
 main="", xlab=paste("Sample",i)) ;
 x <- seq(x.min, x.max, length=120)
 # true normal distribution
 points(x,dnorm(x, mu, sd)*(n*bin.width),
 type="1", col="blue", 1ty=1, 1wd=1.8)
 # distribution estimated from sample
 points(x,dnorm(x, mean(v), sd(v))*(n*bin.width),
 type="1", col="red", 1ty=2, 1wd=1.8)
 # print sample params.
 # and Pr(Type I error)
 text(x.min, 0.9%y.max, paste("mean:", round(mean(v),2)),pos=4)
 text(x.min, 0.8*y.max, paste("sdev:", round(sd(v),2)),pos=4)
 text(x.min, 0.7*y.max,
 paste("Pr(t):", round((t.test(v, mu=mu))$p.value,2)),pos=4)
}
 # clean up
par(mfrow=c(1,1))
rm(n, rows, cols, reps, mu, sd, v, i, sdd, bin.width, x.min, x.max, y.max, x)
```



Figure 21: A visualisation of the variability of small random samples. Each sample of 30 has been divided into ten histogram bins on [130 ...230]. The blue (solid) normal curves all have $\mu=180$ and $\sigma=20$; the red (dashed) normal curves are estimated from each sample. Note the bias (left or right of the blue curves) and variances (narrower or wider than the blue curves).

## C An example function

A more powerful approach than writing and sourcing a script is to write a function which is loaded into the workspace with the source function and then run as if it were a built-in R function. The main advantage is that you can make the function adaptable with a set of arguments (parameters that can be sent to the function), so you don't have to edit the script.

Here we have converted the script of Appendix B into a function, with only one required argument (the sample size) and six optional arguments which control aspects of the display, for example the number of samples to compare on one plot.

You prepare this with a plain-text editor in the same way as a script, for example creating a file named plot_normals.R and then read it into $R$ with the source function. This is a script; as it is executed it defines the function. Once the function is defined in the workspace (which you can verify with the 1 s function), you run it just like a built-in $R$ function.

```
> source("plot_normals.R")
> 1s()
plot.normals
> plot.normals(60)
> plot.norma1s(60, mu=100, sd=15)
> plot.normals(60, rows=3, cols=3, mu=100, sd=15)
```

```
function to visualise the variability of small random samples
required arguments:
n : sample size
arguments with reasonable defaults:
rows,cols : dimensions of display
mu, sd : mean, s.d. of normal distribution to sample
bsd : histogram bins to represent each s.d.
sdd : +/- number of s.d. to display
plot.normals <- function(n, rows=2, cols=2, mu=0, sd=1,
 bsd = 2, sdd=3.5) {
 # set up graphic display
par(mfrow=c(rows, cols))
 # number of random samples
reps <- rows*cols
 # histogram bin width
bin.width=sd/bsd
 # scale x-axis
x.min <- mu-(sdd*sd); x.max <- mu+(sdd*sd)
 # scale y-axis; max. dnorm(1,0)=0.3989
 # adjust to sample and bin sizes
 # and normalize by s.d.
 # and leave room for higher bars
y.max <- n*0.5*bin.width/sd
 # compute and display each graph
for (i in 1:reps) {
 v <- rnorm(n, mu, sd)
 hist(v, xlim=c(x.min,x.max), ylim=c(0,y.max),
 breaks = seq(mu-5*sd, mu+5*sd, by=bin.width),
 main=paste("mu =", mu, ", sigma =", sd),
 xlab=paste("Sample",i), col="lightblue", border="gray",
 freq=TRUE)
 x <- seq(x.min,x.max,length=120)
 # true normal distribution
 points(x,dnorm(x, mu, sd)*(n*bin.width),
 type="1", col="blue", 1ty=1, 1wd=1.8)
 # normal dist. estimated from sample
 points(x,dnorm(x, mean(v), sd(v))*(n*bin.width),
 type="1", col="red", 1ty=2, 1wd=1.8)
 # print sample params.
 # and Pr(Type I error)
 text(x.min, 0.9%y.max, paste("mean:", round(mean(v),2)),pos=4)
 text(x.min, 0.8*y.max, paste("sdev:", round(sd(v),2)),pos=4)
 text(x.min, 0.7*y.max,
 paste("Pr(t):", round((t.test(v, mu=mu))$p.value,2)),pos=4)
}
 # clean up
par(mfrow=c(1,1))
}
```


## References

[1] Albert, J. 2007. Bayesian computation with R. Use R! New York: Springer 106
[2] Bivand, R. S.; Pebesma, E. J.; \& Gómez-Rubio, V. 2008. Applied Spatial Data Analysis with R. UseR! Springer
URL http://www.asdar-book.org/ 106
[3] Chambers, J. M. 1998. Programming with Data. New York: Springer. ISBN 0-387-98503-4 URL http://cm.be11-1abs.com/cm/ms/departments/sia/Sbook/ 48
[4] Christensen, R. 1996. Plane answers to complex questions: the theory of linear models. New York: Springer, 2nd edition 55, 56, 58
[5] Cleveland, W. S. 1993. Visualizing data. Murray Hill, N.J.: AT\&T Bell Laboratories; Hobart Press 77
[6] Congalton, R. G.; Oderwald, R. G.; \& Mead, R. A. 1983. Assessing landsat classification accuracy using discrete multivariate-analysis statistical techniques. Photogrammetric Engineering \& Remote Sensing 49(12):1671-1678 25, 92
[7] Cook, D.; Swayne, D. F.; \& Buja, A. 2007. Interactive and Dynamic Graphics for Data Analysis : with $R$ and GGobi. Use R! New York: Springer Verlag 106
[8] Cook, R. \& Weisberg, S. 1982. Residuals and influence in regression. New York: Chapman and Hall 59
[9] Correa, J. C. \& González, N. 2002. Gráficos Estadísticos con R. Medellín, Colombia: Universidad Nacional de Colombia, Sede Medellín, Posgrado en Estadística 106
[10] Crawley, M. J. 2007. The R book. Chichester: Wiley \& Sons URL http://www.dawsonera.com/depp/reader/protected/ externa1/AbstractView/S9780470515068 106
[11] Dalgaard, P. 2002. Introductory Statistics with R. Springer Verlag 106, 114
[12] Davis, J. C. 2002. Statistics and data analysis in geology. New York: John Wiley \& Sons, 3rd edition 114
[13] Diggle, P. J. \& Ribeiro Jr., P. J. 2007. Model-based geostatistics. Springer 106, 114
[14] Draper, N. \& Smith, H. 1981. Applied regression analysis. New York: John Wiley, 2nd edition 56, 58, 59
[15] Faraway, J. J. 2002. Practical Regression and Anova using R. Department of Mathematical Sciences, University of Bath (UK): self-published (web)
URL http://www.maths.bath.ac.uk/~jjf23/book/ 106, 114
[16] Faraway, J. J. 2005. Linear models with R. Boca Raton: Chapman \& Hall/CRC 106, 107
[17] Faraway, J. J. 2006. Extending the linear model with $R$ : generalized linear, mixed effects and nonparametric regression models. Boca Raton: Chapman \& Hall/CRC 106, 107
[18] Fox, J. 1997. Applied regression, linear models, and related methods. Newbury Park: Sage 56, 58, 59, 106
[19] Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Newbury Park: Sage 106, 114
[20] Ihaka, R. \& Gentleman, R. 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3):2993141
[21] Knuth, D. E. 1992. Literate programming. CSLI lecture notes 27. Stanford, CA: Center for the Study of Language and Information 101
[22] Kopka, H. \& Daly, P. W. 2004. Guide to ${ }^{A T} T_{E} X$. Boston: Addison-Wesley, 4th edition 101
[23] Lamport, L. 1994. AT $_{E} X$ : a document preparation system : user's guide and reference manual. Reading, MA: Addison-Wesley, 2nd edition 101
[24] Leisch, F. 2002. Sweave, part I: Mixing R and LTT ${ }_{E} X$. Rews 2(3):28-31 URL http://CRAN.R-project.org/doc/Rnews/ 101, 104
[25] Leisch, F. 2006. Sweave User's Manual. Vienna (A): TU Wein, 2.7.1 edition
URL http://www.stat.uni-muenchen.de/~1eisch/Sweave/ 101, 104
[26] Metcalfe, A. V. \& Cowpertwait, P. S. 2009. Introductory Time Series with $R$. Use R! Springer. DOI: 10.1007/978-0-387-88698-5 106
[27] Mevik, B.-H. 2006. The pls package. R News 6(3):12-17 62
[28] Murrell, P. 2005. R Graphics. Boca Raton, FL: Chapman \& Hall/CRC. ISBN 1-584-88486-X 69
[29] Nason, G. P. 2008. Wavelet methods in statistics with R. Use R! New York ; London: Springer 106
[30] Paradis, E. 2002. R for Beginners. Montpellier (F): University of Montpellier
URL http://cran.r-project.org/doc/contrib/rdebuts_en.pdf 106
[31] Paradis, E. 2002. R para Principiantes. Montpellier (F): University of Montpellier
URL http://cran.r-project.org/doc/contrib/rdebuts_es.pdf 106
[32] Paradis, E. 2002. R pour les débutants. Montpellier (F): University of Montpellier

URL http://cran.r-project.org/doc/contrib/rdebuts_fr.pdf 106
[33] Pebesma, E. J. 2004. Multivariable geostatistics in S: the gstat package. Computers \& Geosciences 30(7):683-691 2, 6
[34] Pebesma, E. J. \& Bivand, R. S. 2005. Classes and methods for spatial data in R. R News 5(2):9-13
URL http://CRAN.R-project.org/doc/Rnews/ 45
[35] Pebesma, E. J. \& Wesseling, C. G. 1998. Gstat: a program for geostatistical modelling, prediction and simulation. Computers \& Geosciences 24(1):17-31
URL http://www.gstat.org/ 6
[36] R Development Core Team. 2012. An Introduction to R. Vienna: The R Foundation for Statistical Computing, 2.15 .0 (2012-03-30) edition URL http://cran.r-project.org/doc/manuals/R-intro.pdf 19, 42, 64, 65, 69
[37] R Development Core Team. 2012. R Data Import/Export. Vienna: The R Foundation for Statistical Computing, 2.15 .0 (2012-03-30) edition URL http://cran.r-project.org/doc/manuals/R-data.pdf 91
[38] R Development Core Team. 2012. R Language Definition. Vienna: The R Foundation for Statistical Computing, 2.15.0 (2012-03-30) draft edition
URL http://cran.r-project.org/doc/manuals/R-1ang.pdf 19, 67
[39] Ribeiro, Jr., P. J. \& Diggle, P. J. 2001. geoR: A package for geostatistical analysis. $R$ News 1(2):14-18
URL http://CRAN.R-project.org/doc/Rnews/ 2, 106
[40] Ripley, B. D. 1981. Spatial statistics. New York: John Wiley and Sons 2
[41] Ritz, C. \& Streibig, J. C. 2008. Nonlinear regression with R. Use R! New York: Springer
URL http://CRAN-R-project.org/package=n1rwr 106
[42] Rossiter, D. G. 2004. Technical Note: Optimal partitioning of soil transects with R. Enschede (NL): (unpublished, online)
URL http://www.itc.n1/persona1/rossiter/teach/R/R_ OptPart.pdf 107
[43] Rossiter, D. G. 2004. Technical Note: Statistical methods for accuracy assesment of classified thematic maps. Enschede (NL): International Institute for Geo-information Science \& Earth Observation (ITC) URL http://www.itc.n1/persona1/rossiter/teach/R/R_ac.pdf 25, 92, 107
[44] Rossiter, D. G. 2005. Technical Note: Fitting rational functions to time series in $R$. Enschede (NL): International Institute for Geo-information Science \& Earth Observation (ITC)

URL http://www.itc.n1/personal/rossiter/teach/R/R_rat. pdf 107
[45] Rossiter, D. G. 2007. Technical Note: Co-kriging with the gstat package of the $R$ environment for statistical computing. Enschede (NL): International Institute for Geo-information Science \& Earth Observation (ITC), 2.1 edition
URL http://www.itc.n1/persona1/rossiter/teach/R/R_ck.pdf 107
[46] Rossiter, D. G. 2010. Technical Note: An example of data analysis using the $R$ environment for statistical computing. Enschede (NL): International Institute for Geo-information Science \& Earth Observation (ITC), 1.2 edition
URL http://www.itc.n1/personal/rossiter/teach/R/R_ corregr.pdf 107
[47] Rossiter, D. G. 2012. Technical Note: Literate Data Analysis. International Institute for Geo-information Science \& Earth Observation (ITC), 1.3 edition, 29 pp.

URL http://www.itc.n1/persona1/rossiter/teach/R/LDA.pdf 101, 104
[48] Rossiter, D. G. 2012. Tutorial: Using the R Environment for Statistical Computing: An example with the Mercer \& Hall wheat yield dataset. Enschede (NL): International Institute for Geo-information Science \& Earth Observation (ITC), 2.51 edition
URL http://www.itc.n1/personal/rossiter/teach/R/R_mhw. pdf 1, 107
[49] Rossiter, D. G. \& Loza, A. 2012. Technical Note: Analyzing land cover change with $R$. Enschede (NL): International Institute for Geo-information Science \& Earth Observation (ITC), 2.32 edition, 67 pp.
URL http://www.itc.n1/personal/rossiter/teach/R/R_LCC. pdf 107
[50] Sarkar, D. 2002. Lattice. $R$ News 2(2):19-23
URL http://CRAN.R-project.org/doc/Rnews/ 17, 77
[51] Sarkar, D. 2008. Lattice : multivariate data visualization with R. Use R! New York: Springer
URL http://1mdvr.r-forge.r-project.org/ 106
[52] Shumway, R. H. \& Stoffer, D. S. 2006. Time Series Analysis and Its Applications, with $R$ examples. Springer Texts in Statistics. Springer, 2nd edition
URL http://www.stat.pitt.edu/stoffer/tsa2/index.htm1 107
[53] Skidmore, A. K. 1999. Accuracy assessment of spatial information. In Stein, A.; Meer, F. v. d.; \& Gorte, B. G. F. (eds.), Spatial statistics for remote sensing, pp. 197-209. Dordrecht: Kluwer Academic 25, 92
[54] Spector, P. 2008. Data manipulation with R. Use R! New York: Springer 106
[55] Tatem, A. J.; Guerra, C. A.; Atkinson, P. M.; \& Hay, S. I. 2004. Momentous sprint at the 2156 Olympics? Women sprinters are closing the gap on men and may one day overtake them. Nature 431:525 91
[56] Venables, W. N. \& Ripley, B. D. 2000. S Programming. Springer. ISBN 0-387-98966-8 48
[57] Venables, W. N. \& Ripley, B. D. 2002. Modern applied statistics with S. New York: Springer-Verlag, $4^{\text {th }}$ edition URL http://www.stats.ox.ac.uk/pub/MASS4/ 17, 56, 58, 62, 106, 114
[58] Verzani, J. 2002. simpleR : Using R for Introductory Statistics, volume 2003. New York: CUNY, 0.4 edition URL http://www.math.csi.cuny.edu/Statistics/R/simpleR/ index.htm1 106
[59] Verzani, J. 2004. Using R for Introductory Statistics. Chapman \& Hall/CRC Press
URL http://www.math.csi.cuny.edu/UsingR 106

## Index of R concepts

! operator, 38

* formula operator, 53
* operator, 19, 27
+ formula operator, 53, 54
+ operator, 19
- formula operator, 53, 54
- operator, 19
/ formula operator, 54
/ operator, 19
: formula operator, 53
: operator, 22
;, 64
< operator, 37
<- operator, 20
= operator, 20
>= operator, 38
?, 11, 12
?Devices, 10
@ operator, 47
[ [ ]] operator, 30, 32
[ ] operator, 22, 36, 37, 90
\%*\% operator, 28,55
\%/\% operator, 19
\%\% operator, 19
\& operator, 38
^ formula operator, 53
$\wedge$ operator, 19, 23
~ formula operator, 52, 78
| formula operator, 78
| operator, 38
\$ operator, 24, 32, 47
" operator, 43
\{, 64
\}, 64
abline, 71, 72
abs, 19
AIC, 59
anova, 57
any, 61, 67
aov, 57
app7y, 29, 49, 61
arrows, 65, 71
as. *, 94
as.character, 43
as.data.frame, 93, 99
as.factor, 34,45
as.matrix, 96
as.numeric, 45, 71, 97
as.ordered, 34
asin, 20
asp trellis graphics argument, 89
assocplot, 75, 83
attach, 32
attr, 26
AttributeList (package:sp) class, 47
attributes, 26, 96
auto. key trellis graphics argument, 79
axis, 71, 73
barchart (package:lattice), 83
barp1ot, 75
bbox (package:sp), 47
bg graphics argument, 70, 86
biplot, 62
boot package, 62
box, 71
boxplot, 52, 75
bpy.colors (package:sp), 88
bwplot (package:1attice), 83
by, 29, 39
c, 22, 91, 92
car package, 36, 77
cbind, 33
ceiling, 19
cex graphics argument, 70
chisq.test, 50
chol, 30
circular package, 2, 114
class, 44, 45
cloud (package:lattice), 79, 83
cm.colors, 88
coefficients, 57
col, 27
col graphics argument, 70, 86
col2rgb, 88
colnames, 92
colours, 87
complete.cases, 63
contour, 75
contourplot (package:1attice), 79, 83
contr.helmert, 56
contr.poly, 56
contr.sum, 56
contr.treatment, 56
contrasts, 56
cooks.distance, 59
coordinates (package:sp), 46, 99
cop1ot, 75
cor, 63, 111, 113
cov, 63
covratio, 59
cut, 45
data, 18
data.frame, 32, 64
datasets package, 18
densityplot (package:1attice), 77, 83
det, 30
detach, 34
dev.off, 10
dev.set, 85
dfbetas, 59
dffits, 59
diag, 27, 29
dim, 26, 38
dnorm, 42
dotchart, 75
dotplot (package:1attice), 83
duplicated, 51
dvonmises (package:circular), 114
e1071 package, 50
eigen, 30
eva1, 68, 73
exp, 19
expression, 68, 73
factor, 34-36
file.show, 96
filled. contour, 75
fitted, 57, 61
fix, 92, 93
floor, 19, 51
for, 22, 64, 82
formula, 57
fourfoldp1ot, 75
function, 29, 65
gc, 115
geoR package, 2, 106
getC1ass, 46, 47
getwd, 110
g7m, 52, 55, 62
graphics package, 69
gray, 88
grid, 71, 72
GridTopology (package:sp) class, 48
groups trellis graphics argument, 79
gstat package, 2, 6, 17, 94, 99
hatvalues, 59
heat.colors, 88
help, 12, 116
he1p.search, 12, 111, 114
hist, 75, 84
histogram (package:1attice), 83, 86
hsv, 89
I, 54
identify, 77
if ...else, 64, 67
ifelse, 65
image, 75
influence.measures, 60
intersect, 51
iplots package, 121
iris dataset, 18, 39, 69, 75, 77
is.element, 51
is.factor, 45, 55
is.na, 112
is.numeric, 45
krige (package:gstat), 99
1app1y, 29
1attice package, $5,17,69,77,81,82,85$, 86
1egend, 71, 72
1ength, 23, 25, 48, 89
LETTERS constant, 44, 92
1etters constant, 44
levelplot (package:1attice), 52, 79, 83, 86
1eve1p1ot, 81
1eve1s, 34, 36
1ibrary, 17, 45
1ines, 71
1ist.files, 110
1m, 35, 52, 55, 57, 58, 62, 72
1 m. ridge (package:mass), 62
1oess, 62
log, 19, 54

1og10, 19
1og2, 19
1qs (package:mass), 62, 111
1qs, 72
1s, 21
1ty graphics argument, 72
main graphics argument, 70
MASS package, 17, 62, 63, 72, 77, 111
matp1ot, 75
matrix, 26, 92, 97
max, 25, 48
mean, 48
median, 48
memory.1imit, 115
memory.size, 115
meuse dataset, 46, 50, 56, 89, 94, 99
meuse.grid dataset, 99
min, 48
mle.vonmises (package:circular), 114
mode1.matrix, 55
mosaicplot, 75
mtext, 71
na.omit, 63
names, 31, 41
n1me package, 2
n1s, 62
nnet package, 2
object.size, 115
options, 56, 121
order, 34
ordered, 34
pairs, 75
palette, 87
pane 1 trellis graphics argument, 81
panel.abline (package:lattice), 82
pane1.fill (package:lattice), 81
panel.xyplot (package:1attice), 82
par, 59, 85
paralle1 (package:lattice), 83
parse, 67, 68
paste, 31, 43, 67
pch graphics argument, 70
pdf, 10
persp, 75
pi constant, 19
plot, 4, 52, 59, 65, 69, 71, 72, 75, 84, 87
p1ot.defau7t, 69
plot.7m, 59
plotmath, 73
p1s package, 62
pnorm, 42
points, 65, 71, 72
polygon, 71
prcomp, 62
predict, 61
predict.7m, 61
print (package:lattice), 86
print, 67, 81
q, 8
qnorm, 42
qq (package:7attice), 83
qqmath (package:lattice), 83
qr, 30
quantile, 49
R.version, 116
rainbow, 89
randomForest package, 2
rank, 23, 24, 89
rbind, 33
rbinom, 11
Rcmdr package, 16
read.asciigrid (package:sp), 97
read.csv, 93-95, 110
read.tab1e, 34, 94
recode, 36
rect, 71
rep, 32, 91
repeat, 64
require, 16, 17, 45
reshape, 41
residuals, 57
return, 66
rfs (package:1attice), 83
rgb, 88
rgda1 package, 2
rlm (package:mass), 62
rm, 21, 31
rnorm, 23, 42
round, 19, 28, 42, 99
row, 27
rownames, 51, 92
rpart package, 2
RSiteSearch, 109, 114
rstandard, 59
rstudent, 59
rug, 71
runif, 64
samp1e, 38
sapp7y, 29
scale, 29
scan, 91, 92, 97
scatterplot (package:car), 77
scatterplot.matrix (package:car), 77
screeplot, 62
segments, 71
seq, 21, 91
sessionInfo, 117
set.seed, 43
setdiff, 51
setequal, 51
setwd, 110
show.settings (package:1attice), 83
showMethods, 48
sin, 19
slotNames, 47
solve, 28, 55
sort, $23,24,37$
source, 123, 126
sp package, 2, 45-47, 50, 88, 94, 97
Spatial (package:sp) class, 47, 48
spatial package, 2
Spatia1Lines (package:sp) class, 48
SpatialPixelsDataFrame (package:sp) class, 47
SpatialPoints (package:sp) class, 47, 48
SpatialPointsDataFrame (package:sp) class, 46-48, 99
SpatialPolygons (package:sp) class, 48 spatstat package, 2
splines package, 2
split, 38, 39
splom (package:1attice), 83
spplot (package:sp), 48
sqrt, 19
stack, 41
stars, 75
stem, 75
step, 62
str, 24, 45, 47, 55, 57
stripchart, 75
stripplot (package:1attice), 83
strsplit, 43
subset, 38
substitute, 73
substring, 43
sum, 23, 29
summary, $4,11,44,49,58,63,110$
summary. $1 \mathrm{~m}, 58$
sunflowerplot, 75
svd, 30
Sweave, 102
symbols, 71
t, 4, 26, 55
tab7e, 34, 35, 50
tapply, 29
terrain.colors, 88
text, 65, 71-74
title, 71-73
tmd (package:lattice), 83
topo.colors, 88, 89
trees dataset, 30, 33, 37, 51, 55, 63, 93
trellis.par.get (package:lattice), 83
trellis.par.set (package:1attice), 83
truehist (package:mass), 77
trunc, 19
union, 51
unique, 51
un1ist, 43
unstack, 41
var, 23
variogram (package:gstat), 17
vegan package, 2, 6
vignette, 12
volcano dataset, 81
wavelet package, 2
which, 37, 61
whi1e, 64
windows, 77, 84
wireframe (package:1attice), 79, 83
write.table, 99
x7ab graphics argument, 70
xyplot (package:1attice), 78, 83, 86, 89
y1ab graphics argument, 70


[^0]:    ${ }^{1}$ http://www.itc.n1/persona1/rossiter/pubs/1ist.htm7\#pubs_m_R, item 2
    ${ }^{2}$ http://www.r-project.org/

[^1]:    ${ }^{3}$ http://www.gnu.org/copy7eft/gp1.htm7

[^2]:    ${ }^{4}$ For example, the $t$ (transpose) method only can be applied to matrices
    ${ }^{5}$ For example, the summary and plot methods give different results depending on the class of object.

[^3]:    ${ }^{6}$ http://www.insightful.com/
    ${ }^{7}$ There are differences in the language definitions of S, R, and S-PLUS that are important to programmers, but rarely to end-users. There are also differences in how some algorithms are implemented, so the numerical results of an identical method may be somewhat different.
    ${ }^{8}$ See the list at http://www.stata.com/1inks/stat_software.htm1

[^4]:    ${ }^{9}$ http://www.gstat.org/
    10 http://www.openoffice.org/

[^5]:    ${ }^{12}$ This is a special case of the q method

[^6]:    ${ }^{13}$ An alternative for some analyses is the Rcmdr GUI explained in §3.6.

[^7]:    ${ }^{14}$ This simulates, for example, the number of women who would be expected, by chance, to present their work at a conference where 20 papers are to be presented, if the women make up $40 \%$ of the possible presenters.
    ${ }^{15}$ Your output will probably be somewhat different; why?

[^8]:    18 http://www.rstudio.org/
    ${ }^{19}$ Windows, Mac OS/X, Linux

[^9]:    20 http://www.sciviews.org/Tinn-R/

[^10]:    ${ }^{21}$ What is the expected value of this correlation cofficient?
    ${ }^{22}$ http://www.winedt. com/
    ${ }^{23}$ http://en.wikipedia.org/wiki/Emacs
    ${ }^{24}$ http://stat.ethz.ch/ESS/

[^11]:    ${ }^{25}$ In RGui, menu command He1p | Manua1s | R Language Manual
    ${ }^{26}$ In RGui, menu command $\overline{H e l p} \mid$ Manuals | R Introduction

[^12]:    ${ }^{28} 1$ inch $=2.54 \mathrm{~cm}$
    ${ }^{29} 1 \mathrm{ft}=30.48 \mathrm{~cm}$

[^13]:    ${ }^{31}$ No, I don't know what the name stands for, either!

[^14]:    ${ }^{35}$ Perhaps reflectances from a hyperspectral sensor

[^15]:    "background"
    "add.text"
    "box.rectangle"
    "dot.symbol"
    "reference.line"
    "strip.border"
    "superpose.polygon"
    "axis.line"
    "layout.heights"
    "par.x7ab.text"
    "par.main.text"

[^16]:    ${ }^{37}$ In RGui, select menu command $\underline{H} \mathrm{e} 1 \mathrm{p} \mid \underline{\text { Manua1s | R Data Import/Export }}$

[^17]:    ${ }^{38}$ This matrix is also used as an example in $\S 4.6$

[^18]:    ${ }^{39}$ read. csv is a specialised wrapper to the very general read. table function which can deal with tables in many other formats

[^19]:    ${ }^{40}$ These are not the numbers 1,2 , and 3 .

[^20]:    ${ }^{43}$ http://www.stat.uni-muenchen.de/~7eisch/Sweave/

[^21]:    $\overline{44}$ http://cran.r-project.org/web/views/index.htm7
    45 http://cran.r-project.org/web/views/Spatial.htm1
    ${ }^{46}$ http://cran.r-project.org/web/views/Mu7tivariate.htm7
    ${ }^{47}$ http://cran.r-project.org/other-docs.htm7
    ${ }^{48}$ http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
    ${ }^{49}$ http://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf

[^22]:    50 http：／／www．r－project．org／
    ${ }^{51}$ http：／／www．biosino．org／R／R－doc／
    52 http：／／rbbs．biosino．org／Rbbs／forums／7ist．page
    ${ }^{53}$ http：／／www．springer．com／series／6991？detai1sPage＝titles
    ${ }^{54}$ as of 13－August－2012

[^23]:    55 http://www.stat.pitt.edu/stoffer/tsa2/index.htm1
    56 http://www.itc.n1/persona1/rossiter/pubs/1ist.htm1\#pubs_m_R

[^24]:    57http://journa1.r-project.org/

[^25]:    ${ }^{58}$ links to http：／／finzi．psych．upenn．edu／search．htm7
    59 http：／／www．r－project．org／conferences．htm1

[^26]:    $\overline{60}$ http://cran.r-project.org/web/views/index.htm7
    ${ }^{61}$ http://cran.r-project.org/other-docs.htm1
    ${ }^{62}$ http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
    ${ }^{63}$ http://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf
    ${ }^{64}$ http://cran.r-project.org/

[^27]:    65 http://www.r-project.org/
    66 http://cran.r-project.org/

[^28]:    ${ }^{67}$ http://www. rosuda.org/
    ${ }^{68}$ As of the date of these notes, their author

