ammistability
Package: A
Brief Introduction
The package ammistability
(Ajay et al.,
2019a) is a collection of functions for the computation of
various stability parameters from the results of Additive Main Effects
and Multiplicative Interaction (AMMI) analysis computed by the AMMI
function of agricolae
package.
The goal of this vignette is to introduce the users to these
functions and give a primer in computation of various stability
parameters/indices from a fitted AMMI model. This document assumes a
basic knowledge of R
programming language.
The package can be installed from CRAN as follows:
# Install from CRAN
install.packages('ammistability', dependencies=TRUE)
The development version can be installed from github as follows:
# Install development version from Github
devtools::install_github("ajaygpb/ammistability")
Then the package can be loaded using the function
library(ammistability)
The current version of the package is 0.1.4. The previous versions are as follows.
Table 1. Version history of
ammistability
R
package.
Version | Date |
---|---|
0.1.0 | 2018-08-13 |
0.1.1 | 2018-12-07 |
0.1.2 | 2021-02-23 |
0.1.3 | 2022-07-18 |
To know detailed history of changes use
news(package='ammistability')
.
The difference in response of genotypes to different environmental conditions is known as Genotype-Environment Interaction (GEI). Understanding the nature and structure of this interaction is critical for plant breeders to select for genotypes with wide or specific adaptability. One of the most popular techniques to achieve this is by fitting the Additive Main Effects and Multiplicative Interaction (AMMI) model to the results of multi environment trials (Gauch, 1988, 1992).
The AMMI equation is described as follows.
\[Y_{ij} = \mu + \alpha_{i} + \beta_{j} + \sum_{n=1}^{N}\lambda_{n}\gamma_{in}\delta_{jn} + \rho_{ij}\]
Where, \(Y_{ij}\) is the yield of the \(i\)th genotype in the \(j\)th environment, \(\mu\) is the grand mean, \(\alpha_{i}\) is the genotype deviation from the grand mean, \(\beta_{j}\) is the environment deviation, \(N\) is the total number of interaction principal components (IPCs), \(\lambda_{n}\) is the is the singular value for \(n\)th IPC and correspondingly \(\lambda_{n}^{2}\) is its eigen value, \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype, \(\delta_{jn}\) is the eigenvector value for the \(j\)th environment and \(\rho_{ij}\) is the residual.
Although the AMMI model can aid in determining genotypes with wide or specific adaptability, it fails to rank genotypes according to their stability. Several measures have been developed over the years to indicate the stability of genotypes from the results of AMMI analysis (Table 1.).
The details about AMMI stability parameters/indices implemented in
ammistability
are described in Table 1.
Table 1 : AMMI stability parameters/indices
implemented in ammistability
.
AMMI stability parameter | function | Details | Reference |
---|---|---|---|
Sum across environments of GEI modelled by AMMI (\(AMGE\)) | AMGE.AMMI |
\[AMGE = \sum_{j=1}^{E} \sum_{n=1}^{N'} \lambda_{n} \gamma_{in} \delta_{jn}\] | Sneller et al. (1997) |
AMMI Stability Index (\(ASI\)) | ASI.AMMI and MASI.AMMI |
\[ASI = \sqrt{\left [ PC_{1}^{2} \times \theta_{1}^{2} \right ]+\left [ PC_{2}^{2} \times \theta_{2}^{2} \right ]}\] | Jambhulkar et al. (2014); Jambhulkar et al. (2015); Jambhulkar et al. (2017) |
AMMI Based Stability Parameter (\(ASTAB\)) | ASTAB.AMMI |
\[ASTAB = \sum_{n=1}^{N'}\lambda_{n}\gamma_{in}^{2}\] | Rao and Prabhakaran (2005) |
AMMI stability value (\(ASV\)) * | agricolae::index.AMMI and
MASV.AMMI |
Distance from the coordinate point to the origin in a
two dimensional scattergram generated by plotting of IPC1 score against
IPC2 score. \[ASV = \sqrt{\left (\frac{SSIPC_{1}}{SSIPC_{2}}\times PC_{1} \right )^2 + \left (PC_{2} \right )^2} \] |
Purchase (1997); Purchase et al. (1999); Purchase et al. (2000) |
\(AV_{(AMGE)}\) | AVAMGE.AMMI |
\[AV_{(AMGE)} = \sum_{j=1}^{E} \sum_{n=1}^{N'} \left |\lambda_{n} \gamma_{in} \delta_{jn} \right |\] | Zali et al. (2012) |
Annicchiarico’s D parameter (\(D_{a}\)) | DA.AMMI |
The unsquared Euclidean distance from the origin of
significant IPC axes in the AMMI model. \[D_{a} = \sqrt{\sum_{n=1}^{N'}(\lambda_{n}\gamma_{in})^2}\] |
Annicchiarico (1997) |
Zhang’s D parameter or AMMI statistic coefficient or AMMI distance or AMMI stability index (\(D_{z}\)) | DZ.AMMI |
The distance of IPC point from origin in space. \[D_{z} = \sqrt{\sum_{n=1}^{N'}\gamma_{in}^{2}}\] |
Zhang et al. (1998) |
Averages of the squared eigenvector values \(EV\) | EV.AMMI |
\[EV = \sum_{n=1}^{N'}\frac{\gamma_{in}^2}{N'}\] | Zobel (1994) |
Stability measure based on fitted AMMI model \(FA\) | FA.AMMI |
\[FA = \sum_{n=1}^{N'}\lambda_{n}^{2}\gamma_{in}^{2}\] | Raju (2002); Zali et al. (2012) |
\(FP\) | FA.AMMI |
Equivalent to \(FA\),
when only the first IPC axis is considered for computation. \[FP = \lambda_{1}^{2}\gamma_{i1}^{2}\] As \(\lambda_{1}^{2}\) will be same for all the genotypes, the absolute value of \(\gamma_{i1}\) alone is sufficient for comparison. So this is also equivalent to the comparison based on biplot with first IPC axis. |
Raju (2002); Zali et al. (2012) |
\(B\) | FA.AMMI |
Equivalent to \(FA\),
when only the first two IPC axes are considered for computation. \[B = \sum_{n=1}^{2}\lambda_{n}^{2}\gamma_{in}^{2}\] Stability comparisons based on this measure will be equivalent to the comparisons based on biplot with first two IPC axes. |
Raju (2002); Zali et al. (2012) |
\(W_{(AMMI)}\) | FA.AMMI |
Equivalent to \(FA\),
when all the IPC axes in the AMMI model are considered for
computation. \[W_{(AMMI)} = \sum_{n=1}^{N}\lambda_{n}^{2}\gamma_{in}^{2}\] Equivalent to Wricke’s ecovalence. |
Wricke (1962); Raju (2002); Zali et al. (2012) |
Modified AMMI Stability Index (\(MASI\)) | MASI.AMMI |
\[MASI = \sqrt{ \sum_{n=1}^{N'} PC_{n}^{2} \times \theta_{n}^{2}}\] | Ajay et al. (2018) |
Modified AMMI stability value (\(MASV\)) | MASV.AMMI |
\[MASV = \sqrt{\sum_{n=1}^{N'-1}\left (\frac{SSIPC_{n}}{SSIPC_{n+1}} \times PC_{n} \right )^2 + \left (PC_{N'} \right )^2} \] | Ajay et al. (2019b); Zali et al. (2012) |
Sums of the absolute value of the IPC scores (\(SIPC\)) | SIPC.AMMI |
\[SIPC = \sum_{n=1}^{N'}
\left |
\lambda_{n}^{0.5}\gamma_{in} \right |\] \[SIPC = \sum_{n=1}^{N'}\left | PC_{n} \right |\] |
Sneller et al. (1997) |
Absolute value of the relative contribution of IPCs to the interaction (\(Za\)) | ZA.AMMI |
\[Za = \sum_{i=1}^{N'}\left | \theta_{n}\gamma_{in} \right |\] | Zali et al. (2012) |
Where, \(N\) is the total number of interaction principal components (IPCs); \(N'\) is the number of significant IPCAs (number of IPC that were retained in the AMMI model via F tests); \(\lambda_{n}\) is the is the singular value for \(n\)th IPC and correspondingly \(\lambda_{n}^{2}\) is its eigen value; \(\gamma_{in}\) is the eigenvector value for \(i\)th genotype; \(\delta_{jn}\) is the eigenvector value for the \(j\)th environment; \(SSIPC_{1}\), \(SSIPC_{2}\), \(\cdots\), \(SSIPC_{n}\) are the sum of squares of the 1st, 2th, …, and \(n\)th IPC; \(PC_{1}\), \(PC_{2}\), \(\cdots\), \(PC_{n}\) are the scores of 1st, 2th, …, and \(n\)th IPC; \(\theta_{n}\) is the percentage sum of squares explained by \(n\)th principal component interaction effect; and \(E\) is the number of environments.
agricolae::AMMI
library(agricolae)
data(plrv)
# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))
# ANOVA
model$ANOVA
# IPC F test
model$analysis
# Mean yield and IPC scores
model$biplot
# G*E matrix (deviations from mean)
array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv))
ENV
GEN Ayac Hyo-02 LM-02 LM-03 SR-02 SR-03
102.18 5.5726162 -12.4918224 1.7425251 -2.7070438 2.91734869 4.9663762
104.22 -2.8712076 7.1684102 3.9336218 -4.0358373 0.47881580 -4.6738028
121.31 0.3255230 -3.8666836 4.3182811 10.4366135 -11.88343843 0.6697043
141.28 -0.9451837 5.6454825 -9.7806639 14.6463104 -4.80337115 -4.7625741
157.26 -10.3149711 -10.6241677 4.2336365 16.8683612 2.71710210 -2.8799609
163.9 3.0874931 -6.9416721 3.4963790 -12.5533271 7.01688164 5.8942454
221.19 -0.6041752 -6.0090018 4.0648518 -2.6974743 1.27671246 3.9690870
233.11 2.5837535 6.8277609 -3.4440645 -4.4985717 0.19989490 -1.6687730
235.6 -1.7541523 19.8225025 -2.2394463 -5.6643239 -8.11400542 -2.0505746
241.2 1.0710975 -5.3831118 5.4253097 -3.2588271 0.46433086 1.6812008
255.7 2.4443155 1.3860497 -1.8857757 -12.9626594 4.31373929 6.7043306
314.12 -3.8812099 6.2098482 2.3577759 5.9071782 -3.92419060 -6.6694018
317.6 -1.7450319 3.0388540 3.0448064 5.5211634 -4.79271565 -5.0670763
319.20 -6.0155949 2.8477540 -9.7697504 24.8850017 -1.82949467 -10.1179157
320.16 10.9481796 -10.2982108 4.9608280 -6.2233088 2.99984918 -2.3873373
342.15 0.8508002 -0.3338618 -2.4575390 -10.3783871 7.29753151 5.0214562
346.2 4.7000495 -6.2178087 -2.2612391 -14.9700672 9.90123888 8.8478267
351.26 2.6002030 -0.9918665 -10.8315931 12.7429121 -0.02713985 -3.4925156
364.21 -0.4533734 3.2864208 -0.1335527 -0.1592533 -4.82292664 2.2826853
402.7 -1.2134573 -0.0387229 -0.2179557 -0.8774011 1.08032472 1.2672123
405.2 6.6477681 -8.3071271 -0.6159895 -8.8927189 3.52179705 7.6462704
406.12 -6.1296667 12.0703469 1.1195092 -2.2601009 -3.13776595 -1.6623226
427.7 -3.1340922 4.3967072 4.2792028 -1.0194744 0.76266844 -5.2850119
450.3 -0.5047010 -1.0720791 -3.2821761 12.8806007 -5.04562407 -2.9760204
506.2 -1.2991912 -1.5682154 8.3142802 -3.1819279 0.60021498 -2.8651608
Canchan 1.2929442 5.7152780 -9.3713622 9.0803035 -1.65332869 -5.0638348
Desiree 9.5767845 -22.3280421 0.2396387 -11.8935722 9.62433886 14.7808522
Unica -10.8355195 18.0569790 4.7604622 -4.7341684 -5.13878822 -2.1089651
AMGE.AMMI()
# With default n (N') and default ssi.method (farshadfar)
AMGE.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
AMGE.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
AMGE.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
AMGE.AMMI(model, ssi.method = "rao", a = 0.43)
ASI.AMMI()
# With default ssi.method (farshadfar)
ASI.AMMI(model)
# With ssi.method = "rao"
ASI.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
ASI.AMMI(model, ssi.method = "rao", a = 0.43)
ASTAB.AMMI()
# With default n (N') and default ssi.method (farshadfar)
ASTAB.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
ASTAB.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
ASTAB.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
ASTAB.AMMI(model, ssi.method = "rao", a = 0.43)
AVAMGE.AMMI()
# With default n (N') and default ssi.method (farshadfar)
AVAMGE.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
AVAMGE.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
AVAMGE.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
AVAMGE.AMMI(model, ssi.method = "rao", a = 0.43)
DA.AMMI()
# With default n (N') and default ssi.method (farshadfar)
DA.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
DA.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
DA.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
DA.AMMI(model, ssi.method = "rao", a = 0.43)
DZ.AMMI()
# With default n (N') and default ssi.method (farshadfar)
DZ.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
DZ.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
DZ.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
DZ.AMMI(model, ssi.method = "rao", a = 0.43)
EV.AMMI()
# With default n (N') and default ssi.method (farshadfar)
EV.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
EV.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
EV.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
EV.AMMI(model, ssi.method = "rao", a = 0.43)
FA.AMMI()
# With default n (N') and default ssi.method (farshadfar)
FA.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
FA.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
FA.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
FA.AMMI(model, ssi.method = "rao", a = 0.43)
MASV.AMMI()
# With default n (N') and default ssi.method (farshadfar)
MASV.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
MASV.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
MASV.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
MASV.AMMI(model, ssi.method = "rao", a = 0.43)
SIPC.AMMI()
# With default n (N') and default ssi.method (farshadfar)
SIPC.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
SIPC.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
SIPC.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
SIPC.AMMI(model, ssi.method = "rao", a = 0.43)
ZA.AMMI()
# With default n (N') and default ssi.method (farshadfar)
ZA.AMMI(model)
# With n = 4 and default ssi.method (farshadfar)
ZA.AMMI(model, n = 4)
# With default n (N') and ssi.method = "rao"
ZA.AMMI(model, ssi.method = "rao")
# Changing the ratio of weights for Rao's SSI
ZA.AMMI(model, ssi.method = "rao", a = 0.43)
The most stable genotype need not necessarily be the highest yielding genotype. Hence, simultaneous selection indices (SSIs) have been proposed for the selection of stable as well as high yielding genotypes.
A family of simultaneous selection indices (\(I_{i}\)) were proposed by Rao and Prabhakaran (2005) similar to those proposed by Bajpai and Prabhakaran (2000) by incorporating the AMMI Based Stability Parameter (\(ASTAB\)) and Yield as components. These indices consist of yield component, measured as the ratio of the average performance of the \(i\)th genotype to the overall mean performance of the genotypes under test and a stability component, measured as the ratio of stability information (\(\frac{1}{ASTAB}\)) of the \(i\)th genotype to the mean stability information of the genotypes under test.
\[I_{i} = \frac{\overline{Y}_{i}}{\overline{Y}_{..}} + \alpha \frac{\frac{1}{ASTAB_{i}}}{\frac{1}{T}\sum_{i=1}^{T}\frac{1}{ASTAB_{i}}}\]
Where \(ASTAB_{i}\) is the stability measure of the \(i\)th genotype under AMMI procedure; \(Y_{i}\) is mean performance of \(i\)th genotype; \(Y_{..}\) is the overall mean; \(T\) is the number of genotypes under test and \(\alpha\) is the ratio of the weights given to the stability components (\(w_{2}\)) and yield (\(w_{1}\)) with a restriction that \(w_{1} + w_{2} = 1\). The weights can be specified as required (Table 2).
Table 2 : \(\alpha\) and corresponding weights (\(w_{1}\) and \(w_{2}\))\(\alpha\) | \(w_{1}\) | \(w_{2}\) |
---|---|---|
1.00 | 0.5 | 0.5 |
0.67 | 0.6 | 0.4 |
0.43 | 0.7 | 0.3 |
0.25 | 0.8 | 0.2 |
In ammistability
, the above expression has been
implemented for all the stability parameters (\(SP\)) including ASTAB.
\[I_{i} = \frac{\overline{Y}_{i}}{\overline{Y}_{..}} + \alpha \frac{\frac{1}{SP_{i}}}{\frac{1}{T}\sum_{i=1}^{T}\frac{1}{SP_{i}}}\]
Genotype stability index (\(GSI\)) (Farshadfar, 2008) or Yield stability index (\(YSI\)) (Farshadfar et al., 2011; Jambhulkar et al., 2017) is a simultaneous selection index for yield and yield stability which is computed by summation of the ranks of the stability index/parameter and the ranks of the mean yields. \(YSI\) is computed for all the stability parameters/indices implemented in this package.
\[GSI = YSI = R_{SP} + R_{Y}\]
Where, \(R_{SP}\) is the stability parameter/index rank of the genotype and \(R_{Y}\) is the mean yield rank of the genotype.
The function SSI
implements both these indices in
ammistability
. Further, for each of the stability parameter
functions, the simultaneous selection index is also computed by either
of these functions as specified by the argument
ssi.method
.
SSI()
library(agricolae)
data(plrv)
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console=FALSE))
yield <- aggregate(model$means$Yield, by= list(model$means$GEN),
FUN=mean, na.rm=TRUE)[,2]
stab <- DZ.AMMI(model)$DZ
genotypes <- rownames(DZ.AMMI(model))
# With default ssi.method (farshadfar)
SSI(y = yield, sp = stab, gen = genotypes)
# With ssi.method = "rao"
SSI(y = yield, sp = stab, gen = genotypes, method = "rao")
# Changing the ratio of weights for Rao's SSI
SSI(y = yield, sp = stab, gen = genotypes, method = "rao", a = 0.43)
A function ammistability
has also been implemented which
is a wrapper around all the available functions in the package to
compute simultaneously multiple AMMI stability parameters along with the
corresponding SSIs. Correlation among the computed values as well as
visualization of the differences in genotype ranks for the computed
parameters is also generated.
ammistability()
library(agricolae)
data(plrv)
# AMMI model
model <- with(plrv, AMMI(Locality, Genotype, Rep, Yield, console = FALSE))
ammistability(model, AMGE = TRUE, ASI = FALSE, ASV = TRUE, ASTAB = FALSE,
AVAMGE = FALSE, DA = FALSE, DZ = FALSE, EV = TRUE,
FA = FALSE, MASI = FALSE, MASV = TRUE, SIPC = TRUE,
ZA = FALSE)
$Details
$Details$`Stability parameters estimated`
[1] "AMGE" "ASV" "EV" "MASV" "SIPC"
$Details$`SSI method`
[1] "Farshadfar (2008)"
$`Stability Parameters`
genotype means AMGE ASV EV MASV SIPC
1 102.18 26.31947 1.598721e-14 3.3801820 0.0232206231 4.7855876 2.9592568
2 104.22 31.28887 -8.881784e-15 1.4627695 0.0175897578 3.8328358 2.2591593
3 121.31 30.10174 1.643130e-14 2.2937918 0.0342010876 4.0446758 3.3872806
4 141.28 39.75624 -4.440892e-15 4.4672401 0.0529036285 5.1867706 4.3846248
5 157.26 36.95181 3.241851e-14 3.2923168 0.0965635719 7.6459224 5.4846596
6 163.9 21.41747 3.108624e-15 4.4269636 0.0236900961 4.4977055 2.6263670
7 221.19 22.98480 8.881784e-15 1.8014494 0.0127574566 2.1905344 2.0218098
8 233.11 28.66655 -1.476597e-14 1.0582263 0.0211138628 3.1794345 2.1624442
9 235.6 38.63477 -2.975398e-14 3.7647078 0.0723274691 8.4913020 4.8273551
10 241.2 26.34039 7.105427e-15 1.6774241 0.0153823821 2.0338659 2.0056410
11 255.7 30.58975 -1.598721e-14 3.3289736 0.0317506280 4.7013868 3.6075128
12 314.12 28.17335 -1.776357e-15 2.9170536 0.0170302467 3.1376678 2.4584089
13 317.6 35.32583 1.776357e-15 2.1874274 0.0136347120 2.3345492 1.8698826
14 319.20 38.75767 8.437695e-15 6.7164864 0.0855988994 8.6398087 5.9590451
15 320.16 26.34808 1.154632e-14 3.3208950 0.0180662044 3.8822326 2.7040109
16 342.15 26.01336 -9.325873e-15 2.9219360 0.0225156118 3.6438425 2.9755899
17 346.2 23.84175 -3.552714e-15 5.1827747 0.0459434537 5.3987165 3.9525017
18 351.26 36.11581 1.110223e-15 2.9786832 0.0639652186 5.4005468 4.5622439
19 364.21 34.05974 -4.940492e-15 0.7236998 0.0018299284 1.4047546 0.7526264
20 402.7 27.47748 -4.163336e-16 0.2801470 0.0001339385 0.3537818 0.2284995
21 405.2 28.98663 8.881784e-16 3.9832546 0.0229492190 4.1095727 2.7952381
22 406.12 32.68323 -1.731948e-14 2.5631734 0.0264692745 5.3218165 2.8834753
23 427.7 36.19020 -2.553513e-15 1.1467970 0.0135698145 2.4124676 2.0049278
24 450.3 36.19602 1.021405e-14 3.1430174 0.0216161656 4.6608954 2.8200387
25 506.2 33.26623 6.439294e-15 0.7511331 0.0318266934 1.9330143 2.2178470
26 Canchan 27.00126 -7.993606e-15 3.0975884 0.0461305761 3.6665608 3.5328212
27 Desiree 16.15569 1.754152e-14 7.7833445 0.0901534938 9.0626072 5.8073242
28 Unica 39.10400 -2.042810e-14 3.8380782 0.0770659860 8.5447632 5.0654615
$`Simultaneous Selection Indices`
genotype means AMGE_SSI ASV_SSI EV_SSI MASV_SSI SIPC_SSI
1 102.18 26.31947 48 43 37 42 39
2 104.22 31.28887 20 19 21 25 22
3 121.31 30.10174 41 25 34 29 33
4 141.28 39.75624 11 26 23 21 23
5 157.26 36.95181 33 22 33 29 31
6 163.9 21.41747 45 51 42 43 38
7 221.19 22.98480 48 34 29 31 32
8 233.11 28.66655 22 21 27 26 24
9 235.6 38.63477 5 25 28 29 28
10 241.2 26.34039 42 29 28 26 27
11 255.7 30.58975 18 33 31 32 34
12 314.12 28.17335 31 30 25 26 28
13 317.6 35.32583 26 18 14 15 12
14 319.20 38.75767 24 30 29 30 31
15 320.16 26.34808 45 39 30 34 33
16 342.15 26.01336 30 37 36 34 41
17 346.2 23.84175 36 51 45 47 46
18 351.26 36.11581 24 22 31 31 31
19 364.21 34.05974 19 12 12 12 12
20 402.7 27.47748 33 20 20 20 20
21 405.2 28.98663 31 39 29 31 29
22 406.12 32.68323 15 23 28 33 27
23 427.7 36.19020 19 12 11 14 11
24 450.3 36.19602 29 22 17 23 20
25 506.2 33.26623 30 14 29 14 19
26 Canchan 27.00126 28 35 41 31 39
27 Desiree 16.15569 55 56 55 56 55
28 Unica 39.10400 4 24 27 28 27
$`SP Correlation`
AMGE ASV EV MASV SIPC
AMGE 1.00** <NA> <NA> <NA> <NA>
ASV 0.16 1.00** <NA> <NA> <NA>
EV 0.12 0.70** 1.00** <NA> <NA>
MASV -0.01 0.81** 0.90** 1.00** <NA>
SIPC 0.10 0.81** 0.96** 0.94** 1.00**
$`SSI Correlation`
AMGE ASV EV MASV SIPC
AMGE 1.00** <NA> <NA> <NA> <NA>
ASV 0.61** 1.00** <NA> <NA> <NA>
EV 0.53** 0.84** 1.00** <NA> <NA>
MASV 0.52** 0.92** 0.90** 1.00** <NA>
SIPC 0.53** 0.89** 0.96** 0.95** 1.00**
$`SP and SSI Correlation`
AMGE ASV EV MASV SIPC AMGE_SSI ASV_SSI EV_SSI MASV_SSI SIPC_SSI
AMGE 1.00** <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
ASV 0.16 1.00** <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
EV 0.12 0.70** 1.00** <NA> <NA> <NA> <NA> <NA> <NA> <NA>
MASV -0.01 0.81** 0.90** 1.00** <NA> <NA> <NA> <NA> <NA> <NA>
SIPC 0.10 0.81** 0.96** 0.94** 1.00** <NA> <NA> <NA> <NA> <NA>
AMGE_SSI 0.75** 0.17 -0.16 -0.18 -0.12 1.00** <NA> <NA> <NA> <NA>
ASV_SSI 0.21 0.71** 0.21 0.35 0.34 0.61** 1.00** <NA> <NA> <NA>
EV_SSI 0.23 0.64** 0.48** 0.47* 0.53** 0.53** 0.84** 1.00** <NA> <NA>
MASV_SSI 0.18 0.73** 0.40* 0.54** 0.51** 0.52** 0.92** 0.90** 1.00** <NA>
SIPC_SSI 0.20 0.70** 0.45* 0.50** 0.54** 0.53** 0.89** 0.96** 0.95** 1.00**
$`SP Correlogram`
$`SSI Correlogram`
$`SP and SSI Correlogram`
$`SP Slopegraph`
$`SSI Slopegraph`
$`SP Heatmap`
$`SSI Heatmap`
ammistability
To cite the R package 'ammistability' in publications use:
Ajay, B. C., Aravind, J., and Abdul Fiyaz, R. (2019). ammistability: R package for ranking genotypes based on stability
parameters derived from AMMI model. Indian Journal of Genetics and Plant Breeding (The), 79(2), 460-466.
https://www.isgpb.org/article/ammistability-r-package-for-ranking-genotypes-based-on-stability-parameters-derived-from-ammi-model
Ajay, B. C., Aravind, J., and Abdul Fiyaz, R. (). ammistability: Additive Main Effects and Multiplicative Interaction
Model Stability Parameters. R package version 0.1.4, https://ajaygpb.github.io/ammistability/,
https://CRAN.R-project.org/package=ammistability.
This free and open-source software implements academic research by the authors and co-workers. If you use it, please
support the project by citing the package.
To see these entries in BibTeX format, use 'print(<citation>, bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.
sessionInfo()
R Under development (unstable) (2023-04-28 r84338 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=English_India.utf8 LC_CTYPE=English_India.utf8 LC_MONETARY=English_India.utf8 LC_NUMERIC=C
[5] LC_TIME=English_India.utf8
time zone: Asia/Calcutta
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] agricolae_1.3-5 ammistability_0.1.4 kableExtra_1.3.4 RCurl_1.98-1.12 cffr_0.5.0
loaded via a namespace (and not attached):
[1] tidyselect_1.2.0 viridisLite_0.4.2 dplyr_1.1.2 farver_2.1.1 bitops_1.0-7 fastmap_1.1.1 combinat_0.0-8
[8] mathjaxr_1.6-0 promises_1.2.0.1 XML_3.99-0.14 labelled_2.11.0 digest_0.6.31 mime_0.12 lifecycle_1.0.3
[15] cluster_2.1.4 klaR_1.7-2 ellipsis_0.3.2 magrittr_2.0.3 compiler_4.4.0 rlang_1.1.0 sass_0.4.6
[22] tools_4.4.0 utf8_1.2.3 yaml_2.3.7 knitr_1.42 labeling_0.4.2 htmlwidgets_1.6.2 curl_5.0.0
[29] plyr_1.8.8 xml2_1.3.4 pkgload_1.3.2 miniUI_0.1.1.1 withr_2.5.0 grid_4.4.0 fansi_1.0.4
[36] AlgDesign_1.2.1 xtable_1.8-4 colorspace_2.1-0 ggplot2_3.4.2 scales_1.2.1 MASS_7.3-59 tinytex_0.45
[43] cli_3.6.1 rmarkdown_2.21 generics_0.1.3 rstudioapi_0.14 httr_1.4.6 reshape2_1.4.4 ggcorrplot_0.1.4
[50] cachem_1.0.8 pander_0.6.5 stringr_1.5.0 rvest_1.0.3 parallel_4.4.0 vctrs_0.6.2 webshot_0.5.4
[57] jsonlite_1.8.4 hms_1.1.3 systemfonts_1.0.4 jquerylib_0.1.4 glue_1.6.2 stringi_1.7.12 rJava_1.0-6
[64] gtable_0.3.3 questionr_0.7.8 later_1.3.0 munsell_0.5.0 tibble_3.2.1 pillar_1.9.0 htmltools_0.5.5
[71] R6_2.5.1 Rdpack_2.4 evaluate_0.21 shiny_1.7.4 lattice_0.21-8 haven_2.5.2 highr_0.10
[78] rbibutils_2.2.13 httpuv_1.6.9 bslib_0.4.2 Rcpp_1.0.10 svglite_2.1.1 nlme_3.1-162 xfun_0.39
[85] forcats_1.0.0 pkgconfig_2.0.3