Package 'Directional'

April 11, 2024

Type Package

Title A Collection of Functions for Directional Data Analysis
Version 6.6
Date 2024-04-11

Author

Michail Tsagris, Giorgos Athineou, Christos Adam, Anamul Sajib, Eli Amson, Micah J. Waldstein
Maintainer Michail Tsagris mtsagris@uoc.gr
Description A collection of functions for directional data (including massive data, with millions of observations) analysis. Hypothesis testing, discriminant and regression analysis, MLE of distributions and more are included. The standard textbook for such data is the "Directional Statistics" by Mardia, K. V. and Jupp, P. E. (2000). Other references include a) Phillip J. Paine, Simon P. Preston Michail Tsagris and Andrew T. A. Wood (2018). "An elliptically symmetric angular Gaussian distribution". Statistics and Computing 28(3): 689-697. doi:10.1007/s11222-017-9756-4. b) Tsagris M. and Alenazi A. (2019). "Comparison of discriminant analysis methods on the sphere". Communications in Statistics: Case Studies, Data Analysis and Applications 5(4):467--491. doi:10.1080/23737484.2019.1684854. c) P. J. Paine, S. P. Pre-
ston, M. Tsagris and Andrew T. A. Wood (2020). `'Spherical regression models with general covariates and anisotropic errors". Statistics and Computing 30(1): 153-165. doi:10.1007/s11222-019-09872-2. d) Tsagris M. and Alenazi A. (2024). "An investigation of hypothesis testing procedures for circular and spherical mean vectors". Communications in Statistics-Simulation and Computation, 53(3): 1387-1408. doi:10.1080/03610918.2022.2045499. e) Tsagris M. and Alzeley O. (2023). "Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling". doi:10.48550/arXiv.2302.02468.
License GPL (>=2)
Imports bigstatsr, doParallel, foreach, ggplot2, grDevices, magrittr, parallel, Rfast, Rfast2, Rnanoflann, rgl, rnaturalearth, sf
Suggests bigreadr
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2024-04-11 13:20:02 UTC

R topics documented:

Directional-package 4
A test for testing the equality of the concentration parameters for ciruclar data 6
Angular central Gaussian random values simulation 7
Anova for (hyper-)spherical data 8
Anova for circular data 10
BIC for the model based clustering using mixtures of von Mises-Fisher distributions 11
Bootstrap 2-sample mean test for (hyper-)spherical data 12
Bootstrap 2-sample mean test for circular data 14
Bootstrap ANOVA for (hyper-)spherical data 15
Bootstrap ANOVA for circular data 17
Check visually whether matrix Fisher samples is correctly generated or not 18
Circular correlations between one and many circular variables 19
Circular correlations between two circular variables 20
Circular distance correlation between two circular variables 21
Circular or angular regression 22
Circular-linear correlation 24
Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions 25
Column-wise uniformity Watson test for circular data 27
Contour plot (on the plane) of the ESAG and Kent distributions without any data 28
Contour plot (on the sphere) of a mixture of von Mises-Fisher distributions 29
Contour plot (on the sphere) of some spherical rotational symmetric distributions 30
Contour plot (on the sphere) of the ESAG and Kent distributions 32
Contour plot (on the sphere) of the SESPC distribution 34
Contour plot of a mixture of von Mises-Fisher distributions model 35
Contour plot of spherical data using a von Mises-Fisher kernel density estimate 36
Contour plots of some rotational symmetric distributions 38
Conversion of cosines to azimuth and plunge 39
Converting a rotation matrix on $\mathrm{SO}(3)$ to an unsigned unit quaternion 40
Converting an unsigned unit quaternion to rotation matrix on $\mathrm{SO}(3)$ 41
Cross validation for estimating the classification rate 42
Cross validation in von Mises-Fisher discrminant analysis 44
Cross validation with ESAG discrminant analysis 45
Cross validation with Purkayastha discrminant analysis 47
Cumulative distribution function of circular distributions 48
Density of a mixture of von Mises-Fisher distributions 50
Density of some (hyper-)spherical distributions 51
Density of some circular distributions 52
Density of the SESPC distribution 54
Density of the spherical ESAG and Kent distributions 56
Density of the Wood bimodal distribution on the sphere 57
Euclidean transformation 58
Euler angles from a rotation matrix on $\mathrm{SO}(3)$ 59
Forward Backward Early Dropping selection for circular data using the SPML regression 60
Generate random folds for cross-validation 62
Generation of unit vector(s) with a given angle 63
Goodness of fit test for grouped data 64
Habeck's rotation matrix generation 65
Haversine distance matrix 66
Hypothesis test for IAG distribution over the ESAG distribution 67
Hypothesis test for SIPC distribution over the SESPC distribution 68
Hypothesis test for von Mises-Fisher distribution over Kent distribution 69
Interactive 3D plot of spherical data 71
Inverse of Lambert's equal area projection 72
Inverse of the Euclidean transformation 73
$\mathrm{k}-\mathrm{NN}$ algorithm using the arc cosinus distance 74
$\mathrm{k}-\mathrm{NN}$ regression 75
Lambert's equal area projection 77
Logarithm of the Kent distribution normalizing constant 78
Many simple circular or angular regressions 79
Maps of the world and the continents 80
Mixtures of Von Mises-Fisher distributions 81
MLE of (hyper-)spherical rotational symmetric distributions 82
MLE of some circular distributions 85
MLE of some circular distributions with multiple samples 87
MLE of the ESAG distribution 89
MLE of the Kent distribution 90
MLE of the Matrix Fisher distribution on SO (3) 92
MLE of the Purkayashta distribution 93
MLE of the SESPC distribution 94
MLE of the Wood bimodal distribution on the sphere 95
Naive Bayes classifiers for circular data 96
Normalised spatial median for directional data 98
Permutation based 2-sample mean test for (hyper-) spherical data 99
Permutation based 2-sample mean test for circular data 100
Prediction in discriminant analysis based on ESAG distribution 102
Prediction in discriminant analysis based on Purkayastha distribution 103
Prediction in discriminant analysis based on von Mises-Fisher distribution 104
Prediction with some naive Bayes classifiers for circular data 105
Projections based test of uniformity 106
Random sample of matrices in $\mathrm{SO}(\mathrm{p})$ 107
Rayleigh's test of uniformity 108
Read a file as a Filebacked Big Matrix 110
Rotation axis and angle of rotation given a rotation matrix 111
Rotation matrix from a rotation axis and angle of rotation 112
Rotation matrix on $\mathrm{SO}(3)$ from three Euler angles 113
Rotation matrix to rotate a spherical vector along the direction of another 114
Saddlepoint approximations of the Fisher-Bingham distributions 116
Simulation from a Bingham distribution using any symmetric matrix A 117
Simulation from a Matrix Fisher distribution on SO (3) 118
Simulation of random values from a Bingham distribution 119
Simulation of random values from a mixture of von Mises-Fisher distributions 120
Simulation of random values from a spherical Fisher-Bingham distribution 122
Simulation of random values from a spherical Kent distribution 123
Simulation of random values from rotationally symmetric distributions 124
Simulation of random values from some circular distributions 126
Simulation of random values from the ESAG distribution 128
Simulation of random values from the SESPC distribution 129
Spherical and hyper-spherical distance correlation 130
Spherical and hyperspherical median 131
Spherical regression using rotationally symmetric distributions 132
Spherical regression using the ESAG distribution 134
Spherical regression using the SESPC distribution 135
Spherical-spherical correlation 137
Spherical-spherical regression 138
Summary statistics for circular data 139
Summary statistics for grouped circular data 140
Test for a given mean direction 142
Test for equality of concentration parameters for spherical data 143
Test of equality of the concentration parameters for circular data 144
The k-nearest neighbours using the cosinus distance 145
Transform unit vectors to angular data 146
Tuning of the bandwidth parameter in the von Mises kernel 147
Tuning of the bandwidth parameter in the von Mises-Fisher kernel 148
Tuning of the k-NN algorithm using the arc cosinus distance 150
Tuning of the k -NN regression 151
Uniformity test for circular data 153
von Mises kernel density estimation 154
von Mises-Fisher kernel density estimation for (hyper-)spherical data 156
Index 158
Directional-package This is an R package that provides methods for the statistical analysis
of directional data, including massive (very large scale) directional
data.

Description

Circular-linear regression, spherical-spherical regression, spherical regression, discriminant analysis, ANOVA for circular and (hyper-)spherical data, tests for eaquality of conentration parameters, maximum likelihood estimation of the parameters of many distributions, random values generation from various distributions, contour plots and many more functions are included.

Details

Package: Directional
Type: Package
Version: 6.6
Date: 2024-04-11
License: GPL-2

Maintainers

Michail Tsagris mtsagris@uoc.gr.

Note

Acknowledgments:

Professor Andy Wood and Dr Simon Preston from the university of Nottingham are highly appreciated for being my supervisors during my post-doc in directional data analysis.
Dr Georgios Pappas (former postDoc at the university of Nottingham) helped me construct the contour plots of the von Mises-Fisher and the Kent distribution.
Dr Christopher Fallaize and Dr Theo Kypraios from the university of Nottingham have provided a function for simulating from the Bingham distribution using rejection sampling. So any questions regarding this function should be addressed to them.
Dr Kwang-Rae Kim (post-doc at the university of Nottingham) answered some of my questions.
Giorgos Borboudakis (PhD student at the university of Crete) pointed out to me a not so clear message in the algorithm of generating random values from the von Mises-Fisher distribution.
Panagiotis (pronounced Panayiotis) Tzirakis (master student at the department of computer science in Heraklion during the 2013-2015 seasons) showed me how to perform parallel computing in R and he is greatly acknowledged and appreciated not only from me but from all the readers of this document. He also helped me with the vectorization of some contour plot functions.
Professor John Kent from the university of Leeds is acknowledged for clarifying one thing with the ovalness parameter in his distribution.
Phillip Paine (postdoc at the university of Nottingham) spotted that the function rfb is rather slow and he suggested me to change it. The function has changed now and this is also due to Joshua Davis (from Carleton College, Northfield, MN) who spotted that mistakes could occur, due a vector not being a matrix.

Professor Kurt Hornik from the Vienna university of economics and business is greatly acknowledged for his patience and contast help with this (and not only) R package.
Manos Papadakis is also acknowledged for his programming tips and for his assistance with the "htest" class object.
Dr Mojgan Golzy spotted a mistake in the function desag and Michail is very happy for that.
Lisette de Jonge-Hoekstra from the University of Groningen found a wrong sentence in the help file of function spml. reg which is now deleted.
Peter Harremoes from the Copenhagen Business College spotted a mistake in the confidence interval of the function circ. summary which has now been corrected.
Dr Gregory Emvalomatis from the University of Crete helped me understand better the EM algorithm for mixture models and I fixed a bug in the function mixvmf.mle.
Kinley Russell, PhD student at the Johns Hopkins University School of Medicine, suggested that I include bootstrap ANOVA functions.
Sia Ahmadi found a mistake in the function conc. test which has now been corrected.
If you want more information on many of these algorithms see Chapters 9 and 10 in the following document. https://www.researchgate.net/publication/324363311_Multivariate_data_analysis_in_R

Author(s)

Michail Tsagris mtsagris@uoc.gr, Giorgos Athineou gioathineou@gmail.com, Christos Adam pada4m4@gmail.com, Anamul Sajib sajibstat@du.ac.bd, Eli Amson <eli.amson1988@ gmail.com> and Micah J. Waldstein <micah@ waldste.in>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley and Sons.

```
A test for testing the equality of the concentration parameters for ciruclar data
    A test for testing the equality of the concentration parameter among g
    samples, where g >= 2 for ciruclar data
```


Description

A test for testing the equality of the concentration parameter among g samples, where $g>=2$ for ciruclar data. It is a tangential approach.

Usage

tang. conc(u, ina, rads = FALSE)

Arguments

$\mathrm{u} \quad$ A numeric vector containing the values of all samples.
ina A numerical variable or factor indicating the groups of each value.
rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

This test works for circular data.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test.
$p . v a l u e \quad$ The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data.name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons. Fisher, N. I. (1995). Statistical analysis of circular data. Cambridge University Press.

See Also

embed.circaov, hcf.circaov, lr.circaov, het.circaov, conc.test

Examples

```
x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
tang.conc(x, ina, rads = TRUE)
```

```
Angular central Gaussian random values simulation
    Angular central Gaussian random values simulation
```


Description

Angular central Gaussian random values simulation.

Usage

$\operatorname{racg}(n$, sigma)

Arguments

$\begin{array}{ll}\mathrm{n} & \text { The sample size, a numerical value. } \\ \text { sigma } & \text { The covariance matrix in } R^{d} .\end{array}$

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition. The vectors are then scaled to have unit length.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika 74(3): 579-589.

See Also

```
acg.mle, rvmf, rvonmises
```


Examples

```
s <- cov( iris[, 1:4] )
```

$x<-\operatorname{racg}(100, s)$
Directional::acg.mle(x)
Directional::vmf.mle(x)
\#\# the concentration parameter, kappa, is very low, close to zero, as expected.
Anova for (hyper-) spherical data
Analysis of variance for (hyper-) spherical data

Description

Analysis of variance for (hyper-) spherical data.

Usage

hcf. $\operatorname{aov}(x, i n a, f c=T R U E)$
hclr.aov(x, ina)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)

Arguments

x
ina
fc

A matrix with the data in Euclidean coordinates, i.e. unit vectors.
A numerical variable or a factor indicating the group of each vector.
A boolean that indicates whether a corrected F test should be used or not.

Details

The high concentration (hcf.aov), high concentration log-likelihood ratio (hclr.aov), log-likelihood ratio (lr.aov), embedding approach (embed.aov) or the non equal concentration parameters approach (het.aov) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter \quad The degree(s) of freedom of the test.
p value The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data.name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1): 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hcf.boot, hcfboot, hclr.circaov,

Examples

```
x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:3, each = 20)
hcf.aov(x, ina)
hcf.aov(x, ina, fc = FALSE)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)
```

```
Anova for circular data
```


Description

Analysis of variance for circular data.

Usage

hcf.circaov(u, ina, rads = FALSE)
hclr.circaov(u, ina, rads = FALSE)
lr.circaov(u, ina, rads = FALSE)
het. circaov(u, ina, rads = FALSE)
embed.circaov(u, ina, rads = FALSE)

Arguments

$\mathrm{u} \quad$ A numeric vector containing the data
ina A numerical or factor variable indicating the group of each value.
rads If the data are in radians, this should be TRUE and FALSE otherwise.

Details

The high concentration (hcf.circaov), high concentration likelihood ratio (hclr.aov), log-likelihood ratio (lr.circaov), embedding approach (embed.circaov) or the non equal concentration parameters approach (het.circaov) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter \quad The degree(s) of freedom of the test.
p .value \quad The p -value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1): 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hclr.aov, hcfcirc.boot, hcfcircboot

Examples

```
x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
hcf.circaov(x, ina, rads = TRUE)
lr.circaov(x, ina, rads = TRUE)
het.circaov(x, ina, rads = TRUE)
embed.circaov(x, ina, rads = TRUE)
hclr.circaov(x, ina, rads = TRUE)
```

```
BIC for the model based clustering using mixtures of von Mises-Fisher distributions
```

 BIC to choose the number of components in a model based clustering
 using mixtures of von Mises-Fisher distributions

Description

BIC to choose the number of components in a model based clustering using mixtures of von MisesFisher distributions

Usage

bic. $\operatorname{mixvmf(x,G=5,~n.start=20)~}$

Arguments

$x \quad$ A matrix containing directional data.
G The maximum number of clusters to be tested. Default value is 5 .
n.start The number of random starts to try. See also R's built-in function kmeans for more information about this.

Details

If the data are not unit vectors, they are transformed into unit vectors.

Value

A plot of the BIC values and a list including:
BIC The BIC values for all the models tested.
runtime The run time of the algorithm. A numeric vector. The first element is the user time, the second element is the system time and the third element is the elapsed time.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Hornik, K. and Grun, B. (2014). movMF: An R package for fitting mixtures of von Mises-Fisher distributions. Journal of Statistical Software, 58(10):1-31.

See Also

mixvmf.mle, rmixvmf, mixvmf.contour

Examples

```
x <- as.matrix( iris[, 1:4] )
x <- x / sqrt( rowSums(x^2) )
bic.mixvmf(x)
```

Bootstrap 2-sample mean test for (hyper-)spherical data
Bootstrap 2-sample mean test for (hyper-)spherical data

Description

Bootstrap 2-sample mean test for (hyper-)spherical data.

Usage

hcf.boot(x1, x2, fc = TRUE, B = 999)
lr.boot(x1, x2, B = 999)
hclr. boot (x1, x2, B = 999)
embed.boot(x1, x2, B = 999)
het. boot(x1, x2, B = 999)

Arguments

$x 1$ A matrix with the data in Euclidean coordinates, i.e. unit vectors.
$x 2$ A matrix with the data in Euclidean coordinates, i.e. unit vectors.
fc A boolean that indicates whether a corrected F test should be used or not.
B
The number of bootstraps to perform.

Details

The high concentration (hcf.boot), log-likelihood ratio (lr.boot), high concentration log-likelihood ratio (hclr.boot), embedding approach (embed.boot) or the non equal concentration parameters approach (het.boot) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. Since these are bootstrap based tests this is "NA".
p .value \quad The p -value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1): 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hcf.aov, hcf.perm, hcfboot

Examples

$x<-\operatorname{rvmf}(60, r n o r m(3), 15)$
ina <- rep(1:2, each = 30)
$x 1<-x[i n a==1$,
x2 <- x[ina == 2,]
hcf.boot(x1, x2)
lr.boot(x1, x2)
het.boot(x1, x2)

Bootstrap 2-sample mean test for circular data
Bootstrap 2-sample mean test for circular data

Description

Bootstrap 2-sample mean test for circular data.

Usage

hcfcirc.boot(u1, u2, rads = TRUE, B = 999)
lrcirc.boot(u1, u2, rads = TRUE, B = 999)
hclrcirc.boot(u1, u2, rads = TRUE, B = 999)
embedcirc.boot(u1, u2, rads = TRUE, B = 999)
hetcirc.boot(u1, u2, rads = TRUE, B = 999)

Arguments

u1 A numeric vector containing the data of the first sample.
u2 A numeric vector containing the data of the first sample.
rads If the data are in radians, this should be TRUE and FALSE otherwise.
B The number of bootstraps to perform.

Details

The high concentration (hcfcirc.boot), the log-likelihood ratio test (lrcirc.boot), high concentration log-likelihood ratio (hclrcirc.boot), embedding approach (embedcirc.boot), or the non equal concentration parameters approach (hetcirc.boot) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. Since these are bootstrap based tests this is "NA".
p.value

The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1): 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hcf.circaov, hcfcircboot, het.aov

Examples

```
u1 <- rvonmises(20, 2.4, 5)
u2 <- rvonmises(20, 2.4, 10)
hcfcirc.boot(u1, u2)
```


Description

Bootstrap ANOVA for (hyper-)spherical data.

Usage

hcfboot (x, ina, $B=999)$
hetboot (x, ina, $B=999)$

Arguments

X
A matrix with the combined data (from all groups) in Euclidean coordinates, i.e. unit vectors.
ina The grouping variables. A factor or a numerical vector specifying the groups to which each observation belongs to.
B
The number of bootstraps to perform.

Details

The high concentration (hcfboot), or the non equal concentration parameters approach (hetboot) is used.

Value

This is an "htest"class object. Thus it returns a list including:

statistic	The test statistic value.
parameter	The degrees of freedom of the test. Since these are bootstrap based tests this is
	"NA".
p.value	The p-value of the test.
alternative	A character with the alternative hypothesis.
method	A character with the test used.
data.name	A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1): 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hcf.boot, hcf.aov

Examples

```
x <- rvmf(60, rnorm(3), 10)
ina <- rep(1:3, each = 20)
hcfboot(x, ina)
```

```
Bootstrap ANOVA for circular data
                        Bootstrap ANOVA for circular data
```


Description

Bootstrap ANOVA for circular data.

Usage

hcfcircboot(u, ina, rads = TRUE, $\mathrm{B}=999$)
hetcircboot(u, ina, rads = TRUE, B = 999)

Arguments

$u \quad$ A numeric vector containing the data of all groups.
ina The grouping variables. A factor or a numerical vector specifying the groups to which each observation belongs to.
rads If the data are in radians, this should be TRUE and FALSE otherwise.
B
The number of bootstraps to perform.

Details

The high concentration (hcfcircboot), or the non equal concentration parameters approach (hetcircboot) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. Since these are bootstrap based tests this is "NA".
p value \quad The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data.name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1): 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hcf.circaov, het.aov

Examples

```
u1 <- rvonmises(20, 2.4, 5)
u2 <- rvonmises(20, 2.4, 10)
hcfcirc.boot(u1, u2)
```

Check visually whether matrix Fisher samples is correctly generated or not Check visually whether matrix Fisher samples is correctly generated or not.

Description

It plots the log probability trace of matrix Fisher distribution which should close to the maximum value of the logarithm of matrix Fisher distribution, if samples are correctly generated.

Usage

visual.check(x, Fa)

Arguments

X
Fa An arbitrary 3×3 matrix represents the parameter matrix of this distribution.

Details

For a given parameter matrix Fa, maximum value of the logarithm of matrix Fisher distribution is calculated via the form of singular value decomposition of $F a=U \Lambda V^{T}$ which is $\operatorname{tr}(\Lambda)$. Multiply the last column of U by -1 and replace small eigenvalue, say, λ_{3} by $-\lambda_{3}$ if $\left|U V^{T}\right|=-1$.

Value

A plot which shows \log probability trace of matrix Fisher distribution. The values are also returned.

Author(s)

Anamul Sajib.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd.

References

Habeck M. (2009). Generation of three-dimensional random rotations in fitting and matching problems. Computational Statistics, 24(4):719-731.

Examples

```
Fa <- matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) / 10
x <- rmatrixfisher(1000, Fa)
a <- visual.check(x, Fa)
```

Circular correlations between one and many circular variables
Circular correlations between two circular variables

Description

Circular correlations between two circular variables.

Usage

circ.cors1(theta, phi, rads = FALSE)
circ.cors2(theta, phi, rads = FALSE)

Arguments

theta The first cirular variable expressed in radians, not degrees.
phi The other cirular variable. In the case of "circ.cors1" this is a matrix with many circular variables. In either case, the values must be in radians, not degrees.
rads If the data are expressed in rads, then this should be TRUE. If the data are in degrees, then this is FALSE.

Details

Correlation for circular variables using the cosinus and sinus formula of Jammaladaka and SenGupta (1988).

Value

A matrix with two columns, the correlations and the p-values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jammalamadaka, R. S. and Sengupta, A. (2001). Topics in circular statistics. World Scientific.
Jammalamadaka, S. R. and Sarma, Y. R. (1988). A correlation coefficient for angular variables. Statistical Theory and Data Analysis, 2:349-364.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

spml.reg

Examples

```
y <- runif(50, 0, 2 * pi)
x <- matrix(runif(50 * 10, 0, 2 * pi), ncol = 10)
circ.cors1(y, x, rads = TRUE)
```

Circular correlations between two circular variables
Circular correlations between two circular variables

Description

Circular correlations between two circular variables.

Usage

circ.cor1 (theta, phi, rads = FALSE)
circ.cor2(theta, phi, rads $=$ FALSE)

Arguments

theta The first cirular variable.
phi The other cirular variable.
rads If the data are expressed in rads, then this should be TRUE. If the data are in degrees, then this is FALSE.

Details

circ.cor1: Correlation for circular variables using the cosinus and sinus formula of Jammaladaka and SenGupta (1988).
circ.cor2: Correlation for circular variables using the cosinus and sinus formula of Mardia and Jupp (2000).

Value

A vector including:
rho The value of the correlation coefficient.
p -value \quad The p -value of the zero correlation hypothesis testing.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Jammalamadaka, R. S. and Sengupta, A. (2001). Topics in circular statistics. World Scientific.
Jammalamadaka, S. R. and Sarma, Y. R. (1988) . A correlation coefficient for angular variables. Statistical Theory and Data Analysis, 2:349-364.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

circlin.cor, circ.cor2, spml.reg

Examples

```
y <- runif(50, 0, 2 * pi)
\(x\) <- runif(50, 0, 2 * pi)
circ.cor1(x, y, rads = TRUE)
circ. \(\operatorname{cor} 2(x, y\), rads \(=\) TRUE \()\)
```

Circular distance correlation between two circular variables

Description

Circular distance correlation between two circular variables.

Usage

circ.dcor(theta, phi, rads = FALSE)

Arguments

theta
phi
rads If the data are expressed in rads, then this should be TRUE. If the data are in degrees, then this is FALSE.

Details

The angular data are transformed to their Euclidean coordinates and then the distance correlation is computed.

Value

A list including:
dcov The distance covariance.
dvarX The distance variance of x.
dvary The distance variance of Y.
dcor The distance correlation.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

See Also

circlin.cor, circ.cor2, spher.dcor

Examples

```
y <- runif(50, 0, 2 * pi)
x <- runif(50, 0, 2 * pi)
circ.dcor(x, y, rads = TRUE)
```

Circular or angular regression

```
Circular or angular regression
```


Description

Regression with circular dependent variable and Euclidean or categorical independent variables.

Usage

```
spml.reg(y, x, rads = TRUE, xnew = NULL, seb = FALSE, tol = 1e-07)
circpurka.reg(y, x, rads = TRUE, xnew = NULL)
cipc.reg(y, x, rads = TRUE, xnew = NULL)
gcpc.reg(y, x, rads \(=\) TRUE, reps \(=20\), xnew \(=\) NULL)
```


Arguments

y The dependent variable, a numerical vector, it can be in radians or degrees.
$x \quad$ The independent variable(s). Can be Euclidean or categorical (factor variables).
rads If the dependent variable is expressed in rads, this should be TRUE and FALSE otherwise.
reps How many starting values shall the algortihm use? By default it uses 20 different starting values.
xnew The new values of some independent variable(s) whose circular values you want to predict. Can be Euclidean or categorical. If they are categorical, the user must provide them as dummy variables. It does not accept factor variables. If you have no new x values, leave it NULL (default).
seb a boolean variable. If TRUE, the standard error of the coefficients will be be returned. Set to FALSE in case of simulation studies or in other cases such as a forward regression setting for example. In these cases, it can save some time.
tol The tolerance value to terminate the Newton-Raphson algorithm.

Details

For the spml.reg(), the Newton-Raphson algorithm is fitted in this regression as described in Presnell et al. (1998). For the circpurka.reg() and the cipc.reg(), the optim() function is employed. For the gcpc.reg() the optim() and the optimise() functions are being used. Note that the cipc.reg() is the same as the wrapped Cauchy regression.

Value

A list including:
runtime The runtime of the procedure.
iters The number of iterations required until convergence of the EM algorithm.
beta The regression coefficients.
seb The standard errors of the coefficients.
loglik The value of the maximised log-likelihood.
est The fitted values expressed in radians if the obsereved data are in radians and in degrees otherwise. If xnew is not NULL, i.e. if you have new x values, then the predicted values of y will be returned.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83
Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

See Also

circlin.cor, circ.cor1, circ.cor2, spher.cor, spher.reg

Examples

```
x <- rnorm(100)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[ ,1], 1), rnorm(100, z[ ,2], 1) )
y <- y / sqrt( rowSums(y^2) )
y<- ( atan( y[, 2] / y[, 1] ) + pi * I(y[, 1] < 0) ) %% (2 * pi)
a <- spml.reg(y, x, rads = TRUE, xnew = x)
b <- circpurka.reg(y, x, rads = TRUE, xnew = x)
```

```
Circular-linear correlation
```


Circular-linear correlation

Description

It calculates the squared correlation between a circular and one or more linear variables.

Usage

circlin.cor(theta, x, rads $=$ FALSE)

Arguments

theta The circular variable.
$x \quad$ The linear variable or a matrix containing many linear variables.
rads If the circualr variable is in rads, this should be TRUE and FALSE otherwise.

Details

The squared correlation between a circular and one or more linear variables is calculated.

Value

A matrix with as many rows as linear variables including:

R-squared The value of the squared correlation.
p -value \quad The p -value of the zero correlation hypothesis testing.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

```
circ.cor1, circ.cor2, spml.reg
```


Examples

```
phi <- rvonmises(50, 2, 20, rads = TRUE)
x <- 2 * phi + rnorm(50)
y <- matrix(rnorm(50 * 5), ncol = 5)
circlin.cor(phi, x, rads = TRUE)
circlin.cor(phi, y, rads = TRUE)
```

```
Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions
    Column-wise MLE of the angular Gaussian and the von Mises Fisher
    distributions
```


Description

Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions.

Usage

colspml.mle(x,tol = 1e-07, maxiters = 100, parallel = FALSE)
colvm.mle(x, tol = 1e-07)

Arguments

x
tol The tolerance value to terminate the Newton-Raphson algorithm.
maxiters The maximum number of iterations that can take place in each regression.
parallel Do you want this to be executed in parallel or not. The parallel takes place in C++, and the number of threads is defined by each system's availiable cores.

Details

For each column, spml.mle function is applied that fits the angular Gaussian distribution estimates its parameters and computes the maximum log-likelihood.

Value

A matrix with four columns. The first two are the mean vector, then the γ parameter, and the fourth column contains maximum log-likelihood.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

spml.mle, spml.reg, vm.mle, vmf.mle

Examples

```
x <- matrix( runif(100 * 10), ncol = 10)
a <- colspml.mle(x)
b <- colvm.mle(x)
x <- NULL
```

```
Column-wise uniformity Watson test for circular data
                            Column-wise uniformity tests for circular data
```


Description

Column-wise uniformity tests for circular data.

Usage

colwatsons(u, rads = FALSE)

Arguments

$u \quad$ A numeric matrix containing the circular data which are expressed in radians. Each column is a different sample.
rads A boolean variable. If the data are in radians, put this TRUE. If the data are expressed in degrees make this FALSE.

Details

These tests are used to test the hypothesis that the data come from a circular uniform distribution.

Value

A matrix with two columns, the value of the test statistic and its associated p-value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jammalamadaka S. Rao and SenGupta A. (2001). Topics in Circular Statistics, pg. 156-157.

See Also

watson, kuiper, fishkent

Examples

```
x <- matrix( rvonmises(n = 50 * 10, m = 2, k = 0), ncol = 10)
res<-colwatsons(x)
x <- NULL
```

Contour plot (on the plane) of the ESAG and Kent distributions without any data Contour plot (on the plane) of the ESAG and Kent and ESAG distributions without any data

Description

The contour plot (on the plane) of the spherical ESAG and Kent distributions is produced.

Usage

esag.contour(mu, gam, lat, long)
kent. contour (k, b)

Arguments

k The concentration parameter.
b The ovalness parameter. It has to be less than $\mathrm{k} / 2$ in order for the distribution to be unimodal. Otherwise it is bimodal.
mu The mean vector the ESAG distribution, a vector in R^{3}.
gam The two gamma parameters of the ESAG distribution.
lat A positive number determing the range of degrees to move left and right from the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the Kent or the SAG distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society, Series B, 44(1): 71-80.
Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.

See Also

vmf.contour, vmf.kerncontour, spher.esag.contour

Examples

```
kent.contour(10, 4)
mu <- colMeans( as.matrix( iris[,1:3] ) )
gam <- c(1,0.5)
esag.contour(mu, gam, 50, 50)
esag.contour(mu, gam, 30, 40)
```

Contour plot (on the sphere) of a mixture of von Mises-Fisher distributions
Contour plot (on the sphere) of a mixture of von Mises-Fisher distri-
butions

Description

The contour plot (on the sphere) of a mixture of von Mises-Fisher distributions is produced.

Usage

spher.mixvmf.contour(probs, mu, k, bgcol = "snow", dat = NULL, col = NULL, lat $=50$, long $=50$)

Arguments

probs \quad This is avector with the mixing probability of each group.
mu A matrix with the mean direction of each group.
$k \quad$ A vector with the concentration parameter of each group.
bgcol The color of the surface of the sphere.
dat If you have you want to plot supply them here. This has to be a numerical matrix with three columns, i.e. unit vectors.
col If you supplied data then choose the color of the points. If you did not choose a color, the points will appear in red.
lat A positive number determing the range of degrees to move left and right from the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the mixtures of von Mises-Fisher look like.

Value

A plot containing the contours of the mixture distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von MisesFisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf
Mardia K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of $I_{s}(x)$. Computational Statistics, 27(1): 177-190.

See Also

```
spher.esag.contour, spher.vmf.contour, mixvmf.mle
```


Examples

```
k <- runif(3, 4, 20)
probs <- c(0.2, 0.5, 0.3)
mu <- matrix(rnorm(9, 0, 0.5), ncol = 3)
mu <- mu / sqrt( rowSums(mu^2) )
## the lat and long are decreased to 10. Increase them back to 50 to
## see the difference
spher.mixvmf.contour(probs, mu, k, lat = 10, long = 10)
```

Contour plot (on the sphere) of some spherical rotational symmetric distributions Contour plot (on the sphere) of some spherical rotational symmetric distributions

Description

The contour plot (on the sphere) of some spherical rotational symmetric distributions is produced.

Usage

```
spher.vmf.contour(mu, k, bgcol = "snow", dat = NULL, col = NULL,
lat \(=50\), long \(=50\) )
spher. purka.contour (theta, a, bgcol = "snow", dat = NULL, col = NULL,
lat \(=50\), long = 50)
spher.spcauchy.contour(mu, rho, bgcol = "snow", dat = NULL, col = NULL,
lat \(=50\), long \(=50\) )
spher.pkbd.contour (mu, rho, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)
```


Arguments

mu
theta
k
a
rho
bgcol
dat
col If you supplied data then choose the color of the points. If you did not choose a color, the points will appear in red.
lat A positive number determing the range of degrees to move left and right from the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the von Mises-Fisher, the Purkayastha, the spherical Cauchy or the Poisson kernel based distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Mardia K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of $I_{s}(x)$. Computational Statistics, 27(1): 177-190.
Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83.
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.
Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from the Mobius transformations. Bernoulli, 26(4): 3224-3248. https://arxiv.org/pdf/1510.07679.pdf

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence properties, identifiability, and a method of sampling. Journal of Computational and Graphical Statistics, 29(4): 758-770.
Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution. Electronic Journal of Statistics, 17(2): 2180-2209.

See Also

spher.esag.contour, spher.mixvmf.contour, kent.contour

Examples

```
mu <- colMeans( as.matrix( iris[, 1:3] ) )
mu <- mu / sqrt( sum(mu^2) )
## the lat and long are decreased to 30. Increase them back to 50 to
## see the difference
spher.spcauchy.contour(mu, 0.7, lat = 30, long = 30)
```

Contour plot (on the sphere) of the ESAG and Kent distributions Contour plot (on the sphere) of the ESAG and Kent distributions

Description

The contour plot (on the sphere) of the ESAG and Kent distributions is produced.

Usage

spher.esag.contour(mu, gam, bgcol = "snow", dat = NULL, col = NULL, lat $=50$, long $=50$)
spher.kent.contour (G, param, bgcol = "snow", dat = NULL, col = NULL, lat $=50$, long $=50$)

Arguments

mu The mean vector the ESAG distribution, a vector in R^{3}.
gam The two gamma parameters of the ESAG distribution.

G
For the Kent distribution, a 3×3 matrix whose first column is the mean direction. The second and third columns are the major and minor axes respectively.
param \quad For the Kent distribution a vector with the concentration κ and ovalness β parameters. The angle ψ has been absorbed inside the matrix \mathbf{G}.
bgcol The color of the surface of the sphere.
dat If you have you want to plot supply them here. This has to be a numerical matrix with three columns, i.e. unit vectors.
col If you supplied data then choose the color of the points. If you did not choose a color, the points will appear in red.
lat A positive number determing the range of degrees to move left and right from the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the ESAG or the Kent distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society, Series B, 44(1): 71-80.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.

See Also

esag.contour, spher.purka.contour, kent.contour

Examples

```
mu <- colMeans( as.matrix( iris[, 1:3] ) )
gam <- c(1 ,0.5)
## the lat and long are decreased to 30. Increase them back to 50 to
## see the difference
spher.esag.contour(mu, gam, lat = 30, long = 30)
```

Contour plot (on the sphere) of the SESPC distribution Contour plot (on the sphere) of the SESPC distribution

Description

The contour plot (on the sphere) of the SESPC distribution is produced.

Usage

spher.sespc.contour(mu, theta, bgcol = "snow", dat = NULL, col = NULL, lat $=50$, long $=50$)

Arguments

mu The mean vector the SESPC distribution, a vector in R^{3}.
theta The two θ parameters of the SESPC distribution.
bgcol The color of the surface of the sphere.
dat If you have you want to plot supply them here. This has to be a numerical matrix with three columns, i.e. unit vectors.
col If you supplied data then choose the color of the points. If you did not choose a color, the points will appear in red.
lat A positive number determing the range of degrees to move left and right from the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the SESPC distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

See Also

spher.esag. contour, spher.spcauchy.contour

Examples

```
mu <- colMeans( as.matrix( iris[, 1:3] ) )
theta <- c(1 ,0.5)
## the lat and long are decreased to 30. Increase them back to 50 to
## see the difference
spher.sespc.contour(mu, theta, lat = 30, long = 30)
```

Contour plot of a mixture of von Mises-Fisher distributions model
Contour plot of a mixture of von Mises-Fisher distributions model for
spherical data only.

Description

Contour lines are produced of mixture model for spherical data only.

Usage

mixvmf.contour (u, mod)

Arguments

$u \quad$ A two column matrix. The first column is the longitude and the second is the latitude.
mod This is mix.vmf object, actually it is a list. Run a mixture model and save it as \bmod for example, $\bmod =\operatorname{mix} \cdot \operatorname{vmf}(x, 3)$.

Details

The contour plot is displayed with latitude and longitude in the axes. No Lambert projection is used here. This works for spherical data only which are given as longitude and latitude.

Value

A plot including: The points and the contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von MisesFisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

vmf.kerncontour, vmf.contour, mixvmf.mle

Examples

```
k <- runif(2, 4, 20)
prob <- c(0.4, 0.6)
mu <- matrix( rnorm(6), ncol = 3 )
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, prob, mu, k)$x
mod <- mixvmf.mle(x, 2)
y <- euclid.inv(x)
mixvmf.contour(y, mod)
```

```
Contour plot of spherical data using a von Mises-Fisher kernel density estimate
    Contour plot of spherical data using a von Mises-Fisher kernel density
    estimate
```


Description

Contour plot of spherical data using a von Mises-Fisher kernel density estimate.

Usage

vmf.kerncontour(u, thumb = "none", den.ret = FALSE, full = FALSE, ngrid = 100)

Arguments

u
thumb This is either 'none' (defualt), or 'rot' for the rule of thumb suggested by GarciaPortugues (2013). If it is "none" it is estimated via cross validation, with the fast function vmfkde.tune.
den.ret If FALSE (default), plots the contours of the density along with the individual points. If TRUE, will instead return a list with the Longitudes, Latitudes and Densities. Look at the 'value' section for details.
full If FALSE (default), uses the range of positions from 'u' to calculate and optionally plot densities. If TRUE, calculates densities covering the entire sphere.
ngrid Sets the resolution of the density calculation.

Details

It calculates the contour plot using a von Mises-Fisher kernel for spherical data only.

Value

The contour lines of the data. If "den.ret" was set to TRUE a list including:
lat The latitude values.
long The longitude values.
h The optimal bandwidth.
den The kernel density estimate contour points.

Author(s)

Michail Tsagris, Micah J. Waldstein and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr, Micah J. Waldstein micah@waldste.in and Christos Adam pada4m4@gmail.com.

References

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. Electronic Journal of Statistics, 7, 1655-1685.

See Also

vmf.kde, vmfkde.tune, vmf.contour

Examples

```
x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)
vmf.kerncontour(x, "rot")
```

Contour plots of some rotational symmetric distributions

Contour plots of some rotational symmetric distributions

Description

Contour plots of some rotational symmetric distributions.

Usage

vmf.contour (k)
spcauchy. contour (mu, rho, lat $=50$, long $=50$)
purka.contour (theta, a, lat $=50$, long $=50$)
pkbd.contour (mu, rho, lat $=50$, long $=50$)

Arguments

k
mu
rho The ρ parameter of the spherical Cauchy distribution, or the Poisson kernel based distribution.
theta The median direction for the Purkayastha distribution, a unit vector.
a The concentration parameter of the Purkayastha distribution.
lat A positive number determing the range of degrees to move left and right from the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from the longitude center. See the example to better understand this argument.

Details

The user specifies the concentration parameter only and not the mean direction or data. This is for illustration purposes only. The graph of the von Mises-Fisher distribution will always contain circles, as this distribution is the analogue of a bivariate normal in two dimensions with a zero covariance.

Value

A contour plot of the distribution.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from the Mobius transformations. Bernoulli, 26(4): 3224-3248. https://arxiv.org/pdf/1510.07679.pdf
Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.
Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence properties, identifiability, and a method of sampling. Journal of Computational and Graphical Statistics, 29(4): 758-770.
Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution. Electronic Journal of Statistics, 17(2): 2180-2209.

See Also

rvmf, vmf.mle, vmf.kerncontour, kent.contour, sphereplot

Examples

```
vmf.contour(5)
mu <- colMeans( as.matrix( iris[,1:3] ) )
mu <- mu / sqrt( sum(mu^2) )
spcauchy.contour(mu, 0.7, 30, 30)
spcauchy.contour(mu, 0.7, 60, 60)
```

Conversion of cosines to azimuth and plunge
Conversion of cosines to azimuth and plunge

Description

Conversion of cosines to azimuth and plunge.

Usage

```
    cosap(x,y,z)
```


Arguments

x	x component of cosine.
y	y component of cosine.
z	z component of cosine.

Details

Orientation: $\mathrm{x}>0$ is 'eastward', $\mathrm{y}>0$ is 'southward', and $\mathrm{z}>0$ is 'downward'.

Value

A list including:
A
The azimuth
$P \quad$ The plunge

Author(s)

Eli Amson.
R implementation and documentation: Eli Amson eli.amson1988@gmail.com.

References

Amson E, Arnold P, Van Heteren AH, Cannoville A, Nyakatura JA. Trabecular architecture in the forelimb epiphyses of extant xenarthrans (Mammalia). Frontiers in Zoology.

See Also

euclid, euclid.inv, eul2rot

Examples

$\operatorname{cosap}(-0.505,0.510,-0.696)$

Converting a rotation matrix on $\mathrm{SO}(3)$ to an unsigned unit quaternion Converting a rotation matrix on $\mathrm{SO}(3)$ to an unsigned unit quaternion

Description

It returns an unsigned unite quaternion in S^{3} (the four-dimensional sphere) from a 3×3 rotation matrix on SO (3).

Usage

rot2quat (X)

Arguments

X
A rotation matrix in $\mathrm{SO}(3)$.

Details

Firstly construct a system of linear equations by equating the corresponding components of the theoretical rotation matrix proposed by Prentice (1986), and given a rotation matrix. Finally, the system of linear equations are solved by following the tricks mentioned in second reference here in order to achieve numerical accuracy to get quaternion values.

Value

A unsigned unite quaternion.

Author(s)

Anamul Sajib.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd.

References

Prentice,M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal Statistical Society. Series B: Methodological 48(2). //http://www.euclideanspace.com/maths/geometry/rotations/conversions

See Also

quat 2 rot, rotation, Arotation \link\{rot.matrix\}

Examples

```
x <- rnorm(4)
x <- x/sqrt( sum(x^2) ) ## an unit quaternion in R4 ##
R <- quat2rot(x)
R
x
rot2quat(R) ## sign is not exact as you can see
```

Converting an unsigned unit quaternion to rotation matrix on $\mathrm{SO}(3)$
Converting an unsigned unit quaternion to rotation matrix on $S O(3)$

Description

It forms a (3×3) rotation matrix on $\mathrm{SO}(3)$ from an unsigned unite quaternion in S^{3} (the fourdimensional sphere).

Usage

quat2rot(x)

Arguments

x An unsigned unit quaternion in S^{3}.

Details

Given an unsigned unit quaternion in S^{3} it forms a rotation matrix on $\mathrm{SO}(3)$, according to the transformation proposed by Prentice (1986).

Value

A rotation matrix.

Author(s)

Anamul Sajib.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd.

References

Prentice,M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal Statistical Society. Series B: Methodological 48(2).

See Also
 rot2quat, rotation, Arotation rot.matrix

Examples

```
x <- rnorm(4)
x <- x/sqrt( sum(x^2) )
x ## an unit quaternion in R4 ##
quat2rot(x)
```

Cross validation for estimating the classification rate
Cross validation for estimating the classification rate

Description

Cross validation for estimating the classification rate.

Usage

dirda.cv(x, ina, folds = NULL, nfolds $=10$, $k=2: 10$, stratified $=$ FALSE, type = c("vmf", "iag", "esag", "kent", "knn"), seed $=$ NULL, $B=1000$, parallel $=$ FALSE)

Arguments

x
ina
folds
nfolds
k
stratified
seed
type

B
parallel If you want the standard -NN algorithm to take place in parallel set this equal to TRUE.

Details

Cross-validation for the estimation of the performance of a classifier.
The estimated performance of the best classifier is overestimated. After the cross-valdiation procedure, the predicted values produced by all classifiers are colelcted, from all folds, in an $n \times M$ matrix, where n is the number of samples and M the number of all classifiers used. We sample rows (predictions) with replacement from P and denote them as the in-sample values. The non re-sampled rows are denoted as out-of-sample values. The performance of each classifier in the insample rows is calculated and the classifier with the optimal performance is selected, followed by the calculation of performance in the out-of-sample values. This process is repeated B times and the average performance is returned. The only computational overhead is with the repetitive resampling and calculation of the performance, i.e. no model or classifier is fitted nor trained. For more information see Tsamardinos et al. (2018). This procedure though takes place only for the $\mathrm{k}-\mathrm{NN}$ algorithm.

The good thing with the function is that you can run any method you want by supplying the folds yourselves using the command makefolds. Then suppose you want to run another method. By suppying the same folds you will be able to have comparative results for all methods.

Value

A list including:
perf A vector with the estimated performance of each classifier.
best The classifier with the optimal performance.
boot.perf The bootstrap bias corrected performance.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467-491.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Paine P.J., Preston S.P. and Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.
Morris J. E. and Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2): 335-341.
Tsamardinos I., Greasidou E. and Borboudakis G. (2018). Machince Learning, 107(12): 18951922.

See Also

esag.da, vmfda.pred, dirknn, knn.reg

Examples

```
x <- rvmf(300, rnorm(3), 10)
ina <- sample.int(4, 300, replace = TRUE)
dirda.cv(x, ina, B = 1000)
```

```
Cross validation in von Mises-Fisher discrminant analysis
    Cross validation for estimating the classification rate of a discrminant
    analysis for directional data assuming a von Mises-Fisher distribution
```


Description

Cross validation for estimating the classification rate of a discrminant analysis for directional data assuming a von Mises-Fisher distribution.

Usage

vmf.da(x, ina, fraction $=0.2, R=200$, seed $=$ NULL)

Arguments

x	A matrix with the data in Eulcidean coordinates, i.e. unit vectors.
ina	A variable indicating the groupings.
fraction	The fraction of data to be used as test set.
R	The number of repetitions.
seed	If seed is TRUE, the results will always be the same.

Details

A repeated cross validation procedure is performed to estimate the rate of correct classification.

Value

A list including:
percent The estimated percent of correct classification and two estimated standard deviations. The one is the standard devation of the rates and the other is assuming a binomial distribution.
ci Three types of confidence intervals, the standard one, another one based on the binomial distribution and the third one is the empirical one, which calcualtes the upper and lower 2.5% of the rates.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4): 467-491.
Morris J. E. and Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2): 335-341.

See Also

vmfda.pred, mixvmf.mle, vmf.mle, dirknn

Examples

```
x <- rvmf(100, rnorm(4), 15)
ina <- rep(1:2, each = 50)
vmf.da(x, ina, fraction = 0.2, R = 200)
```

```
Cross validation with ESAG discrminant analysis
```

Cross validation for estimating the classification rate of a discrminant analysis for directional data assuming an ESAG distribution

Description

Cross validation for estimating the classification rate of a discrminant analysis for directional data assuming an ESAG distribution.

Usage

esag.da(y, ina, fraction $=0.2, R=100$, seed $=$ NULL)

Arguments

y
ina A variable indicating the groupings.
fraction The fraction of data to be used as test set.
$R \quad$ The number of repetitions.
seed You can specify your own seed number here or leave it NULL.

Details

A repeated cross validation procedure is performed to estimate the rate of correct classification.

Value

A list including:
percent The estimated percent of correct classification and two estimated standard deviations. The one is the standard devation of the rates and the other is assuming a binomial distribution.
ci Three types of confidence intervals, the standard one, another one based on the binomial distribution and the third one is the empirical one, which calcualtes the upper and lower 2.5% of the rates.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467-491.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

vmf.da, vmfda.pred, dirknn

Examples

```
x <- rvmf(100, rnorm(3), 15)
ina <- rep(1:2, each = 50)
esag.da(x, ina, fraction = 0.2, R = 50)
```

Cross validation with Purkayastha discrminant analysis
Cross validation for estimating the classification rate of a discrminant
analysis for directional data assuming a Purkayastha distribution

Description

Cross validation for estimating the classification rate of a discrminant analysis for directional data assuming a Purkayastha distribution.

Usage

purka.da(y, ina, fraction $=0.2, R=100$, seed $=$ NULL)

Arguments

y
ina A variable indicating the groupings.
fraction The fraction of data to be used as test set.
$R \quad$ The number of repetitions.
seed You can specify your own seed number here or leave it NULL.

Details

A repeated cross validation procedure is performed to estimate the rate of correct classification.

Value

A list including:
percent The estimated percent of correct classification and two estimated standard deviations. The one is the standard devation of the rates and the other is assuming a binomial distribution.
ci Three types of confidence intervals, the standard one, another one based on the binomial distribution and the third one is the empirical one, which calcualtes the upper and lower 2.5% of the rates.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also

vmf.da, vmfda.pred, dirknn

Examples

```
x <- rvmf(100, rnorm(3), 15)
ina <- rep(1:2, each = 50)
purka.da(x, ina, fraction = 0.2, R = 50)
```

Cumulative distribution function of circular distributions
Cumulative distribution function of circular distributions

Description

Cumulative probability distribution of circular distributions.

Usage

```
pvm(u, m, k, rads = FALSE)
pspml(u, mu, rads = FALSE)
pwrapcauchy(u, m, rho, rads = FALSE)
pcircpurka(u, m, a, rads = FALSE)
pcircbeta(u, m, a, b, rads = FALSE)
pcardio(u, m, rho, rads = FALSE)
pcircexp(u, lambda, rads = FALSE)
pcipc(u, omega, g, rads = FALSE)
pgcpc(u, omega, g, rho, rads = FALSE)
    pmmvm(u, m, k, N, rads = FALSE)
```


Arguments

rho The ρ parameter of the Cardioid, wrapped Cauchy and GCPC distributions.
u
m
mu
omega
g
k
lambda
a
b

N
rads

A numerical value, either in radians or in degrees.
The mean direction of the von Mises and the multi-modal von Mises distribution in radians or in degrees.
The mean vector, a vector with two values for the "pspml".
The location parameter of the CIPC and GCPC distributions.
The norm of the mean vector for the CIPC and GCPC distributions.
The concentration parameter, κ.
The λ parameter of the circular exponential distribution. This must be positive.
The α parameter of the circular Purkayastha distribution or the α parameter of the circular Beta distribution.
The β parameter of the circular beta distribution.

Details

This value calculates the probability of \mathbf{u} being less than some value θ.

Value

The probability that of u being less than θ, where u follows a circular distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Arthur Pewsey, Markus Neuhauser, and Graeme D. Ruxton (2013). Circular Statistics in R.
Barnett M. J. and Kingston R. L. (2024). A note on the Hendrickson-Lattman phase probability distribution and its equivalence to the generalized von Mises distribution. Journal of Applied Crystallography, 57(2).
Jammalamadaka S. R. and Kozubowski T. J. (2003). A new family of circular models: The wrapped Laplace distributions. Advances and Applications in Statistics, 3(1): 77-103.
Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.
Paula F. V., Nascimento A. D., Amaral G. J. and Cordeiro G. M. (2021). Generalized Cardioid distributions for circular data analysis. Stats, 4(3): 634-649.
Zheng Sun (2009). Comparing measures of fit for circular distributions. MSc Thesis, University of Victoria. file:///C:/Users/mtsag/Downloads/zhengsun_master_thesis.pdf

See Also

group.gof, dvm, dcircexp, purka.mle, dcircpurka, dmmvm

Examples

```
pvm(1, 2, 10, rads = TRUE)
pmmvm(1, 2, 10, 3, rads = TRUE)
pcircexp(c(1, 2), 2, rads = TRUE)
pcircpurka(2, 3, 0.3)
```

Density of a mixture of von Mises-Fisher distributions
Density of a mixture of von Mises-Fisher distributions

Description

Density of a mixture of von Mises-Fisher distributions.

Usage

dmixvmf(y, probs, mu, k, logden = FALSE)

Arguments

$y \quad$ A matrix with unit vectors.
probs \quad This is avector with the mixing probability of each group.
mu A matrix with the mean direction of each group.
$k \quad$ A vector with the concentration parameter of each group.
logden If you the logarithm of the density values set this to TRUE.

Details

The function computes the density for a given mixture of von Mises-Fisher distributions.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von MisesFisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

mixvmf.mle, rvmf, bic.mixvmf

Examples

```
k <- runif(3, 4, 6)
probs <- c(0.2, 0.5, 0.3)
mu <- matrix(rnorm(9), ncol = 3)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, probs, mu, k)$x
b <- dmixvmf(x, probs, mu, k)
```

Density of some (hyper-)spherical distributions
Density of some (hyper-)spherical distributions

Description

Density of some (hyper-)spherical distributions.

Usage

dvmf(y, mu, k, logden = FALSE)
iagd(y, mu, logden = FALSE)
dpurka(y, theta, a, logden = FALSE)
dspcauchy (y, mu, rho, logden = FALSE)
dpkbd(y, mu, rho, logden = FALSE)

Arguments

y A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit vectors.
mu The mean direction (unit vector) of the von Mises-Fisher, the IAG, the spherical Cauchy distribution, or of the Poisson kernel based distribution.
theta The mean direction (unit vector) of the Purkayastha distribution.
$\mathrm{k} \quad$ The concentration parameter of the von Mises-Fisher distribution.
a The concentration parameter of the Purkayastha distribution.
rho The ρ parameter of the spherical Cauchy distribution, or of the Poisson kernel based distribution.
logden If you the logarithm of the density values set this to TRUE.

Details

The density of the von Mises-Fisher, of the IAG, of the Purkayastha, of the spherical Cauchy distribution, or of the Poisson kernel based distribution is computed.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from the Mobius transformations. Bernoulli, 26(4): 3224-3248. https://arxiv.org/pdf/1510.07679.pdf

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence properties, identifiability, and a method of sampling. Journal of Computational and Graphical Statistics, 29(4): 758-770.
Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution. Electronic Journal of Statistics, 17(2): 2180-2209.

See Also

kent.mle, rkent, esag.mle

Examples

```
m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rvmf(1000, m = m, k = 10)
dvmf(y, k=10, m)
```

```
Density of some circular distributions
    Density of some circular distributions
```


Description

Density of some circular distributions.

Usage

```
dvm(x, m, k, rads = FALSE, logden = FALSE)
dspml(x, mu, rads = FALSE, logden = FALSE)
dwrapcauchy(x, m, rho, rads = FALSE, logden = FALSE)
dcircpurka(x, m, a, rads = FALSE, logden = FALSE)
dggvm(x, param, rads = FALSE, logden = FALSE)
dcircbeta(x, m, a, b, rads = FALSE, logden = FALSE)
dcardio(x, m, rho, rads = FALSE, logden = FALSE)
dcircexp(x, lambda, rads = FALSE, logden = FALSE)
dcipc(x, omega, g, rads = FALSE, logden = FALSE)
dgcpc(x, omega, g, rho, rads = FALSE, logden = FALSE)
dmmvm(x, m, k, N, rads = FALSE, logden = FALSE)
```


Arguments

$x \quad$ A vector with circular data.
$m \quad$ The mean value of the von Mises distribution and of the cardioid, a scalar. This is the median for the circular Purkayastha distribution.
mu The mean vector, a vector with two values for the "spml".
omega The location parameter of the CIPC and GCPC distributions.
g The norm of the mean vector for the CIPC and GCPC distributions.
$k \quad$ The concentration parameter.
rho For the wrapped Cauchy and Cardioid distributions, this is the ρ parameter. For the GCPC distribution this is the eigenvalue parameter, or covariance determinant.
a
The α parameter of the circular Purkayastha distribution or the α parameter of the circular Beta distribution.
b The β parameter of the circular Beta distribution.
lambda The λ parameter of the circular (or wrapped) exponential distribution. This must be positive.
param The vector of parameters of the GGVM distribution as returned by the function ggvm.mle.
$\mathrm{N} \quad$ The number of modes to consider in the multi-modal von Mises distribution.
rads If the data are in rads, then this should be TRUE, otherwise FALSE.
logden If you the logarithm of the density values set this to TRUE.

Details

The density of the von Mises, bivariate projected normal, cardio, circular exponential, wrapped Cauchy, circular Purkayastha, CIPC or GCPC distributions is computed.

Value

A vector with the (log) density values of x.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf
Presnell B., Morrison S. P. and Littell R. C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

Jammalamadaka S. R. and Kozubowski T. J. (2003). A new family of circular models: The wrapped Laplace distributions. Advances and Applications in Statistics, 3(1): 77-103.
Barnett M. J. and Kingston R. L. (2024). A note on the Hendrickson-Lattman phase probability distribution and its equivalence to the generalized von Mises distribution. Journal of Applied Crystallography, 57(2).

Paula F. V., Nascimento A. D., Amaral G. J. and Cordeiro G. M. (2021). Generalized Cardioid distributions for circular data analysis. Stats, 4(3): 634-649.
Zheng Sun (2009). Comparing measures of fit for circular distributions. MSc Thesis, University of Victoria. file:///C:/Users/mtsag/Downloads/zhengsun_master_thesis.pdf

See Also

dkent, rvonmises, desag

Examples

```
x <- rvonmises(500, m = 2.5, k = 10, rads = TRUE)
mod <- circ.summary(x, rads = TRUE, plot = FALSE)
den <- dvm(x, mod$mesos, mod$kappa, rads = TRUE, logden = TRUE )
mod$loglik
sum(den)
```

Density of the SESPC distribution

Description

Density of the SESPC distribution.

Usage

dsespc (y, mu, theta, logden = FALSE)

Arguments

y
A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit vectors.
mu The mean vector the SESPC distribution, a vector in R^{3}.
theta The two θ parameters of the SESPC distribution.
logden If you the logarithm of the density values set this to TRUE.

Details

The density of the SESPC distribution is computed.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

```
desag, sespc.mle
```


Examples

```
m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rsespc(1000, m, c(1, 1))
mod <- sespc.mle(y)
dsespc( y, mod$mu, mod$theta)
```

Density of the spherical ESAG and Kent distributions

Description

Density of the spherical ESAG and Kent distributions.

Usage

desag(y, mu, gam, logden = FALSE)
dkent (y, G, param, logden = FALSE)

Arguments

y A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit vectors.
mu The mean vector the ESAG distribution, a vector in R^{3}.
gam The two γ parameters of the ESAG distribution.
G For the Kent distribution only, a 3×3 matrix whose first column is the mean direction. The second and third columns are the major and minor axes respectively.
param For the Kent distribution a vector with the concentration κ and ovalness β parameters. The ψ has been absorbed inside the matrix G.
logden If you the logarithm of the density values set this to TRUE.

Details

The density of the spherical ESAG or Kent distribution is computed.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.
Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society, Series B, 44(1): 71-80.

See Also

```
kent.mle, rkent, esag.mle
```


Examples

```
m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rkent(1000, k = 10, m = m, b = 4)
mod <- kent.mle(y)
dkent( y, G = mod$G, param = mod$param )
```

Density of the Wood bimodal distribution on the sphere
Density of the Wood bimodal distribution on the sphere

Description

Density of the Wood bimodal distribution on the sphere.

Usage

dwood(y, param, logden = FALSE)

Arguments

$y \quad$ A matrix containing two columns. The first one is the latitude and the second is the longitude, both expressed in degrees.
param A vector with the 5 parameters, in the order they are returned by the wood.mle function. That is, $(\gamma, \delta, \alpha, \beta, \kappa)$.
logden If you the logarithm of the density values set this to TRUE.

Details

The density of the spherical Wood distribution is computed.

Value

A vector with the (\log) density values of y.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Wood A.T.A. (1982). A bimodal distribution on the sphere. Journal of the Royal Statistical Society, Series C, 31(1): 52-58.

See Also

> dkent, desag, wood.mle

Examples

```
x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)
mod <- wood.mle(x)
d <- dwood(x, mod$info[, 1])
```

Euclidean transformation
Euclidean transformation

Description

It transforms the data from the spherical coordinates to Euclidean coordinates.

Usage

euclid(u)

Arguments

u A two column matrix or even one single vector, where the first column (or element) is the latitude and the second is the longitude. The order is important.

Details

It takes the matrix of unit vectors of latitude and longitude and transforms it to unit vectors.

Value

A three column matrix:
U The Euclidean coordinates of the latitude and longitude.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

See Also

```
    euclid.inv, Arotation, lambert
```


Examples

```
    x <- rvmf(10, rnorm(3), 10)
    u <- euclid.inv(x)
    euclid(u)
    x
```

Euler angles from a rotation matrix on SO(3)
Compute the Euler angles from a rotation matrix on $\mathrm{SO}(3)$.

Description

It calculates three euler angles $\left(\theta_{12}, \theta_{13}, \theta_{23}\right)$ from a (3×3) rotation matrix X , where X is defined as $X=R_{z}\left(\theta_{12}\right) \times R_{y}\left(\theta_{13}\right) \times R_{x}\left(\theta_{23}\right)$. Here $R_{x}\left(\theta_{23}\right)$ means a rotation of θ_{23} radians about the x axis.

Usage

rot2eul(X)

Arguments

X
A rotation matrix which is defined as a product of three elementary rotations mentioned above. Here $\theta_{12}, \theta_{23} \in(-\pi, \pi)$ and and $\theta_{13} \in(-\pi / 2, \pi / 2)$.

Details

Given a rotation matrix X , euler angles are computed by equating each element in X with the corresponding element in the matrix product defined above. This results in nine equations that can be used to find the euler angles.

Value

For a given rotation matrix, there are two eqivalent sets of euler angles.

Author(s)

Anamul Sajib sajibstat@du.ac.bd.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd.

References

Green, P. J. and Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applications in proteins bioinformatics. Biometrika, 93(2):235-254.
http://www.staff.city.ac.uk/~sbbh653/publications/euler.pdf

See Also

> eul2rot

Examples

```
# three euler angles
theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1)
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )
theta.12 ; theta.23 ; theta.13
X <- eul2rot(theta.12, theta.23, theta.13)
X ## A rotation matrix
e <- rot2eul(X)$v1
theta.12 <- e[3]
theta. 23 <- e[2]
theta.13 <- e[1]
theta.12 ; theta.23 ; theta.13
```

 Forward Backward Early Dropping selection for circular data using the SPML regression
 Forward Backward Early Dropping selection for circular data using
 the SPML regression

Description

Forward Backward Early Dropping selection for circular data using the SPML regression.

Usage

spml.fbed(y, x, alpha $=0.05, \mathrm{~K}=0$, backward $=$ FALSE, parallel $=$ FALSE, tol $=1 \mathrm{e}-07$, maxiters $=100$)

Arguments

y The response variable, a numeric vector expressed in rads.
$x \quad$ A matrix with continuous independent variables.
alpha The significance threshold value for assessing p-values. Default value is 0.05.
K
How many times should the process be repeated? The default value is 0 .
backward After the Forward Early Dropping phase, the algorithm proceeds witha the usual Backward Selection phase. The default value is set to TRUE. It is advised to perform this step as maybe some variables are false positives, they were wrongly selected. This is rather experimental now and there could be some mistakes in the indices of the selected variables. Do not use it for now.
parallel If you want the algorithm to run in parallel set this TRUE.
tol The tolerance value to terminate the Newton-Raphson algorithm.
maxiters The maximum number of iterations Newton-Raphson will perform.

Details

The algorithm is a variation of the usual forward selection. At every step, the most significant variable enters the selected variables set. In addition, only the significant variables stay and are further examined. The non signifcant ones are dropped. This goes until no variable can enter the set. The user has the option to re-do this step 1 or more times (the argument K). In the end, a backward selection is performed to remove falsely selected variables. Note that you may have specified, for example, $K=10$, but the maximum value FBED used can be 4 for example.

Value

If K is a single number a list including:
Note, that the "gam" argument must be the same though.
res A matrix with the selected variables and their test statistic.
info A matrix with the number of variables and the number of tests performed (or models fitted) at each round (value of K). This refers to the forward phase only.
runtime The runtime required.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Borboudakis G. and Tsamardinos I. (2019). Forward-backward selection with early dropping. Journal of Machine Learning Research, 20(8): 1-39.
Tsagis M. (2018). Guide on performing feature selection with the R package MXM. https://f1000research.com/articles/71505

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

```
spml.reg, spml.regs, spml.mle
```


Examples

```
x <- matrix( runif(100 * 50, 1, 100), ncol = 50 )
y <- runif(100)
a <- spml.fbed(y, x)
```

Generate random folds for cross-validation
Generate random folds for cross-validation

Description

Random folds for use in a cross validation are generated. There is the option for stratified splitting as well.

Usage

makefolds(ina, nfolds $=10$, stratified $=$ TRUE, seed $=$ NULL)

Arguments

ina A variable indicating the groupings.
nfolds The number of folds to produce.
stratified A boolean variable specifying whether stratified random (TRUE) or simple random (FALSE) sampling is to be used when producing the folds.
seed You can specify your own seed number here or leave it NULL.

Details

I was inspired by the command in the package TunePareto in order to do the stratified version.

Value

A list with nfolds elements where each elements is a fold containing the indices of the data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

dirda.cv

Examples

```
a <- makefolds(iris[, 5], nfolds = 5, stratified = TRUE)
table(iris[a[[1]], 5]) ## 10 values from each group
```

Generation of unit vector(s) with a given angle

Description

Generation of unit vector(s) with a given angle from a given unit vector.

Usage

$\operatorname{vec}(x, \mathrm{n}=1, \operatorname{deg}=90)$

Arguments

$x \quad$ A unit vector. If it is not a unit vector it becomes one.
$\mathrm{n} \quad$ The number of unit vectors to return.
deg The angle between the given vector and the n vectors to be returned. This must be in degrees and it has to be between 0 and 180 degrees. If the angle is 0 , the same unit vector will be returned. If the angle is 180 , the same unit vector with the signs changed will be returned.

Details

The user provides a unit vector and the degrees. The function will return n unit vectors whose angle with the given unit vector equals the degrees given. For example, if you want 10 unit vectors purpendicualr to the x put $\operatorname{vec}(\mathrm{x}, 10,90)$.

Value

A list including:
runtime The runtime of the procedure.
crit The calculated angle between the given unit vector and each of the generated unit vectors.
mat A matrix with the n unit vectors.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

See Also

rvmf, rbingham, rfb

Examples

$x<-$ rnorm(10)
$x<-x / \operatorname{sqrt}\left(\operatorname{sum}\left(x^{\wedge} 2\right)\right)$
a <- $\operatorname{vec}(x, 20,90)$

Goodness of fit test for grouped data
Goodness of fit test for grouped data

Description

Goodness of fit test for grouped data.

Usage

group.gof(g, ni, m, k, dist = "vm", rads = FALSE, R = 999, ncores = 1)

Arguments

g A vector with the group points, either in radians or in degrees.
ni The frequency of each or group class.
$\mathrm{m} \quad$ The mean direction in radians or in degrees.
$\mathrm{k} \quad$ The concentration parameter, κ.
dist The distribution to be tested, it can be either "vm" or "uniform".
rads If the data are in radians, this should be TRUE and FALSE otherwise.
R The number of bootstrap simulations to perform, set to 999 by default.
ncores The number of cores to use.

Details

When you have grouped data, you can test whether the data come from the von Mises-Fisher distribution or from a uniform distribution.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter Since this is a bootstrap based test, there are no degrees of freedom, hence this is "NA".
p .value \quad The p -value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Arthur Pewsey, Markus Neuhauser, and Graeme D. Ruxton (2013). Circular Statistics in R.

See Also

pvm, circ.summary, rvonmises

Examples

```
x <- rvonmises(100, 2, 10)
g <- seq(min(x) - 0.1, max(x) + 0.1, length = 6)
ni <- as.vector( table( cut(x, g) ) )
group.gof(g, ni, 2, 10, dist = "vm", rads = TRUE, R = 299, ncores = 1)
group.gof(g, ni, 2, 5, dist = "vm", rads = TRUE, R = 299, ncores = 1)
```

```
Habeck's rotation matrix generation
```

 Generation of three-dimensional random rotations using Habeck's al-
 gorithm.

Description

It generates random rotations in three-dimensional space that follow a probability distribution, matrix Fisher distribution, arising in fitting and matching problem.

Usage

habeck. rot (F)

Arguments

F An arbitrary 3×3 matrix represents the parameter matrix of this distribution.

Details

Firstly rotation matrices \mathbf{X} are chosen which are the closest to F, and then parameterized using euler angles. Then a Gibbs sampling algorithm is implemented to generate rotation matrices from the resulting disribution of the euler angles.

Value

A simulated rotation matrix.

Author(s)

Anamul Sajib.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd.

References

Habeck M (2009). Generation of three-dimensional random rotations in fitting and matching problems. Computational Statistics, 24, 719-731.

Examples

```
F<- 10^(-1) * matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) ## Arbitrary F matrix
X <- habeck.rot(F)
det(X)
```

Haversine distance matrix
Harvesine distance matrix

Description

Haversine distance matrix.

Usage

haversine.dist(x)

Arguments

x
A a matrix of two columns. The first column is the latitude and the second the longitude.

Details

The function computes the haversine distance between all observations.

Value

A matrix with the haversine distances between all observations.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

https://en.wikipedia.org/wiki/Haversine_formula

See Also

cosnn, dirknn

Examples

```
x <- rvmf(10, rnorm(3), 10)
x <- euclid.inv(x)
haversine.dist(x)
```

Hypothesis test for IAG distribution over the ESAG distribution
Hypothesis test for IAG distribution over the ESAG distribution

Description

The null hypothesis is whether an IAG distribution fits the data well, where the altenrative is that ESAG distribution is more suitable.

Usage

iagesag(x, $B=1$, tol $=1 \mathrm{e}-07)$

Arguments

$x \quad$ A numeric matrix with three columns containing the data as unit vectors in Euclidean coordinates.
B The number of bootstrap re-samples. By default is set to 999 . If it is equal to 1 , no bootstrap is performed and the p-value is obtained throught the asymptotic distribution.
tol The tolerance to accept that the Newton-Raphson algorithm used in the IAG distribution has converged.

Details

Essentially it is a test of rotational symmetry, whether the two γ parameters are equal to zero. This works for spherical data only.

Value

This is an "htest"class object. Thus it returns a list including:

statistic	The test statistic value.
parameter	The degrees of freedom of the test. If bootstrap was employed this is "NA".
p.value	The p-value of the test.
alternative method	A character with the alternative hypothesis.
data.name	A character with the test used.
	A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.

See Also

fishkent, iagesag, pc.test, esag.mle, kent.mle,

Examples

```
x <- rvmf(100, rnorm(3), 15)
iagesag(x)
fishkent(x, B = 1)
```

Hypothesis test for SIPC distribution over the SESPC distribution
Hypothesis test for SIPC distribution over the SESPC distribution

Description

The null hypothesis is whether an SIPC distribution fits the data well, where the altenrative is that SESPC distribution is more suitable.

Usage

$$
\text { pc.test(x, } B=1 \text {, tol }=1 \mathrm{e}-06)
$$

Arguments

$x \quad$ A numeric matrix with three columns containing the data as unit vectors in Euclidean coordinates.

B
The number of bootstrap re-samples. By default is set to 999 . If it is equal to 1 , no bootstrap is performed and the p-value is obtained throught the asymptotic distribution.
tol The tolerance to accept that the Newton-Raphson algorithm used in the IAG distribution has converged.

Details

Essentially it is a test of rotational symmetry, whether the two θ parameters are equal to zero. This works for spherical data only.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".
$p . v a l u e \quad$ The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

See Also

iagesag, fishkent, sespc.mle

Examples

```
x <- rvmf(100, rnorm(3), 15)
iagesag(x)
pc.test(x)
```

Hypothesis test for von Mises-Fisher distribution over Kent distribution Hypothesis test for von Mises-Fisher distribution over Kent distribution

Description

The null hypothesis is whether a von Mises-Fisher distribution fits the data well, where the altenrative is that Kent distribution is more suitable.

Usage

fishkent (x, B = 999)

Arguments

$x \quad$ A numeric matrix containing the data as unit vectors in Euclidean coordinates.
B The number of bootstrap re-samples. By default is set to 999 . If it is equal to 1 , no bootstrap is performed and the p-value is obtained throught the asymptotic distribution.

Details

Essentially it is a test of rotational symmetry, whether Kent's ovalness parameter (beta) is equal to zero. This works for spherical data only.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".
p.value The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data.name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Rivest L. P. (1986). Modified Kent's statistics for testing goodness of fit for the Fisher distribution in small concentrated samples. Statistics \& Probability Letters, 4(1): 1-4.

See Also

iagesag, pc.test, vmf.mle, kent.mle

Examples

```
x <- rvmf(100, rnorm(3), 15)
fishkent(x)
fishkent(x, B = 1)
iagesag(x)
```

Interactive 3D plot of spherical data
Interactive $3 D$ plot of spherical data

Description

Interactive 3D plot of spherical data.

Usage

sphereplot(dat, col = NULL, bgcol = "snow")

Arguments

dat A matrix with three columns, unit-vectors, spherical data.
col If you want the points to appear with different colours put numbers here, otherwise leave it NULL.
bgcol The color of the surface of the sphere.

Value

An interactive 3D plot of the spherical data will appear.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

lambert, vmf.contour, euclid

Examples

```
x <- rvmf(100, rnorm(3), 5)
sphereplot(x)
```

Inverse of Lambert's equal area projection
Inverse of Lambert's equal area projection

Description

It takes some points from the cartesian coordinates and maps them onto the sphere. The inverse os the Lambert's equal area projection.

Usage

lambert.inv(z, mu)

Arguments

z A two- column matrix containing the Lambert's equal rea projected data.
$\mathrm{mu} \quad$ The mean direction of the data on the sphere.

Details

The data are first mapped on the sphere with mean direction equal to the north pole. Then, they are rotated to have the given mean direction. It is the inverse of the Lambert's equal are projection.

Value

A matrix containing spherical data (unit vectors).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kent, John T. (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society. Series B (Methodological) 44(1):71-80.

See Also

lambert

Examples

```
m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(20, m, 19)
mu <- vmf.mle(x)$mu
y <- lambert( euclid.inv(x) )
lambert.inv(y, mu)
euclid.inv(x)
```

Inverse of the Euclidean transformation
Inverse of the Euclidean transformation

Description

It transforms the data from the Euclidan coordinates to latitude dn longitude.

Usage

euclid.inv(U)

Arguments

U A matrix of unit vectors, or even one single unit vector in three dimensions.

Details

It takes the matrix of unit vectors and back transforms it to latitude and longitude.

Value

A two column matrix:
u
The first column is the latitude and the second is the longitude, both expressed in degrees.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

See Also

```
    euclid, Arotation, lambert
```


Examples

$x<-\operatorname{rvmf}(10, \operatorname{rnorm}(3), 10)$
euclid.inv(x)
euclid(euclid.inv(x))
x
$\mathrm{k}-\mathrm{NN}$ algorithm using the arc cosinus distance
k-NN algorithm using the arc cosinus distance

Description

It classifies new observations to some known groups via the k-NN algorithm.

Usage

dirknn(xnew, ina, $x, k=5$, mesos $=$ TRUE, parallel $=$ FALSE, rann = FALSE)

Arguments

xnew
ina A variable indicating the groups of the data x.
x
k The number of nearest neighbours, set to 5 by default. It can also be a vector with many values.
mesos A boolean variable used only in the case of the non standard algorithm (type="NS"). Should the average of the distances be calculated (TRUE) or not (FALSE)? If it is FALSE, the harmonic mean is calculated.
parallel If you want the standard - NN algorithm to take place in parallel set this equal to TRUE.
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observations. The new observation is allocated to the most frequent seen group. The non standard algorithm is to calculate the classical mean or the harmonic mean of the k nearest observations for each group. The new observation is allocated to the group with the smallest mean distance.

Value

A vector including:
g
A matrix with the predicted group(s). It has as many columns as the values of k .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467-491.

See Also

dirknn.tune, vmfda.pred, mixvmf.mle

Examples

```
k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
da <- rmixvmf(200, prob, mu, k)
nu <- sample(1:200, 180)
x <- da$x[nu, ]
ina <- da$id[nu]
xx <- da$x[-nu, ]
id <- da$id[-nu]
a1 <- dirknn(xx, ina, x, k = 5, mesos = TRUE)
a2 <- dirknn(xx, ina, x, k = 5, mesos = FALSE)
b <- vmfda.pred(xx, x, ina)
table(id, a1)
table(id, a2)
```

$\mathrm{k}-\mathrm{NN}$ regression $\quad k$-NN regression with Euclidean or (hyper-)spherical response and or
predictor variables

Description

k-NN regression with Euclidean or (hyper-)spherical response and or predictor variables.

Usage

knn.reg(xnew, y, x, k = 5, res = "eucl", estim = "arithmetic")

Arguments

xnew
The new data, new predictor variables values. A matrix with either euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a circular response, say u, transform it to a unit vector via $(\cos (u), \sin (u))$. If xnew $=x$, you will get the fitted values.
y
The currently available data, the response variables values. A matrix with either euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a circular response, say u, transform it to a unit vector via $(\cos (u), \sin (u))$.
x
The currently available data, the predictor variables values. A matrix with either euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a circular response, say u, transform it to a unit vector via $(\cos (u), \sin (u))$.
$k \quad$ The number of nearest neighbours, set to 5 by default. This can also be a vector with many values.
res The type of the response variable. If it is Euclidean, set this argument equal to "res". If it is a unit vector set it to res="spher".
estim Once the k observations whith the smallest distance are discovered, what should the prediction be? The arithmetic average of the corresponding y values be used estim="arithmetic" or their harmonic average estim="harmonic".

Details

This function covers a broad range of data, Euclidean and spherical, along with their combinations.

Value

A list with as many elements as the number of values of k . Each element in the list contains a matrix (or a vector in the case of Euclidean data) with the predicted response values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

knnreg.tune, spher.reg, spml.reg

Examples

```
y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x/ sqrt( rowSums(x^2) ) ## Euclidean response
a <- knn.reg(x, y, x, k = 5, res = "eucl", estim = "arithmetic")
y <- iris[, 2:4]
y <- y / sqrt( rowSums(y^2) ) ## Spherical response
x <- iris[, 1]
a <- knn.reg(x, y, x, k = 5, res = "spher", estim = "arithmetic")
```

Lambert's equal area projection
Lambert's equal area projection

Description

It calculates the Lambert's equal area projection.

Usage

lambert(y)

Arguments

y A two column matrix with the data. The first column is the altitude and the second is the longitude.

Details

The spherical data are first rotated so that their mean direction is the north pole and then are projectedt on the plane tagent to the sphere at the north pole.

Value

A two-column matrix with the projected points.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kent, John T. (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society. Series B (Methodological) 44(1):71-80.

See Also

euclid, lambert.inv

Examples

$x<-\operatorname{rvmf}(100, \operatorname{rnorm}(3), 20)$
$x<-$ euclid.inv(x)
a <- lambert(x)
plot(a)

Logarithm of the Kent distribution normalizing constant
Logarithm of the Kent distribution normalizing constant

Description

Logarithm of the Kent distribution normalizing constant.

Usage

kent. $\log \operatorname{con}(\mathrm{k}, \mathrm{b}, \mathrm{j}=100)$

Arguments

$\mathrm{k} \quad$ The conencration parameter, κ.
b The ovalness parameter, β.
j The number of the terms in the sum to use. By default this is 100 .

Details

It calculates logarithm of the normalising constant of the Kent distribution.

Value

The value of the logarithm of the normalising constant of the Kent distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society, Series B, 44(1): 71-80.

See Also

fb.saddle, kent.mle

Examples

```
kent.logcon(10, 2)
fb.saddle( c(0, 10, 0), c(0, -2, 2) )
```

Many simple circular or angular regressions
Many simple circular or angular regressions

Description

Many regressions with one circular dependent variable and one Euclidean independent variable.

Usage

spml.regs(y, x, tol $=1 \mathrm{e}-07$, logged $=$ FALSE, maxiters $=100$, parallel $=$ FALSE $)$

Arguments

y
The dependent variable, it can be a numerical vector with data expressed in radians or it can be a matrix with two columns, the cosinus and the sinus of the circular data. The benefit of the matrix is that if the function is to be called multiple times with the same response, there is no need to transform the vector every time into a matrix.
$x \quad$ A matrix with independent variable.
tol The tolerance value to terminatate the Newton-Raphson algorithm.
logged Do you want the logarithm of the p-value be returned? TRUE or FALSE.
maxiters The maximum number of iterations to implement.
parallel Do you want the calculations to take plac ein parallel? The default value if FALSE.

Details

The Newton-Raphson algorithm is fitted in these regression as described in Presnell et al. (1998). For each colum of x a circual regression model is fitted and the hypothesis testing of no association between y and this variable is performed.

Value

A matrix with two columns, the test statistics and their associated (log) p-values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

```
spml.reg, spml.mle, iag.mle
```


Examples

```
\(x<-\) rnorm(200)
z <- cbind \((3+2\) * \(x, 1-3 * x)\)
\(y<-\operatorname{cbind}(\operatorname{rnorm}(100, z[, 1], 1), r n o r m(100, ~ z[, 2], 1))\)
y <- y / sqrt( rowSums( \(\left.\mathrm{y}^{\wedge} 2\right)\) )
\(x\) <- matrix( rnorm(100 * 50), ncol = 50 )
a <- Directional::spml.regs(y, x)
x <- NULL
```


Description

It produces maps of the world and the continents.

Usage

```
asia(title = "Asia", coords = NULL)
africa(title = "Africa", coords = NULL)
europe(title = "Europe", coords = NULL)
north.america(title = "North America", coords = NULL)
oceania(title = "Oceania", coords = NULL)
south.america(title = "South America", coords = NULL)
worldmap(title = "World map", coords = NULL)
```


Arguments

title A character vector with the title of the map.
coords If you want specific points to appear on the plot give the coordinates as a matrix, where the first column contains the longitude and the second column contains the latitude, in degrees.

Details

Maps of the world or the continents are produced. This are experimental functions and plot the countries with specific colouring at the moment. More functionalities will be added in the future.

Value

A map of the selected continent or the whole world.

Author(s)

Christos Adam.
R implementation and documentation: Christos Adam <pada4m4@gmail . com> and Michail Tsagris.

See Also

sphereplot

Examples

x <- euclid.inv(rvmf(10, rnorm(3), 5))

```
Mixtures of Von Mises-Fisher distributions
                        Mixtures of Von Mises-Fisher distributions
```


Description

It performs model based clustering for circualr, spherical and hyperspherical data assuming von Mises-Fisher distributions.

Usage

mixvmf.mle(x, g, n.start = 10)

Arguments

x	A matrix with the data expressed as unit vectors.
g	The number of groups to fit. It must be greater than or equal to 2.
n. start	The number of random starts to try. See also R's built-in function kmeans for more information about this.

Details

The initial step of the algorithm is not based on a spherical k-means, but on s imple k-means. The results are comparable to the package movMF.

Value

A list including:

param	A matrix with the mean direction, the concetrations parameter and mixing prob- ability of each group.
loglik	The value of the maximised log-likelihood.
pred	The predicted group of each observation.
iter	The number of iteration required by the EM algorithm.

runtime The run time of the algorithm. A numeric vector. The first element is the user time, the second element is the system time and the third element is the elapsed time.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von MisesFisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

rmixvmf, bic.mixvmf, mixvmf.contour

Examples

```
k <- runif(4, 4, 6)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, prob, mu, k)$x
mixvmf.mle(x, 3)
mixvmf.mle(x, 4)
mixvmf.mle(x, 5)
```

MLE of (hyper-)spherical rotational symmetric distributions
MLE of (hyper-)spherical rotational symmetric distributions

Description

MLE of (hyper-)spherical rotational symmetric distributions.

Usage

```
vmf.mle(x, fast \(=\) FALSE, tol \(=1 \mathrm{e}-07\) )
multivmf.mle(x, ina, tol = 1e-07, ell = FALSE)
iag.mle(x, tol = 1e-07)
spcauchy.mle(x, tol = 1e-06)
sipc.mle(x, tol = 1e-6)
pkbd.mle( \(x\), tol \(=1 e-6\) )
acg.mle( \(x\), tol \(=1 \mathrm{e}-07\) )
```


Arguments

X
fast
ina
ell
tol The tolerance value at which to terminate the iterations.

Details

The vmf.mle estimates the mean direction and concentration of a fitted von Mises-Fisher distribution.

The von Mises-Fisher distribution for groups of data is also implemented.
The acg.mle fits the angular central Gaussian distribution. There is a constraint on the estimated covariance matrix; its trace is equal to the number of variables. An iterative algorithm takes place and convergence is guaranteed.

The iag.mle implements MLE of the spherical projected normal distribution, for spherical data only.
The spcauchy.mle estimates the parameters of the spherical Cauchy distribution, for any dimension. Despite the name sounds confusing, it is implemented for arbitrary dimensions, not only the sphere.
The pkbd.mle estimates the parameters of the Poisson kernel based distribution (PKBD), for any dimension.
The sipc.mle implements MLE of the spherical independent projected Cauchy distribution, for spherical data only.

Value

For the von Mises-Fisher a list including:
loglik The maximum log-likelihood value.
mu The mean direction.
kappa The concentration parameter.
For the multi von Mises-Fisher a list including:
loglik A vector with the maximum log-likelihood values if ell is set to TRUE. Otherwise NULL is returned.
$\mathrm{mi} \quad$ A matrix with the group mean directions.
ki A vector with the group concentration parameters.
For the angular central Gaussian a list including:
iter The number if iterations required by the algorithm to converge to the solution.
cova The estimated covariance matrix.
For the spherical projected normal a list including:
iters The number of iteration required by the Newton-Raphson.
mesi A matrix with two rows. The first row is the mean direction and the second is the mean vector. The first comes from the second by normalising to have unit length.
param A vector with the elements, the norm of mean vector, the log-likelihood and the log-likelihood of the spherical uniform distribution. The third value helps in case you want to do a log-likelihood ratio test for uniformity.

For the spherical Cauchy and the PKBD a list including:
mu The mean direction.
rho The concetration parameter, this takes values in $[0,1)$.
loglik The log-likelihood value.
For the SIPC a list including:
mu The mean direction.
loglik The log-likelihood value.
For the angular central Gaussian a list including:
iter The number of iterations performed.
cova The covariance matrix.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of $I_{s}(x)$. Computational Statistics, 27(1): 177-190.

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika 74(3): 579-589.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28: 689-697.

Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf
Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from the Mobius transformations. Bernoulli, 26(4): 3224-3248. https://arxiv.org/pdf/1510.07679.pdf

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence properties, identifiability, and a method of sampling. Journal of Computational and Graphical Statistics, 29(4): 758-770.
Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution. Electronic Journal of Statistics, 17(2): 2180-2209.

See Also

```
racg, vm.mle, rvmf
```


Examples

```
m <- c(0, 0, 0, 0)
s <- cov(iris[, 1:4])
x <- racg(100, s)
mod <- acg.mle(x)
mod
cov2cor(mod$cova) ## estimated covariance matrix turned into a correlation matrix
cov2cor(s) ## true covariance matrix turned into a correlation matrix
vmf.mle(x)
x <- rbind( rvmf(100,rnorm(4), 10), rvmf(100,rnorm(4), 20) )
a <- multivmf.mle(x, rep(1:2, each = 100) )
```

```
MLE of some circular distributions
    MLE of some circular distributions
```


Description

MLE of some circular distributions.

Usage

spml.mle(x, rads = FALSE, tol = 1e-07)
wrapcauchy.mle(x, rads $=$ FALSE, tol $=1 \mathrm{e}-07$)
circexp.mle (x, rads = FALSE, tol = 1e-06)
circbeta.mle(x, rads = FALSE)
cardio.mle(x, rads = FALSE)
ggvm.mle(phi, rads = FALSE)
cipc.mle(x, rads = FALSE)
gcpc.mle(x, rads $=$ FALSE)
mmvm.mle(x, N, rads = FALSE)

Arguments

x
A numerical vector with the circular data. They can either be expressed in radians or in degrees.

phi	A numerical vector with the circular data. They can either be expressed in radi- ans or in degrees.
N	The number of modes to consider in the multi-modal von Mises distribution.
rads	If the data are in radians set this to TRUE.
tol	The tolerance level to stop the iterative process of finding the MLEs.

Details

The parameters of the bivariate angular Gaussian (spml.mle), wrapped Cauchy, circular exponential, cardioid, circular beta, geometrically generalised von Mises, CIPC (reparametrised version of the wrapped Cauchy), GCPC (generalisation of the CIPC) and multi-modal von Mises distributions are estimated. For the Wrapped Cauchy, the iterative procedure described by Kent and Tyler (1988) is used. The Newton-Raphson algortihm for the angular Gaussian is described in the regression setting in Presnell et al. (1998). The circular exponential is also known as wrapped exponential distribution.

Value

A list including:

iters	The iterations required until convergence.
loglik	The value of the maximised log-likelihood. param A vector consisting of the estimates of the two parameters, the mean direction for both distributions and the concentration parameter kappa and the $r h o$ for the von Mises (and the multi-modal von Mises) and wrapped Cauchy respectively. For the circular beta this contains the mean angle and the α and β parameters. For the cardioid distribution this contains the μ and $r h o$ parameters. For the generalised von Mises this is a vector consisting of the $\zeta, ~$ ter μ and α parame- ters of the generalised von Mises distribution as described in Equation (2.7) of Dietrich and Richter (2017).
gamma	The norm of the mean vector of the angular Gaussian, the CIPC and the GCPC distributions.
mu	The mean vector of the angular Gaussian, the CIPC and the GCPC distributions.
mumu	In the case of "angular Gaussian distribution this is the mean angle in radians.
circmu	In the case of the CIPC and the GCPC this is the mean angle in radians.
rho	For the GCPC distribution this is the eigenvalue of the covariance matrix, or the covariance determinant.
lambda	The lambda parameter of the circular exponential distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of $I_{s}(x)$. Computational Statistics, 27(1): 177-190.
Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

Kent J. and Tyler D. (1988). Maximum likelihood estimation for the wrapped Cauchy distribution. Journal of Applied Statistics, 15(2): 247-254.
Dietrich T. and Richter W. D. (2017). Classes of geometrically generalized von Mises distributions. Sankhya B, 79(1): 21-59.
https://en.wikipedia.org/wiki/Wrapped_exponential_distribution
Jammalamadaka S. R. and Kozubowski T. J. (2003). A new family of circular models: The wrapped Laplace distributions. Advances and Applications in Statistics, 3(1), 77-103.
Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf
Barnett M. J. and Kingston R. L. (2024). A note on the Hendrickson-Lattman phase probability distribution and its equivalence to the generalized von Mises distribution. Journal of Applied Crystallography, 57(2).

See Also

circ.summary, purka.mle, rvonmises, vmf.mle, rvmf

Examples

```
x <- rvonmises(1000, 3, 9)
spml.mle(x, rads = TRUE)
wrapcauchy.mle(x, rads = TRUE)
circexp.mle(x, rads = TRUE)
ggvm.mle(x, rads = TRUE)
```

MLE of some circular distributions with multiple samples
MLE of some circular distributions with multiple samples

Description

MLE of some circular distributions with multiple samples.

Usage

multivm.mle(x, ina, tol = 1e-07, ell = FALSE)
multispml.mle(x, ina, tol $=1 \mathrm{e}-07$, ell = FALSE)

Arguments

X
A numerical vector with the circular data. They must be expressed in radians. For the "spml.mle" this can also be a matrix with two columns, the cosinus and the sinus of the circular data.
ina A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4, \ldots or a factor variable. Each number denotes a sample or group. If you supply a continuous valued vector the function will obviously provide wrong results.
tol The tolerance level to stop the iterative process of finding the MLEs.
ell Do you want the log-likelihood returned? The default value is FALSE.

Details

The parameters of the von Mises and of the bivariate angular Gaussian distributions are estimated for multiple samples.

Value

A list including:
iters The iterations required until convergence. This is returned in the wrapped Cauchy distribution only.
loglik A vector with the value of the maximised log-likelihood for each sample.
$\mathrm{mi} \quad$ For the von Mises, this is a vector with the means of each sample. For the angular Gaussian (spml), a matrix with the mean vector of each sample
ki A vector with the concentration parameter of the von Mises distribution at each sample.
gi A vector with the norm of the mean vector of the angular Gaussian distribution at each sample.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of $I_{s}(x)$. Computational Statistics, 27(1): 177-190.
Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.
Kent J. and Tyler D. (1988). Maximum likelihood estimation for the wrapped Cauchy distribution. Journal of Applied Statistics, 15(2): 247-254.

See Also

colspml.mle, purka.mle

Examples

```
y <- rcauchy (100, 3, 1)
x <- y
ina <- rep(1:2, 50)
multivm.mle(x, ina)
multispml.mle(x, ina)
```

```
MLE of the ESAG distribution
    MLE of the ESAG distribution
```


Description

MLE of the ESAG distribution.

Usage

esag.mle(y, full = FALSE, tol $=1 \mathrm{e}-06$)

Arguments

y	A matrix with the data expressed in Euclidean coordinates, i.e. unit vectors.
full	If you want some extra information, the inverse of the covariance matrix, the rho parameter (smallest eigenvalue of the covariance matrix) and the angle of rotation ψ, set this equal to TRUE. Otherwise leave it FALSE.
tol	A tolerance value to stop performing successive optimizations.

Details

MLE of the MLE of the ESAG distributiontribution, on the sphere, is implemented. ESAG stands for Elliptically Symmetric Angular Gaussian and it was suugested by Paine et al. (2018). Unlike the projected normal distribution this is rotationally symmetric and is a competitor of the spherical Kent distribution (which is also elliptically symmetric).

Value

A list including:
mu \quad The mean vector in R^{3}.
gam The two γ parameters.
loglik The log-likelihood value.
vinv \quad The inverse of the covariance matrix. It is returned if the argument "full" is TRUE.
rho The rho parameter (smallest eigenvalue of the covariance matrix). It is returned if the argument "full" is TRUE.
psi The angle of rotation ψ set this equal to TRUE. It is returned if the argument "full" is TRUE.
iag. loglik The log-likelihood value of the isotropic angular Gaussian distribution. That is, the projected normal distribution which is rotational symmetric.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

desag, resag, iag.mle, kent.mle, acg.mle, circ.summary, sphereplot

Examples

```
m <- colMeans( as.matrix( iris[,1:3] ) )
y <- resag(1000, m, c(1,0.5) )
esag.mle(y)
```

MLE of the Kent distribution
MLe of the Kent distribution

Description

It estimates the concentration and the ovalness parameter of some directional data assuming the Kent distribution. The mean direction and major and minor axes are also estimated.

Usage

kent.mle(x)

Arguments

x
A matrix containing spherical data in Euclidean coordinates.

Details

The Kent distribution is fitted to some data and its parameters are estimated.

Value

A list including:
runtime The run time of the procedure.
G
A 3×3 matrix whose first column is the mean direction. The second and third columns are the major and minor axes respectively.
param \quad A vector with the concentration κ and ovalness β parameters and the angle ψ used to rotate \mathbf{H} and hence estimate \mathbf{G} as in Kent (1982).
logcon The logarithm of the normalising constant, using the third type approximation (Kume and Wood, 2005).
loglik The value of the log-likelihood.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society, Series B, 44(1): 71-80.

Kume Alfred and Wood Andrew T.A. (2005). Saddlepoint approximations for the Bingham and Fisher-Bingham normalizing constants. Biometrika, 92(2):465-476

See Also

```
kent.mle, fb.saddle, vmf.mle, wood.mle, sphereplot
```


Examples

```
x <- rvmf(200, rnorm(3), 15)
kent.mle(x)
vmf.mle(x)
A <- diag(c(-5, 0, 5) )
x <- rfb(200, 15, rnorm(3), A)
kent.mle(x)
vmf.mle(x)
```

```
MLE of the Matrix Fisher distribution on SO(3)
    MLE of the Matrix Fisher distribution on SO(3)
```


Description

It returns the maximum likelihood estimate of the Matrix Fisher parameter $\mathrm{F}(3 \times 3)$.

Usage

matrixfisher.mle(X)

Arguments

$X \quad$ An array containing rotation matrices in $\mathrm{SO}(3)$.

Value

The components of $\operatorname{svd}(\bar{X})$.

Author(s)

Anamul Sajib and Chris Fallaize.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd and Chris Fallaize.

References

Prentice M. J. (1986). Orientation statistics without parametric assumptions. Journal of the Royal Statistical Society. Series B: Methodological 48(2): 214-222.

See Also

rmatrixfisher

Examples

```
F<-10^(-1) * matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) ### An arbitrary F matrix
X <- rmatrixfisher(5000, F)
matrixfisher.mle(X)
svd(F)
```

```
MLE of the Purkayashta distribution
    MLE of the Purkayashta distribution
```


Description

MLE of the Purkayashta distribution.

Usage

purka.mle(x, tol $=1 \mathrm{e}-07$)

Arguments

x	A numerical vector with data expressed in radians or a matrix with spherical
data.	
tol	The tolerance value to terminate the Brent algorithm.

Details

MLE of the Purkayastha distribution is performed.

Value

A list including:
theta The median direction.
circtheta In case of circular data the circular mean is also returned.
alpha The concentration parameter.
loglik The log-likelihood.
alpha.sd The standard error of the concentration parameter.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83.
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also
circ.cor1

Examples

```
x <- cbind( rnorm(100,1,1), rnorm(100, 2, 1) )
x <- x / sqrt(rowSums(x^2))
purka.mle(x)
```

MLE of the SESPC distribution MLE of the SESPC distribution

Description

MLE of the SESPC distribution.

Usage

sespc.mle(y, full = FALSE, tol = 1e-06)

Arguments

y A matrix with the data expressed in Euclidean coordinates, i.e. unit vectors.
full If you want some extra information, the inverse of the covariance matrix, set this equal to TRUE. Otherwise leave it FALSE.
tol A tolerance value to stop performing successive optimizations.

Details

MLE of the SESPC distribution is implemented. SESPC stands for Spherical Elliptically Symmetric Projected Cauchy and it was suugested by Tsagris and Alzeley (2023). Unlike the spherical independent projected Cauchy distribution this is rotationally symmetric and is a competitor of the spherical ESAG and Kent distributions (which are also ellitpically symmetric).

Value

A list including:
mu The mean vector in R^{3}.
theta The two θ parameters.
loglik The log-likelihood value.
vinv The inverse of the covariance matrix. It is returned if the argument "full" is TRUE.
lambda The λ_{2} parameter (smallest eigenvalue of the covariance matrix). It is returned if the argument "full" is TRUE.
psi The angle of rotation ψ set this equal to TRUE. It is returned if the argument "full" is TRUE.
sipc.loglik The log-likelihood value of the isotropic prohected Cuchy distribution, which is rotational symmetric.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

dsespc, rsespc, sipc.mle, esag.mle, spher.sespc.contour

Examples

$\mathrm{m}<-$ colMeans(as.matrix(iris[,1:3]))
y <- rsespc(1000, m, c(1,0.5))
sespc.mle(y)

```
MLE of the Wood bimodal distribution on the sphere
    MLE of the Wood bimodal distribution on the sphere
```


Description

It estimates the parameters of the Wood bimodal distribution.

Usage

wood.mle(y)

Arguments

y
A matrix containing two columns. The first one is the latitude and the second is the longitude, both expressed in degrees.

Details

The Wood distribution is fitted to some data and its parameters are estimated. It is a bimodal distribution which contains 5 parameters, just like the Kent distribution.

Value

A list including:
info A 5×3 matrix containing the 5 parameters, $\gamma, \delta, \alpha, \beta$ and κ along with their corresponding 95% confidence intervals all expressed in degrees.
modes The two axis of the modes of the distribution expressed in degrees.
unitvectors A 3×3 matrix with the 3 unit vectors associated with the γ and δ parameters.
loglik The value of the log-likelihood.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Wood A.T.A. (1982). A bimodal distribution on the sphere. Journal of the Royal Statistical Society, Series C, 31(1): 52-58.

See Also

kent.mle, esag.mle, vmf.mle, sphereplot

Examples

```
x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)
wood.mle(x)
```

```
Naive Bayes classifiers for circular data
    Naive Bayes classifiers for directional data
```


Description

Naive Bayes classifiers for directional data.

Usage

vm.nb (xnew $=$ NULL, x, ina, tol $=1 \mathrm{e}-07$)
spml.nb(xnew $=$ NULL, x, ina, tol $=1 e-07$)

Arguments

xnew A numerical matrix with new predictor variables whose group is to be predicted. Each column refers to an angular variable.
x
A numerical matrix with observed predictor variables. Each column refers to an angular variable.
ina A numerical vector with strictly positive numbers, i.e. 1,2,3 indicating the groups of the dataset. Alternatively this can be a factor variable.
tol The tolerance value to terminate the Newton-Raphson algorithm.

Details

Each column is supposed to contain angular measurements. Thus, for each column a von Mises distribution or an circular angular Gaussian distribution is fitted. The product of the densities is the joint multivariate distribution.

Value

A list including:

mu	A matrix with the mean vectors expressed in radians.
mu1	A matrix with the first set of mean vectors.
mu2	A matrix with the second set of mean vectors.
ni	A matrix with the kappa parameters for the vonMises distribution or with the norm of the mean vectors for the circular angular Gaussian distribution.
est	The sample size of each group in the dataset.
	The estimated group of the xnew observations. It returns a numerical value back regardless of the target variable being numerical as well or factor. Hence, it is suggested that you do $\backslash " a s . n u m e r i c(i n a) \backslash " ~ i n ~ o r d e r ~ t o ~ s e e ~ w h a t ~ i s ~ t h e ~ p r e d i c t e d ~$
class of the new data.	

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

vmnb.pred, weibull.nb

Examples

```
x <- matrix( runif( 100, 0, 1 ), ncol = 2 )
ina <- rbinom(50, 1, 0.5) + 1
a <- vm.nb(x, x, ina)
```

Normalised spatial median for directional data
Normalised spatial median for directional data

Description

Normalised spatial median for directional data.

Usage

nsmedian(x, tol $=1 \mathrm{e}-07$)

Arguments

$x \quad$ A matrix with Euclidean data, continuous variables.
tol A tolerance level to terminate the process.

Details

The spatial median, using a fixed point iterative algorithm, for Euclidean data is calculated. It is a robust location estimate. Then it is normalised to become a unit vector. Generally speaking this might be a better alternative than then mediandir.

Value

A vector with the spatial median.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ducharme G. R. and Milasevic P. (1987). Spatial median and directional data. Biometrika, 74(1), 212-215.
Jyrki Mottonen, Klaus Nordhausen and Hannu Oja (2010). Asymptotic theory of the spatial median. In Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: A Festschrift in honor of Professor Jana Jureckova.
T. Karkkaminen and S. Ayramo (2005). On computation of spatial median for robust data mining. Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems, EUROGEN 2005, R. Schilling, W.Haase, J. Periaux, H. Baier, G. Bugeda (Eds) FLM, Munich. http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf

See Also

mediandir

Examples

```
m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(100, m, 10)
nsmedian(x)
mediandir(x)
```

Permutation based 2-sample mean test for (hyper-)spherical data Permutation based 2-sample mean test for (hyper-)spherical data

Description

Permutation based 2-sample mean test for (hyper-) spherical data.

Usage

hcf.perm(x1, x2, B = 999)
lr.perm(x1, x2, B = 999)
hclr.perm(x1, x2, B = 999)
embed.perm(x1, x2, $B=999)$
het. perm(x1, x2, B = 999)

Arguments

$x 1 \quad$ A matrix with the data in Euclidean coordinates, i.e. unit vectors.
x2 A matrix with the data in Euclidean coordinates, i.e. unit vectors.
B The number of permutations to perform.

Details

The high concentration (hcf.perm), log-likelihood ratio (lr.perm), high concentration log-likelihood ratio (hclr.perm), embedding approach (embed.perm) or the non equal concentration parameters approach (het.perm) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. Since these are permutation based tests this is "NA".
p.value \quad The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1), 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hcf.boot, hcf.aov, spherconc.test, conc.test

Examples

```
x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:2, each = 30)
x1 <- x[ina == 1, ]
x2 <- x[ina == 2, ]
hcf.perm(x1, x2)
lr.perm(x1, x2)
het.boot(x1, x2)
```

Permutation based 2-sample mean test for circular data
Permutation based 2-sample mean test for circular data

Description

Permutation based 2-sample mean test for circular data.

Usage

hcfcirc.perm(u1, u2, rads = TRUE, $B=999$)
hetcirc.perm(u1, u2, rads = TRUE, $B=999$)
lrcirc.perm(u1, u2, rads = TRUE, B = 999)
hclrcirc.perm(u1, u2, rads = TRUE, B = 999)
embedcirc.perm(u1, u2, rads $=$ TRUE, $B=999$)

Arguments

u1 A numeric vector containing the data of the first sample.
u2 A numeric vector containing the data of the first sample.
rads If the data are in radians, this should be TRUE and FALSE otherwise.
B
The number of permutations to perform.

Details

The high concentration (hcfcirc.perm), log-likelihood ratio (lrcirc.perm), high concentration loglikelihood ratio (hclrcirc.perm), embedding approach (embedcirc.perm) or the non equal concentration parameters approach (hetcirc.perm) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. Since these are permutation based tests this is "NA".
p value \quad The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian \& New Zealand Journal of Statistics, 59(1): 119-135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3): 1387-1408.

See Also

hcf.circaov, het.aov

Examples

```
u1 <- rvonmises(20, 2.4, 5)
u2 <- rvonmises(20, 2.4, 10)
hcfcirc.perm(u1, u2)
lrcirc.perm(u1, u2)
```

Prediction in discriminant analysis based on ESAG distribution
Prediction of a new observation using discriminant analysis based on
ESAG distribution

Description

Prediction of a new observation using discriminant analysis based on ESAG distribution.

Usage

esagda.pred(ynew, y, ina)

Arguments

ynew The new observation(s) (unit vector(s)) whose group is to be predicted.
$y \quad$ A data matrix with unit vectors, i.e. spherical directional data.
ina A vector indicating the groups of the data y.

Details

Prediction of the class of a new spherical vector assuming ESAG distribution.

Value
A vector with the predicted group of each new observation.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4): 467-491.
Paine P.J., Preston S.P. and Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3): 689-697.
Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

```
esag.da, vmfda.pred, dirknn, knn.reg
```


Examples

```
m1 <- rnorm(3)
m2 <- rnorm(3) + 0.5
y <- rbind( rvmf(100, m1, 3), rvmf(80, m2, 5) )
ina <- c( rep(1,100), rep(2, 80) )
ynew <- rbind(rvmf(10, m1, 10), rvmf(10, m2, 5))
id <- rep(1:2, each = 10)
g <- esagda.pred(ynew, y, ina)
table(id, g)
```

Prediction in discriminant analysis based on Purkayastha distribution
Prediction of a new observation using discriminant analysis based on Purkayastha distribution

Description

Prediction of a new observation using discriminant analysis based on Purkayastha distribution.

Usage

purkada.pred(ynew, y, ina)

Arguments

ynew The new observation(s) whose group is to be predicted. A numerical vector with data expressed in radians, or a matrix with two columns (cos and sin) for circular data. Or a matrix with 3 columns (unit vectors) for spherical data.
y A numerical vector with data expressed in radians, or a matrix with two columns (cos and \sin) for circular data. Or a matrix with 3 columns (unit vectors) for spherical data.
ina \quad A vector indicating the groups of the data y.

Details

Prediction of the class of a new spherical vector assuming ESAG distribution.

Value

A vector with the predicted group of each new observation.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also

esag.da, vmfda.pred, dirknn, knn.reg

Examples

```
m1 <- rnorm(3)
m2 <- rnorm(3) + 0.5
y <- rbind( rvmf(100, m1, 3), rvmf(80, m2, 5) )
ina <- c( rep(1,100), rep(2, 80) )
ynew <- rbind(rvmf(10, m1, 10), rvmf(10, m2, 5))
id <- rep(1:2, each = 10)
g <- purkada.pred(ynew, y, ina)
table(id, g)
```

Prediction in discriminant analysis based on von Mises-Fisher distribution
Prediction of a new observation using discriminant analysis based on von Mises-Fisher distribution

Description

Prediction of the class of a new observation using discriminant analysis based on von Mises-Fisher distribution.

Usage

vmfda.pred(xnew, x, ina)

Arguments

xnew The new observation(s) (unit vector(s)) whose group is to be predicted.
$x \quad$ A data matrix with unit vectors, i.e. directional data.
ina
A vector indicating the groups of the data x.

Details

Discriminant analysis assuming von Mises-Fisher distributions.

Value

A vector with the predicted group of each new observation.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467-491.
Morris J. E. and Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2): 335-341.

See Also

```
vmf.da, mixvmf.mle, dirknn, knn.reg
```


Examples

```
m1 <- rnorm(5)
m2 <- rnorm(5)
x <- rbind( rvmf(100, m1, 5), rvmf(80, m2, 10) )
ina <- c( rep(1,100), rep(2, 80) )
y <- rbind(rvmf(10, m1, 10), rvmf(10, m2, 5))
id <- rep(1:2, each = 10)
g <- vmfda.pred(y, x, ina)
table(id, g)
```

Prediction with some naive Bayes classifiers for circular data
Prediction with some naive Bayes classifiers for circular data

Description

Prediction with some naive Bayes classifiers for circular data.

Usage

vmnb.pred(xnew, mu, kappa, ni)
spmlnb.pred(xnew, mu1, mu2, ni)

Arguments

xnew A numerical matrix with new predictor variables whose group is to be predicted. Each column refers to an angular variable.
mu A matrix with the mean vectors expressed in radians.
mu1 A matrix with the first set of mean vectors.
mu2 A matrix with the second set of mean vectors.
kappa A matrix with the kappa parameters for the vonMises distribution or with the norm of the mean vectors for the circular angular Gaussian distribution.
ni The sample size of each group in the dataset.

Details

Each column is supposed to contain angular measurements. Thus, for each column a von Mises distribution or an circular angular Gaussian distribution is fitted. The product of the densities is the joint multivariate distribution.

Value

A numerical vector with $1,2, \ldots$ denoting the predicted group.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

vm.nb, weibullnb.pred

Examples

```
x <- matrix( runif( 100, 0, 1 ), ncol = 2 )
ina <- rbinom(50, 1, 0.5) + 1
a <- vm.nb(x, x, ina)
a2 <- vmnb.pred(x, a$mu, a$kappa, a$ni)
```

Projections based test of uniformity
Projections based test of uniformity

Description

It checkes whether the data are uniformly distributed on the circle or the (hyper-)sphere.

Usage

$$
\text { ptest(x, } B=100)
$$

Arguments

$x \quad$ A matrix containing the data, unit vectors.
B The number of random uniform projections to use.

Details

For more details see Cuesta-Albertos, Cuevas and Fraiman (2009).

Value

A list including:
pvalues The p-values of the Kolmogorov-Smirnov tests.
pvalue The p-value of the test based on the Benjamini and Heller (2008) procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Cuesta-Albertos J. A., Cuevas A. and Fraiman, R. (2009). On projection-based tests for directional and compositional data. Statistics and Computing, 19: 367-380.
Benjamini Y. and Heller R. (2008). Screening for partial conjunction hypotheses. Biometrics, 64(4): 1215-1222.

See Also

rayleigh, kuiper

Examples

```
x <- rvmf(100, rnorm(5), 1) ## Fisher distribution with low concentration
ptest(x)
```

```
Random sample of matrices in SO(p)
```

 Random sample of matrices in \(\mathrm{SO}(p)\)

Description

Random sample of matrices in $\mathrm{SO}(\mathrm{p})$.

Usage

$\operatorname{rsop}(\mathrm{n}, \mathrm{p})$

Arguments

n
The sample size, the number of matrices you want to generate.
p
The dimensionality of the matrices.

Details

The idea is very simple. Start with a unit vector pointing at the north pole $(1,0, \ldots, 0)$. Then generate random numbers from a standard normal and scale them so that they have a unit length. To put it differently, a sample of n values from the uniform distribution on the sphere is generated. Then calculate the rotation matrix required to go from the north pole to each of a generated vector.

Value

If $\mathrm{n}=1$ one matrix is returned. If n is greater than 1 , an array with n matrices inside.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal Bootstrap Methods for k-Sample Problems in Directional Statistics and Shape Analysis. Journal of the American Statistical Association, 102(478): 695-707.

See Also

```
rotation, Arotation, rot.matrix
```


Examples

```
x1 <- rsop(1, 3)
x2<- rsop(10, 3)
x3 <- rsop(100, 10)
```

```
Rayleigh's test of uniformity
    Rayleigh's test of uniformity
```


Description

It checkes whether the data are uniformly distributed on the circle or the (hyper-)sphere.

Usage

rayleigh(x, modif $=$ TRUE, $B=999$)

Arguments

$x \quad$ A matrix containing the data, unit vectors.
modif If modif is TRUE, the modification as suggested by Jupp (2001) is used.
B If B is greater than 1, bootstap calibation os performed. If it is equal to 1 , classical theory is used.

Details

The Rayleigh test of uniformity is not the best, when there are two antipodal mean directions. In this case it will fail. It is good to test whether there is one mean direction or not. To put it differently, it tests whether the concentration parameter of the Fisher distribution is zero or not.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".
p value The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data.name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Jupp, P. E. (2001). Modifications of the rayleigh and bingham tests for uniformity of directions. Journal of Multivariate Analysis, 77(2): 1-20.

Rayleigh, L. (1919). On the problem of random vibrations, and of random flights in one, two, or three dimensions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 37(220): 321-347.

See Also

ptest, kuiper, iagesag

Examples

```
x <- rvmf(100, rnorm(5), 1) ## Fisher distribution with low concentration
rayleigh(x)
```

Read a file as a Filebacked Big Matrix

Description

Read a file as a Filebacked Big Matrix.

Usage

read.fbm(file, select)

Arguments

file	The File to read.
select	Indices of columns to read (sorted). The length of select will be the number of columns of the resulting FBM.

Details

The functions read a file as a Filebacked Big Matrix object. For more information see the "bigstatsr" package.

Value

A Filebacked Big Matrix object.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

vmf.mle, kent.mle

Examples

$x<-\operatorname{matrix}(\operatorname{runif}(50 * 20,0,2 \star$ pi), ncol $=20)$

Rotation axis and angle of rotation given a rotation matrix
Rotation axis and angle of rotation given a rotation matrix

Description

Given a 3×3 rotation matrix, the angle and the axis of rotation are calculated.

Usage

```
    Arotation(A)
```


Arguments

A A 3×3 rotation matrix.

Details

If the user does not supply a rotation matrix a message will appear.

Value

A list including:
angle The angle of rotation expressed in degrees.
axis The axis of rotation. A vector of two components, latitude and longitude, expressed in degrees.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Course webpage of Howard E. Haber. http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf
Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907-924.

See Also

```
rot.matrix, rotation, rsop
```


Examples

```
    ksi <- c(25.31, 24.29)
    theta <- 2.38
    A <- rot.matrix(ksi, theta, rads = FALSE)
    A
    Arotation(A)
```

Rotation matrix from a rotation axis and angle of rotation
Rotation matrix from a rotation axis and angle of rotation

Description

It calculates a rotation matrix from a rotation axis and angle of rotation.

Usage

rot.matrix(ksi, theta, rads = FALSE)

Arguments

ksi The rotation axis, a vector with two elements, the first is the latitude and the second is the longitude.
theta The angle of rotation.
rads If both the ksi and theta are in rads, this should be TRUE. If both the ksi and theta are in degrees, this should be FALSE.

Details

The function accepts as arguments the rotation axis and the angle of rotation and it calcualtes the requested rotation matrix.

Value

A 3×3 rotation matrix.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Course webpage of Howard E. Haber. http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf
Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907-924.

See Also

```
Arotation, rotation, rsop
```


Examples

```
ksi <- c(25.31, 24.29)
theta <- 2.38
A <- rot.matrix(ksi, theta, rads = FALSE)
A
Arotation(A)
```

Rotation matrix on SO(3) from three Euler angles
Construct a rotation matrix on $S O(3)$ from the Euler angles.

Description

It forms a rotation matrix X on $\mathrm{SO}(3)$ by using three Euler angles $\left(\theta_{12}, \theta_{13}, \theta_{23}\right)$, where X is defined as $X=R_{z}\left(\theta_{12}\right) \times R_{y}\left(\theta_{13}\right) \times R_{x}\left(\theta_{23}\right)$. Here $R_{x}\left(\theta_{23}\right)$ means a rotation of θ_{23} radians about the x axis.

Usage

eul2rot(theta.12, theta.23, theta.13)

Arguments

theta. 12 An Euler angle, a number which must lie in $(-\pi, \pi)$.
theta. 23 An Euler angle, a number which must lie in $(-\pi, \pi)$.
theta. 13 An Euler angle, a number which must lie in $(-\pi / 2, \pi / 2)$.

Details

Given three euler angles a rotation matrix X on $\mathrm{SO}(3)$ is formed using the transformation according to Green and Mardia (2006) which is defined above.

Value

A roation matrix.

Author(s)

Anamul Sajib sajibstat@du.ac.bd.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd.

References

Green, P. J. and Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applications in proteins bioinformatics. Biometrika, 93(2):235-254.

See Also

rot2eul

Examples

\# three euler angles
theta. 12 <- sample($\operatorname{seq}(-3,3,0.3), 1$)
theta. 23 <- sample($\operatorname{seq}(-3,3,0.3), 1$)
theta. 13 <- sample(seq $(-1.4,1.4,0.3), 1$)
theta. 12 ; theta. 23 ; theta. 13
$\mathrm{X}<-$ eul2rot (theta.12, theta.23, theta.13)
X \# A rotation matrix
$\operatorname{det}(X)$
e <- rot2eul $(X) \$ v 1$
theta. 12 <- e[3]
theta. $23<-\mathrm{e}[2]$
theta. $13<-\mathrm{e}[1]$
theta. 12 ; theta. 23 ; theta. 13

> Rotation matrix to rotate a spherical vector along the direction of another Rotation matrix to rotate a spherical vector along the direction of another

Description

A rotation matrix is calculated to rotate a unit vector along the direction of another.

Usage

rotation(a, b)

Arguments

a
b

The initial unit vector.
The target unit vector.

Details

The function calcualtes a rotation matrix given two vectors. This rotation matrix is the connection between the two spherical only, vectors.

Value

A rotation matrix whose dimension is equal to the length of the unit vectors.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal Bootstrap Methods for k-Sample Problems in Directional Statistics and Shape Analysis. Journal of the American Statistical Association, 102(478): 695-707.

See Also

```
Arotation, rot.matrix, lambert, lambert.inv, rsop
```


Examples

```
a <- rnorm(3)
a <- a/sqrt(sum(a^2))
b <- rnorm(3)
b <- b/sqrt(sum(b^2))
A <- rotation(a, b)
A
a ; b
a %*% t(A)
a <- rnorm(7)
a <- a/sqrt(sum(a^2))
b <- rnorm(7)
b <- b/sqrt(sum(b^2))
A <- rotation(a, b)
A
a ; b
    %*% t(A)
```

```
Saddlepoint approximations of the Fisher-Bingham distributions
                        Saddlepoint approximations of the Fisher-Bingham distributions
```


Description

It calculates the logarithm of the normalising constant of the Fisher-Bingham distribution.

Usage

fb.saddle(gam, lam)

Arguments

gam A numeric vector containing the parameters of the Fisher part.
lam All the eigenvalues of the Bingham part. Not just the non zero ones.

Details

It calculate the three approximations given by Kume and Wood (2005) and it uses the FisherBingham parametrization of that paper.

Value

A list including:
first oder The first order approximation
second oder The second order approximation
third oder The third order approximation

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kume Alfred and Wood Andrew T.A. (2005). Saddlepoint approximations for the Bingham and Fisher-Bingham normalizing constants. Biometrika, 92(2):465-476

See Also

```
kent.logcon, rfb, kent.mle, rbingham
```


Examples

```
p <- 3 ; k <- 1
0.5*p * log(2 * pi) - (p/2 - 1) * log(k) + log(besselI (k, p/2 - 1, expon.scaled = TRUE) ) + k
## normalising constant of the
## von Mises-Fisher distribution
fb.saddle( c(0, k, 0), c(0, 0, 0) ) ## saddlepoint approximation
## Normalising constant of the Kent distribution
fb.saddle( c(0, 10, 0), c(0, -2, 2) )
kent.logcon(10, 2)
```

Simulation from a Bingham distribution using any symmetric matrix A
Simulation from a Bingham distribution using any symmetric matrix A

Description

It simulates random values from a Bingham distribution with any given symmetric matrix.

Usage

rbingham(n, A)

Arguments

n
The sample size.
A
A symmetric matrix.

Details

The eigenvalues are fist calcualted and then Chris Fallaize and Theo Kypraio's code (f.rbing) is used. The resulting simulated data anre then right multiplied by the eigenvectors of the matrix A.

Value

A matrix with the siumlated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2): 291-301.
Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

Fallaize C. J. and Kypraios T. (2016). Exact bayesian inference for the Bingham distribution. Statistics and Computing, 26(1): 349-360. http://arxiv.org/pdf/1401.2894v1.pdf

See Also

f.rbing, rfb, rvmf, rkent

Examples

A <- cov(iris[, 1:3])
x <- rbingham(100, A)

Simulation from a Matrix Fisher distribution on SO(3)
Simulation from a Matrix Fisher distribution on SO(3)

Description

It simulates random samples (rotation matrices) from a Matrix Fisher distribution with any given parameter matrix, F (3x3).

Usage

rmatrixfisher(n, F)

Arguments

n	the sample size.
F	An arbitrary 3×3 matrix.

Details

Firstly corresponding Bingham parameter A is determined for a given Matrix Fisher parameter F using John Kent et al.'s (2013) algorithm and then Bingham samples for parameter A are generated using rbingham code. Finally convert Bingham samples to Matrix Fisher samples according to the Kent (2013) transformation.

Value

An array with simulated rotation matrices.

Author(s)

Anamul Sajib and Chris Fallaize.
R implementation and documentation: Anamul Sajib sajibstat@du.ac.bd and Chris Fallaize.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2): 291-301.
Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

```
See Also
matrixfisher.mle
```


Examples

```
F <- matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) / 10 ### An arbitrary F matrix
a <- rmatrixfisher(10, F)
```

Simulation of random values from a Bingham distribution
Simulating from a Bingham distribution

Description

It simulates from a Bingham distribution using the code suggested by Kent et al. (2013).

Usage

f.rbing(n, lam, fast = FALSE)

Arguments

n Sample size.
lam Eigenvalues of the diagonal symmetric matrix of the Bingham distribution.
fast If you want a fast, efficient simulation set this to TRUE.

Details

The user must have calculated the eigenvalues of the diagonal symmetric matrix of the Bingham distribution. The function accepts the $\mathrm{q}-1$ eigenvalues only. This means, that the user must have subtracted the lowest eigenvalue from the rest and give the non zero ones. The function uses rejection sampling and it was written by Chris Fallaize and Theo Kypraios (University of Nottingham) and kindly offered. Any questions on the code can be addressed to one of the two aforementioned people. It is slightly different than the one Kent et al. (2013) suggests.

Value

A list including:
$X \quad$ The simulated data.
avtry The estimate of M in the rejection sampling. The average number of simulated values before a value is accepted. If the argument fast is set to TRUE this information will not appear.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2): 291-301.
Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf
Fallaize C. J. and Kypraios T. (2016). Exact bayesian inference for the Bingham distribution. Statistics and Computing, 26(1): 349-360. http://arxiv.org/pdf/1401.2894v1.pdf

See Also

rfb, rvmf, rbingham, rkent, link\{rsop\}

Examples

```
x <- f.rbing( 100, c(1, 0.6, 0.1) )
x
```

```
Simulation of random values from a mixture of von Mises-Fisher distributions
    Simulation of random values from a mixture of von Mises-Fisher dis-
    tributions
```


Description

The function simulates random values simulation from a given mixture of von Mises-Fisher distributions.

Usage

rmixvmf(n, probs, mu, k)

Arguments

n
k
probs This is avector with the mixing probability of each group.
$\mathrm{mu} \quad$ A matrix with the mean direction of each group.
The sample size.

A vector with the concentration parameter of each group.

Details

The function simulates random values simulation from a given mixture of von Mises-Fisher distributions using the rvmf function.

Value

A list including:
id An indicator of the group of each simulated vector.
x
A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von MisesFisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

mixvmf.mle, rvmf, bic.mixvmf

Examples

```
k <- runif(3, 4, 20)
probs <- c(0.2, 0.5, 0.3)
mu <- matrix(rnorm(9), ncol = 3)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, probs, mu, k)$x
bic.mixvmf(x, 5)
```

> Simulation of random values from a spherical Fisher-Bingham distribution Simulation of random values from a spherical Fisher-Bingham distribution

Description

Simulation of random values from a spherical Fisher-Bingham distribution.

Usage

$r f b(n, k, m, A)$

Arguments

n The sample size.
$\mathrm{k} \quad$ The concentraion parameter (Fisher part). It has to be greater than 0 .
$\mathrm{m} \quad$ The mean direction (Fisher part).
A A symmetric matrix (Bingham part).

Details

Random values from a spherical Fisher-Bingham distribution are generated. This functions included the option of simulating from a Kent distribution also.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2): 291-301.

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf
Fallaize C. J. and Kypraios T. (2016). Exact bayesian inference for the Bingham distribution. Statistics and Computing, 26(1): 349-360. http://arxiv.org/pdf/1401.2894v1.pdf

See Also

rbingham, rvmf, rkent, f.rbing

Examples

```
k <- 15
mu <- rnorm(3)
mu <- mu / sqrt( sum(mu^2) )
A <- cov(iris[, 1:3])
x<- rfb(50, k, mu, A)
vmf.mle(x) ## fits a von Mises-Fisher distribution to the simulated data
## Next we simulate from a Kent distribution
A <- diag( c(-5, 0, 5) )
n <- 100
x <- rfb(n, k, mu, A) ## data follow a Kent distribution
kent.mle(x) ## fits a Kent distribution
vmf.mle(x) ## fits a von Mises-Fisher distribution
A <- diag( c(5, 0, -5) )
n <- 100
x <- rfb(n, k, mu, A) ## data follow a Kent distribution
kent.mle(x) ## fits a Kent distribution
vmf.mle(x) ## fits a von Mises-Fisher distribution
```

Simulation of random values from a spherical Kent distribution Simulation of random values from a spherical Kent distribution

Description

Simulation of random values from a spherical Kent distribution.

Usage

rkent (n, k, m, b)

Arguments

n
$\mathrm{k} \quad$ The concentraion parameter κ. It has to be greater than 0 .
$\mathrm{m} \quad$ The mean direction (Fisher part).
b The ovalness parameter, β.

Details

Random values from a Kent distribution on the sphere are generated. The function generates from a spherical Kent distribution using rfb with an arbitrary mean direction and then rotates the data to have the desired mean direction.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2): 291-301.

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

See Also

rfb, rbingham, rvmf, f.rbing

Examples

```
k <- 15
mu <- rnorm(3)
mu <- mu / sqrt( sum(mu^2) )
A <- diag( c(-5, 0, 5) )
x <- rfb(500, k, mu, A)
kent.mle(x)
y <- rkent(500, k, mu, A[3, 3])
kent.mle(y)
```

Simulation of random values from rotationally symmetric distributions Simulation of random values from rotationally symmetric distributions

Description

Simulation of random values from rotationally symmetric distributions. The data can be spherical or hyper-spherical.

Usage

$\operatorname{rvmf}(\mathrm{n}, \mathrm{mu}, \mathrm{k})$
riag(n, mu)
rspcauchy(n, mu, rho)
rpkbd(n, mu, rho)

Arguments

n
mu A unit vector showing the mean direction for the von Mises-Fisher or the spherical Cauchy distribution. The mean vector of the Independent Angular Gaussian distribution does not have to be a unit vector.
k
The concentration parameter (κ) of the von Mises-Fisher distribution. If $\kappa=0$, random values from the spherical uniform will be drwan.
rho \quad The ρ parameter of the spherical Cauchy or the Poisson kernel based distribution.

Details

The von Mises-Fisher uses the rejection smapling suggested by Wood (1994). For the Independent Angular Gaussian, values are generated from a multivariate normal distribution with the given mean vector and the identity matrix as the covariance matrix. Then each vector becomes a unit vector. For the spherical Cauchy distribution the algortihm is described in Kato and McCullagh (2020) and for the Poisson kernel based distribution, it is described in Sablica, Hornik and Leydold (2023).

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Wood A.T.A. (1994). Simulation of the von Mises Fisher distribution. Communications in StatisticsSimulation and Computation, 23(1): 157-164.

Dhillon I. S. and Sra S. (2003). Modeling data using directional distributions. Technical Report TR-03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from the Mobius transformations. Bernoulli, 26(4): 3224-3248. https://arxiv.org/pdf/1510.07679.pdf

Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution. Electronic Journal of Statistics, 17(2): 2180-2209.

See Also

```
vmf.mle, iag.mle rfb, racg, rvonmises, rmixvmf
```


Examples

```
m <- rnorm(4)
m <- m/sqrt(sum(m^2))
x <- rvmf(100, m, 25)
m
vmf.mle(x)
```

Simulation of random values from some circular distributions
Simulation of random values from some circular distributions

Description

Simulation of random values from some circular distributions.

Usage

```
rvonmises( \(\mathrm{n}, \mathrm{m}, \mathrm{k}\), rads = TRUE)
rwrapcauchy ( \(\mathrm{n}, \mathrm{m}\), rho, rads = TRUE)
rspml(n, mu, rads = TRUE)
rcircbeta(n, m, a, b, rads = TRUE)
rcircpurka(n, m, a, rads = TRUE)
rcircexp(n, lambda, rads = TRUE)
rcipc(n, mu = NULL, omega, g, rads = TRUE)
\(\operatorname{rgcpc}(\mathrm{n}, \mathrm{mu}=\mathrm{NULL}\), omega, g, rho, rads \(=\) TRUE)
```


Arguments

n
m
mu
omega
k
g
rho For the wrapped Cauchy distribution, this is the ρ parameter. For the GCPC distribution this is the eigenvalue parameter, or covariance determinant.

The α parameter of the beta distribution.
The β parameter of the beta distribution.
The λ parameter of the circular (wrapped) exponential distribution.
If the mean angle is expressed in radians, this should be TRUE and FALSE otherwise. The simulated data will be expressed in radians or degrees depending on what the mean angle is expressed.

Details

For the von Mises distribution, the mean direction is transformed to the Euclidean coordinates (i.e. unit vector) and then the rvmf function is employed. It uses a rejection smapling as suggested by Andrew Wood in 1994. We have mentioned the description of the algorithm as we found it in Dhillon and Sra in 2003. Finally, the data are transformed to radians or degrees.
For the wrapped Cauchy and wrapped exponential distributions the function generates Cauchy or exponential values x and then wrapps them around the circle $x=x(\bmod 2 \pi)$. For the circular beta the function has some extra steps (see Zheng Sun's master thesis).
For the CIPC and GCPC distributions, data are generated from the bivariate Cauchy distribution, normalized to have unit norm and then transformed to angles.

Value

A vector with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Wood A.T.A. (1994). Simulation of the von Mises Fisher distribution. Communications in StatisticsSimulation and Computation, 23(1): 157-164.
Dhillon I.S. and Sra S. (2003). Modeling data using directional distributions. Technical Report TR-03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?
Zheng Sun (2006). Comparing measures of fit for circular distributions. Master thesis, University of Victoria. https://dspace.library.uvic.ca/bitstream/handle/1828/2698/zhengsun_master_thesis.pdf;sequence=1
Lai M. (1994). Some results in the statistical analysis of directional data. Master thesis, University of Hong Kong.
Presnell B., Morrison S.P. and Littell R.C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.
Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83
Jammalamadaka S.R. and Kozubowski T.J. (2003). A new family of circular models: The wrapped Laplace distributions. Advances and Applications in Statistics, 3(1): 77-103.

See Also

circ.summary, rvmf, racg

Examples

```
x <- rvonmises(100, 2, 25, rads = TRUE)
circ.summary(x, rads = TRUE)
```

```
Simulation of random values from the ESAG distribution
    Simulation of random values from the ESAG distribution
```


Description

Simulation of random values from the ESAG distribution.

Usage

resag (n, mu, gam)

Arguments

$\mathrm{n} \quad$ A number; how many vectors you want to generate.
$\mathrm{mu} \quad$ The mean vector the ESAG distribution, a vector in R^{3}.
gam The two γ parameters of the ESAG distribution.

Details

A random sample from the ESAG distribution is generated. In case the γ_{s} are zero, the sample is drawn from the Independent Angular Gaussian (or projected normal).

Value

An $n \times 3$ matrix with the simulated unit vectors.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing, 28(3):689-697.

See Also

esag.mle, desag, spml.mle, acg.mle, circ.summary

Examples

```
m <- colMeans( as.matrix( iris[,1:3] ) )
y <- resag(1000, m, c(1, 0.5) )
esag.mle(y)
```

```
Simulation of random values from the SESPC distribution
                        Simulation of random values from the SESPC distribution
```


Description

Simulation of random values from the SESPC distribution

Usage

rsespc (n, mu, theta)

Arguments

n	A number; how many vectors you want to generate.
mu	The mean vector the SESPC distribution, a vector in R^{3}.
theta	The two θ parameters of the SESPC distribution.

Details

A random sample from the SESPC distribution is generated. In case the θ_{s} are zero, the sample is drawn from the SIPC (spherical independent projected Cauchy) distribution.

Value

An $n \times 3$ matrix with the simulated unit vectors.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

```
sespc.mle, dsespc
```


Examples

```
m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rsespc(1000, m, c(1, 0.5) )
sespc.mle(y)
```

```
Spherical and hyper-spherical distance correlation
Spherical and hyper-spherical distance correlation
```


Description

Spherical and hyper-spherical distance correlation.

Usage

spher.dcor(x, y)

Arguments

x
A matrix with directional data, i.e. unit vectors.
$y \quad$ A matrix with directional data, i.e. unit vectors.

Details

The distance correlation between two spherical or hyper-spherical variables is computed.

Value

A list including:
dcov The distance covariance.
dvarX The distance variance of x.
dvary The distance variance of Y.
dcor The distance correlation.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

See Also

circ.dcor

Examples

```
    y <- rvmf(50, rnorm(3), 4)
    x <- rvmf(50, rnorm(3), 4)
    spher.dcor(x, y)
```

Spherical and hyperspherical median
Fast calculation of the spherical and hyperspherical median

Description

It calculates, very fast, the (hyper-)spherical median of a sample.

Usage

mediandir(x)
mediandir_2(x)

Arguments

x
The data, a numeric matrix with unit vectors.

Details

The "mediandir" employes a fixed poit iterative algorithm stemming from the first derivative (Cabrera and Watson, 1990) to find the median direction as described by Fisher (1985) and Fisher, Lewis and Embleton (1987). In the big samples this is much much faster than "mediandir_2", since the search is based on iterations.

Value

The median direction.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Fisher N. I. (1985). Spherical medians. Journal of the Royal Statistical Society. Series B, 47(2): 342-348.
Fisher N. I., Lewis T. and Embleton B. J. (1987). Statistical analysis of spherical data. Cambridge university press.
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also

```
nsmedian, vmf.mle, kent.mle
```


Examples

```
m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(100, m, 10)
mediandir(x)
mediandir_2(x)
nsmedian(x)
```

```
Spherical regression using rotationally symmetric distributions
                        Spherical regression using rotationally symmetric distributions
```


Description

Spherical regression using rotationally symmetric distributions.

Usage

```
iag.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
vmf.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
sipc.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
```


Arguments

$y \quad$ A matrix with 3 columns containing the (unit vector) spherical data.
$x \quad$ The predictor variable(s), they can be continnuous, spherical, categorical or a mix of them.
con Do you want the constant term in the regression?
xnew If you have new data use it, otherwise leave it NULL.
tol A tolerance value to decide when to stop the successive optimaizations.

Details

The second parametrization of the projected normal and of the von Mises-Fisher regression (Paine et al., 2020) is applied. The same is true for the SIPC distribution. For more information see the paper by Paine et al. (2020).

Value

A list including:
loglik The log-likelihood of the regression model.
fit This is a measure of fit of the estimated values, defined as $\sum_{i=1}^{n} y_{i}^{T} \hat{y}_{i}$. This appears if the argument "xnew" is NULL.
beta The beta coefficients.
seb The standard error of the beta coefficients.
ki The norm of the fitted values. In the von Mises-Fisher regression this is the concentration parameter of each observation. In the projected normal this are the norms of the fitted values before being projected onto the sphere. This is returned if the argument "xnew" is NULL.
est The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values for the "xnew" you supplied will be returned.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

P. J. Paine, S. P. Preston, M. Tsagris and Andrew T. A. Wood (2020). Spherical regression models with general covariates and anisotropic errors. Statistics and Computing, 30(1): 153-165. https://link.springer.com/content/pdf/10.1007
Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

See Also

```
esag.reg, esag.mle, vmf.mle, spml.reg
```


Examples

```
y <- rvmf(150, rnorm(3), 5)
a1 <- iag.reg(y, iris[, 4])
a2 <- iag.reg(y, iris[, 4:5])
b1 <- vmf.reg(y, iris[, 4])
b2 <- vmf.reg(y, iris[, 4:5])
```

```
Spherical regression using the ESAG distribution
    Spherical regression using the ESAG distribution
```


Description

Spherical regression using the ESAG distribution.

Usage

esag.reg(y, x, con = TRUE, xnew = NULL, lati = 10, longi = 10, tol = 1e-06)

Arguments

$y \quad$ A matrix with 3 columns containing the (unit vector) spherical data.
x
The predictor variable(s), they can be continnuous, spherical, categorical or a mix of them.
con Do you want the constant term in the regression?
xnew If you have new data use it, otherwise leave it NULL.
lati A positive number determing the range of degrees to move left and right from the latitude center. This number and the next determine the grid of points to search for the Q matrix described in Paine et al. (2020).
longi A positive number determing the range of degrees to move up and down from the longitude center. This number and the previous determine the grid of points to search for the Q matrix described in Paine et al. (2020).
tol A tolerance value to decide when to stop the successive optimizations.

Details

The second parametrization of the ESAG regression (Paine et al., 2020) is applied.

Value

A list including:

loglik	The log-likelihood of the regression model.
param	A vector with three numbers. A measure of fit of the estimated values, defined as $\sum_{i=1}^{n} y_{i}^{T} \hat{y}_{i}$. This appears if the argument "xnew" is NULL. The $\rho \in(0,1]$ (smallest eigenvalue of the covariance matrix)), and the angle of rotation psi.
gam	The two γ parameters.
beta	The beta coefficients.
seb	The standard error of the beta coefficients.
est	The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values for the "xnew" you supplied will be returned.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

P. J. Paine, S. P. Preston, M. Tsagris and Andrew T. A. Wood (2020). Spherical regression models with general covariates and anisotropic errors. Statistics and Computing, 30(1): 153-165. https://link.springer.com/content/pdf/10.1007

See Also

```
esag.mle, iag.reg, spml.reg
```


Examples

```
y <- resag( 30, rnorm(3), c(1, 1) )
## this is a small example to pass CRAN's check because the default argument values
## of lati and longi require many seconds
a <- esag.reg(y, iris[1:30, 4], lati = 2, longi = 2)
```

Spherical regression using the SESPC distribution Spherical regression using the SESPC distribution

Description

Spherical regression using the SESPC distribution.

Usage

sespc.reg(y, x, con $=$ TRUE, x new $=$ NULL, lati $=10$, longi $=10$, tol $=1 \mathrm{e}-06$)

Arguments

$y \quad$ A matrix with 3 columns containing the (unit vector) spherical data.
$x \quad$ The predictor variable(s), they can be continnuous, spherical, categorical or a mix of them.
con Do you want the constant term in the regression?
xnew If you have new data use it, otherwise leave it NULL.
lati A positive number determing the range of degrees to move left and right from the latitude center. This number and the next determine the grid of points to search for the Q matrix described in Tsagris and Alzeley (2023).
longi A positive number determing the range of degrees to move up and down from the longitude center. This number and the previous determine the grid of points to search for the Q matrix described in Tsagris and Alzeley (2023).
tol A tolerance value to decide when to stop the successive optimizations.

Details

Regression based on the SESPC distribution (Tsagris and Alzeley, 2023) is applied.

Value

A list including:
loglik The log-likelihood of the regression model.
param A vector with three numbers. A measure of fit of the estimated values, defined as $\sum_{i=1}^{n} y_{i}^{T} \hat{y}_{i}$. This appears if the argument "xnew" is NULL. The $\rho \in(0,1]$ (smallest eigenvalue of the covariance matrix)), and the angle of rotation $p s i$.
theta The two θ parameters.
beta The beta coefficients.
seb The standard error of the beta coefficients.
est The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values for the "xnew" you supplied will be returned.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alzeley O. (2023). Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

See Also

```
esag.mle, iag.reg, spml.reg
```


Examples

```
y <- rsespc( 150, rnorm(3), c(1, 1) )
## this is a small example to pass CRAN's check because the default argument values
## of lati and longi require many seconds
a <- sespc.reg(y, iris[, 4], lati = 2, longi = 2)
```

Spherical-spherical correlation
Spherical-spherical correlation

Description

Correlation between two spherical variables.

Usage

spher.cor (x, y)

Arguments

$x \quad$ A spherical variable. A matrix with thre columns, each row is a unit vector.
$y \quad$ A spherical variable. A matrix with thre columns, each row is a unit vector.

Details

A very similar to the classical correlation is calcualted. In addition, a hypothesis test for no correlation is performed. Note, that this is a squared correlation actually, so negative values will never be returned.

Value

A vector including:
R-squared The value of the squared correlation.
p-value The p-value of the no correlation hypothesis testing.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kanti V. Mardia and Peter E. Jupp. Directional statistics, pg. 254-255.

See Also

spher.reg, vmf.mle, circ.cor1, circ.cor2

Examples

```
x <- rvmf(100, rnorm(3), 10)
y <- rvmf(100, rnorm(3), 10)
spher.cor(x, y)
```

```
Spherical-spherical regression
    Spherical-Spherical regression
```


Description

It performs regression when both the dependent and independent variables are spherical.

Usage

spher.reg(y, x, rads = FALSE)

Arguments

y
x
rads If the data are expressed in latitude and longitude then it matter to know if they are in radians or degrees. If they are in radians, then this should be TRUE and FALSE otherwise. If the previous argument, euclidean, is TRUE, this one does not matter what its value is.

Details

Spherical regression as proposed by Chang (1986) is implemented. If the estimated rotation matrix has a determinant equal to -1 , singualr value decomposition is performed and the last unit vector of the second matrix is multiplied by -1 .

Value

A list including:
A
The estimated rotation matrix.
fitted The fitted values in Euclidean coordinates (unit vectors).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907-924.

See Also

```
spher.cor, spml.reg, circ.cor1, circ.cor2, sphereplot
```


Examples

```
mx <- rnorm(3)
mx <- mx/sqrt( sum(mx^2) )
my <- rnorm(3)
my <- my/sqrt( sum(my^2) )
x <- rvmf(100, mx, 15)
A <- rotation(mx, my)
y<- x %*% t(A)
mod <- spher.reg(y, x)
A
mod$A ## exact match, no noise
y<- x %*% t(A)
y <- y + rvmf(100, colMeans(y), 40)
mod <- spher.reg(y, x)
A
mod$A ## noise added, more relistic example
```

```
Summary statistics for circular data
    Summary statistics for circular data
```


Description

It produces a few summary measures for circular data.

Usage

circ.summary(u, rads = FALSE, fast $=$ FALSE, tol $=1 \mathrm{e}-07$, plot $=$ FALSE)

Arguments

u
rads If the data are in rads, then this should be TRUE, otherwise FALSE.
fast A boolean variable to do a faster implementation.
tol The tolerance level to stop the Newton-Raphson algorithm for finding kappa.
plot If you want to see the data plotted on a cicrle make this TRUE.

Details

It returns the circular mean, mean resultant length, variance, standard deviation and concentration parameter. So, basically it returns the estimated values of the parameters of the von Mises distribution.

Value

If fast $=$ FALSE a list including all the following. If fast $=$ TRUE less items are returned.
mesos The circular mean direction.
confint The 95% confidence interval for the circular mean direction.
kappa The concentration parameter.
MRL The mean resultant length.
circvariance The circular variance.
circstd The circular standard deviation.
loglik The log-likelihood of the fitted von Mises distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

spml.mle, rvonmises, vm.kde, vmf.mle, group.vm, hcf.circaov

Examples

```
x <- rvonmises(50, 2.5, 15, rads = TRUE)
circ.summary(x, rads = TRUE, plot = TRUE)
```

```
Summary statistics for grouped circular data
    Summary statistics for grouped circular data
```


Description

It produces a few summary measures for grouped circular data.

Usage

group.vm(group, fi, rads = FALSE)

Arguments

group A matrix denoting the classes. Each row consists of two numbers, the lower and upper points of each class.
fi The frequency of each class of data.
rads If the data are in rads, then this should be TRUE, otherwise FALSE.

Details

It returns the circular mean, mean resultant length, variance, standard deviation and concentration parameter. So, basically it returns the estimated values of the parameters of the von Mises distribution. The mena resultant length though is group corrected.

Value

A list including:

mesos	The circular mean direction.
confint	The 95\% confidence interval for the circular mean direction.
kappa	The concentration parameter.
MRL	The mean resultant length.
circvariance	The circular variance.
circstd	The circular standard deviation.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Pewsey Arthur, Markus Neuhauser and Graeme D. Ruxton (2013). Circular statistics in R. Oxford University Press.

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

circ.summary, rvonmises, vm.kde

Examples

```
x <- rvonmises(200, 3, 10)
a <- circ.summary (x, rads = TRUE, plot = FALSE)
group <- seq(min(x) - 0.1, max (x) + 0.1, length = 6)
y <- cut(x, breaks = group, length = 6)
group <- matrix( c( group[1], rep(group[2:5], each = 2), group[6]), ncol = 2, byrow = TRUE)
fi <- as.vector( table(y) )
b <- group.vm(group, fi, rads = TRUE)
a
b
```

Test for a given mean direction
Test for a given mean direction

Description

A log-likelihood ratio test for testing whether the sample mena direction is equal to some predefined one.

Usage

meandir.test(x, mu, B = 999)

Arguments

$x \quad$ A matrix with the data, unit vectors.
mu A unit vector with the hypothesized mean direction.
B A number either 1, so no bootstrap calibration is performed or more than 1, so bootstrap calibration is performed.

Details

The log-likelihood ratio test is employed.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".
p .value \quad The p -value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data.name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

```
vmf.mle, kent.mle, rayleigh
```


Examples

```
mu <- rnorm(5)
mu <- mu / sqrt( sum(mu^2) )
x <- rvmf(100, mu, 10)
meandir.test(x, mu, 1)
meandir.test(x, mu, 499)
```

Test for equality of concentration parameters for spherical data
Test for equality of concentration parameters for spherical data

Description

This tests the equality of concentration parameters for spherical data only.

Usage

spherconc.test(x, ina)

Arguments

$\begin{array}{ll}x & \text { A matrix with the data in Euclidean coordinates, i.e. unit vectors } \\ \text { ina } & \text { A variable indicating the grouping }\end{array}$
ina A variable indicating the groupings of the observations.

Details

The test is designed for spherical data only.

Value

A list including:
mess A message stating the value of the mean resultant and which test statistic was used, U1, U2 or U3.
res A vector containing the test statistic and its p-value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Kanti V. Mardia and Peter E. Jupp. Directional statistics, pg. 226-227.

See Also

het.aov, lr.aov, embed.aov, hcf.aov, conc.test, sphereplot

Examples

```
x <- rvmf(100, rnorm(3), 15)
ina <- rep(1:4, each = 25)
spherconc.test(x, ina)
```

Test of equality of the concentration parameters for circular data
A test for testing the equality of the concentration parameter among g
samples, where $g>=2$ for ciruclar data

Description

A test for testing the equality of the concentration parameter among g samples, where $g>=2$ for ciruclar data.

Usage

conc.test(u, ina, rads = FALSE)

Arguments

u A numeric vector containing the values of all samples.
ina A numerical variable or factor indicating the groups of each value.
rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

This test works for circular data.

Value

A list including:

mess	A message informing the use of the test statistic used.
res	A numeric vector containing the value of the test statistic and its associated p-
	value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

embed.circaov, hcf.circaov, lr.circaov, het.circaov

Examples

```
x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4, each = 25)
conc.test(x, ina, rads = TRUE)
```

The k-nearest neighbours using the cosinus distance The k-nearest neighbours using the cosinus distance

Description

The k-nearest neighbours using the cosinus distance.

Usage

cosnn(xnew, x, k = 5, index = FALSE, rann = FALSE)

Arguments

xnew	The new data whose k-nearest neighbours are to be found.
x	The data, a numeric matrix with unit vectors.
k	The number of nearest neighbours, set to 5 by default. It can also be a vector with many values.
index	If you want the indices of the closest observations set this equal to TRUE. rann
If you have large scale datasets and want a faster k-NN search, you can use kd- trees implemented in the R package "RANN". In this case you must set this argument equal to TRUE.	

Details

The shortest distances or the indices of the k-nearest neighbours using the cosinus distance are returned.

Value

A matrix with the shortest distance of each xnew from x, if index is FALSE, or the indices of the nearest neighbours of each xnew from x, if index is TRUE.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4): 467-491.

See Also

dirknn, dirknn.tune

Examples

```
xnew <- rvmf(10, rnorm(3), 5)
x <- rvmf(50, rnorm(3), 5)
a <- cosnn(xnew, x, k = 5)
b <- cosnn(xnew, x, k = 5, index = TRUE)
```

```
Transform unit vectors to angular data
    Transform unit vectors to angular data
```


Description

Transform unit vectors to angular data.

Usage

etoa(x)

Arguments

x

A numerical matrix with directional data, i.e. unit verctors.

Details

from the Euclidean coordinates the data are mapped to angles, expressed in rads.

Value

A list including:
mu A matrix with angles. The number of columns is one less than that of the original matrix.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

https://en.wikipedia.org/wiki/N-sphere\#Spherical_coordinates

See Also

vmnb.pred, weibull.nb

Examples

```
x <- rvmf(10, rnorm(3), 5)
y <- etoa(x)
```

Tuning of the bandwidth parameter in the von Mises kernel
Tuning of the bandwidth parameter in the von Mises kernel for circular data

Description

Tuning of the bandwidth parameter in the von Mises kernel for circular data. Cross validation is used.

Usage

vmkde.tune(u, low $=0.1$, up $=1$, rads $=$ TRUE)

Arguments

u
low
up
rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

Tuning of the bandwidth parameter in the von Mises kernel for circula data via cross validation. The procedure is fast because an optimiser is used.

Value

A vector including two elements:
Optimal h The best H found.
cv The value of the maximised pseudo-likelihood.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Taylor C.C. (2008). Automatic bandwidth selection for circular density estimation. Computational Statistics \& Data Analysis, 52(7), 3493-3500.
Wand M.P. and Jones M.C. (1994). Kernel smoothing. CrC Press.

See Also

vm.kde, vmfkde.tune, vmf.kde

Examples

```
u <- rvonmises(100, 2.4, 10, rads = TRUE)
```

vmkde.tune(u)

Tuning of the bandwidth parameter in the von Mises-Fisher kernel
Tuning of the bandwidth parameter in the von Mises-Fisher kernel for (hyper-)spherical data

Description

Tuning of the bandwidth parameter in the von Mises-Fisher kernel for (hyper-)spherical data whit cross validation.

Usage

vmfkde.tune(x, low = 0.1, up = 1)

Arguments

x
low
up

A matrix with the data in Euclidean cordinates, i.e. unit vectors.
The lower value of the bandwdith to search.
The upper value of the bandwdith to search.

Details

Fast tuning of the bandwidth parameter in the von Mises-Fisher kernel for (hyper-)spherical data via cross validation.

Value

A vector including two elements:

Optimal h The best H found.
cv The value of the maximised pseudo-likelihood.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Garcia P.E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. Electronic Journal of Statistics, 7, 1655-1685.

Wand M.P. and Jones M.C. (1994). Kernel smoothing. Crc Press.

See Also

vmf.kde, vmf.kerncontour, vm.kde, vmkde.tune

Examples

```
x <- rvmf(100, rnorm(3), 15)
vmfkde.tune(x)
```

Tuning of the $\mathrm{k}-\mathrm{NN}$ algorithm using the arc cosinus distance
$k-N N$ algorithm using the arc cosinus distance. Tuning the k neigbours

Description

It estimates the percentage of correct classification via an m-fold cross validation.

Usage

dirknn.tune(ina, $x, k=2: 10$, mesos $=$ TRUE, nfolds $=10$, folds = NULL, parallel $=$ FALSE, stratified $=$ TRUE, seed $=$ NULL, rann $=$ FALSE, graph $=$ FALSE)

Arguments

x
ina
nfolds
k
mesos A boolean variable used only in the case of the non standard algorithm (type="NS"). Should the average of the distances be calculated (TRUE) or not (FALSE)? If it is FALSE, the harmonic mean is calculated.
folds Do you already have a list with the folds? If not, leave this NULL.
parallel If you want the standard -NN algorithm to take place in parallel set this equal to TRUE.
stratified Should the folds be created in a stratified way? i.e. keeping the distribution of the groups similar through all folds?
seed If seed is TRUE, the results will always be the same.
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "RANN". In this case you must set this argument equal to TRUE.
graph If this is TRUE a graph with the results will appear.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observations. The new observation is allocated to the most frequent seen group. The non standard algorithm is to calculate the classical mean or the harmonic mean of the k nearest observations for each group. The new observation is allocated to the group with the smallest mean distance.
We have made an eficient (not very much efficient though) memory allocation. Even if you have hundreds of thousands of observations, the computer will not clush, it will only take longer. Instead of calculate the distance matrix once in the beginning we calcualte the distances of the out-of-sample observations from the rest. If we calculated the distance matrix in the beginning, once, the resulting matrix could have dimensions thousands by thousands. This would not fit into the memory. If you have a few hundres of observations, the runtime is about the same (maybe less, maybe more) as calculating the distance matrix in the first place.

Value

A list including:
per The average percent of correct classification across the neighbours.
percent The estimated (optimal) percent of correct classification.
runtime The run time of the algorithm. A numeric vector. The first element is the user time, the second element is the system time and the third element is the elapsed time.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467-491.

See Also

dirknn, vmf.da, mixvmf.mle

Examples

```
k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
da <- rmixvmf(200, prob, mu, k)
x <- da$x
ina <- da$id
dirknn.tune(ina, x, k = 2:6, nfolds = 5, mesos = TRUE)
dirknn.tune(ina, x, k = 2:6, nfolds = 10, mesos = TRUE)
```

Tuning of the $\mathrm{k}-\mathrm{NN}$ regression
Tuning of the k-NN regression with Euclidean or (hyper-)spherical response and or predictor variables

Description

Tuning of the k-NN regression with Euclidean or (hyper-)spherical response and or predictor variables. It estimates the percentage of correct classification via an m -fold cross valdiation. The bias is estimated as well using the algorithm suggested by Tibshirani and Tibshirani (2009) and is subtracted.

Usage

knnreg.tune ($\mathrm{y}, \mathrm{x}, \mathrm{nfolds}=10, \mathrm{~A}=10$, ncores $=1$, res $=$ "eucl", estim = "arithmetic", folds = NULL, seed = NULL, graph = FALSE)

Arguments

y The currently available data, the response variables values. A matrix with either euclidean (univariate or multivariate) or (hyper-) spherical data. If you have a circular response, say u, transform it to a unit vector via $(\cos (u), \sin (u))$.
x
The currently available data, the predictor variables values. A matrix with either euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a circular response, say u, transform it to a unit vector via $(\cos (u), \sin (u))$.
nfolds How many folds to create?
A
The maximum number of nearest neighbours, set to 10 by default, starting from the 2nd nearest neighbor.
ncores How many cores to use. This is taken into account only when the predictor variables are spherical.
res The type of the response variable. If it is Euclidean, set this argument equal to "res". If it is a unit vector set it to res="spher".
estim Once the k observations whith the smallest distance are discovered, what should the prediction be? The arithmetic average of the corresponding y values be used estim="arithmetic" or their harmonic average estim="harmonic".
folds Do you already have a list with the folds? If not, leave this NULL.
seed You can specify your own seed number here or leave it NULL.
graph If this is TRUE a graph with the results will appear.

Details

Tuning of the k-NN regression with Euclidean or (hyper-)spherical response and or predictor variables. It estimates the percentage of correct classification via an m-fold cross valdiation. The bias is estimated as well using the algorithm suggested by Tibshirani and Tibshirani (2009) and is subtracted. The sum of squares of prediction is used in the case of Euclidean responses. In the case of spherical responses the $\sum_{i} \hat{y}_{i}^{T} y_{i}$ is calculated.

Value

A list including:
crit The value of the criterion to minimise/maximise for all values of the nearest neighbours.
best_k The best value of the nearest neighbours.
performance The bias corrected optimal value of the criterion, along wit the estimated bias. For the case of Euclidean reponse this will be higher than the crit and for the case or spherical responses it will be lower than crit.
runtime The run time of the algorithm. A numeric vector. The first element is the user time, the second element is the system time and the third element is the elapsed time.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

knn.reg, spher.reg, dirknn.tune

Examples

```
y <- iris[, 1]
x<- iris[, 2:4]
x <- x/ sqrt( rowSums(x^2) ) ## Euclidean response and spherical predictors
knnreg.tune(y, x, A = 5, res = "eucl", estim = "arithmetic")
y <- iris[, 1:3]
y <- y/ sqrt( rowSums(y^2) ) ## Spherical response and Euclidean predictor
x <- iris[, 2]
knnreg.tune(y, x, A = 5, res = "spher", estim = "arithmetic")
```

Uniformity test for circular data
Uniformity tests for circular data.

Description

Hypothesis tests of uniformity for circular data.

Usage

kuiper(u, rads = FALSE, R = 1)
watson(u, rads $=$ FALSE, $R=1$)

Arguments

u
A numeric vector containing the circular data, which cna be expressed in degrees or radians.
rads A boolean variable. If the data are in radians, put this TRUE. If the data are expressed in degrees make this FALSE.
R
If $\mathrm{R}=1$ the asymptotic p -value will be calcualted. If R is greater than 1 the bootstrap p-value is returned.

Details

The high concentration (hcf.circaov), log-likelihood ratio (lr.circaov), embedding approach (embed.circaov) or the non equal concentration parameters approach (het.circaov) is used.

Value

This is an "htest"class object. Thus it returns a list including:
statistic The test statistic value.
parameter This is usually the degrees of freedom of the test, but here this is "NA" because the asymptotic based p-value is computed in a different way or because bootstrap was employed.
p.value \quad The p-value of the test.
alternative A character with the alternative hypothesis.
method A character with the test used.
data. name A character vector with two elements.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, pg. 153-55 (Kuiper's test) and pg. 156-157 (Watson's test).

See Also

rayleigh, ptest, vmf.mle, rvonmises

Examples

```
x <- rvonmises(n = 40, m = 2, k = 10)
kuiper(x, rads = TRUE)
watson(x, rads = TRUE)
x <- rvonmises(40, m = 2, k = 0)
kuiper(x, rads = TRUE)
watson(x, rads = TRUE)
```

von Mises kernel density estimation
Kernel density estimation of circular data with a von Mises kernel

Description

Kernel density estimation of circular data with a von Mises kernel.

Usage

vm.kde(u, h, thumb = "none", rads = TRUE)

Arguments

u
h
thumb
rads

A numeric vector containing the data.
The bandwidth.
It can be either "none", so the bandwidth the user has set will be used, "tay" for the method of Taylor (2008) or "rot" for the method of Garcia-Portugues (2013).
If the data are in radians, this should be TRUE and FALSE otherwise.

Details

The user has the option to use a bandwidth he/she has found in some way (cross-validation) or estimate it as Taylor (2008) or Garcia-Portugues (2013).

Value

A list including:
h
The bandwidth. If the user chose one of "tay" or "rot" the estimated bandwidth will be returned.
$f \quad$ The kernel density estimate at the observed points.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineougioathineou@gmail.com.

References

Taylor, C. C. (2008). Automatic bandwidth selection for circular density estimation. Computational Statistics \& Data Analysis, 52(7): 3493-3500.
Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. Electronic Journal of Statistics, 7, 1655-1685.

See Also

vmkde.tune, vmfkde.tune, vmf.kde

Examples

```
x <- rvonmises(100, 2.4, 10, rads = TRUE)
hist(x, freq = FALSE)
f1 <- vm.kde(x, h = 0.1, thumb = "rot", rads = TRUE)$f
f2 <- vm.kde(x, h = 0.1, thumb = "tay", rads = TRUE)$f
h <- vmkde.tune(x)[1]
f3 <- vm.kde(x, h = h, thumb = "none", rads = TRUE)$f
points(x, f1, col = 1)
points(x, f2, col = 2)
points(x, f3, col = 3)
```

```
von Mises-Fisher kernel density estimation for (hyper-)spherical data
    Kernel density estimation for (hyper-)spherical data using a von
    Mises-Fisher kernel
```


Description

A von Mises-Fisher kernel is used for the non parametric density estimation.

Usage

vmf. k de(x, h, thumb $=$ "none")

Arguments

$x \quad$ A matrix with unit vectors, i.e. the data being expressed in Euclidean cordinates.
$\mathrm{h} \quad$ The bandwidth to be used.
thumb If this is "none", the given bandwidth is used. If it is "rot" the rule of thumb suggested by Garcia-Portugues (2013) is used.

Details

A von Mises-Fisher kernel is used for the non parametric density estimation.

Value

A list including:
h
The bandwidth used.
f A vector with the kernel density estimate calculated for each of the data points.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. Electronic Journal of Statistics, 7, 1655-1685.

See Also

vmfkde.tune, vm.kde, vmf.mle, vmkde.tune

Examples

```
x <- rvmf(100, rnorm(5), 15)
h <- vmfkde.tune(x)[1]
f1 <- vmf.kde(x, h = h, thumb = "none")
f2 <- vmf.kde(x, h = h, thumb = "rot")
f1$h ; f2$h
```


Index

* Angle of rotation

Rotation axis and angle of rotation given a rotation matrix, 111
Rotation matrix from a rotation axis and angle of rotation, 112

* Angular central Gaussian distribution

Angular central Gaussian random values simulation, 7

* Anova

Directional-package, 4

* Axis of rotation

Rotation axis and angle of rotation given a rotation matrix, 111
Rotation matrix from a rotation axis and angle of rotation, 112

* BIC of the mixture models

BIC for the model based clustering using mixtures of von Mises-Fisher distributions, 11

* Bimodal distribution on the sphere

Density of the Wood bimodal distribution on the sphere, 57
MLE of the Wood bimodal distribution on the sphere, 95

* Bingham distribution

Simulation from a Bingham distribution using any symmetric matrix A, 117
Simulation of random values from a Bingham distribution, 119

* Circular correlation type II

Circular correlations between two circular variables, 20

* Circular correlation type I

Circular correlations between two circular variables, 20

* Circular data

A test for testing the equality of the concentration parameters for ciruclar data, 6
Test of equality of the concentration parameters for circular data, 144
Uniformity test for circular data, 153

* Circular regression

Circular or angular regression, 22

* Circular-linear correlation

Circular-linear correlation, 24

* Concentration parameters

Test for equality of concentration parameters for spherical data, 143

* Contour plot

Contour plot (on the plane) of the ESAG and Kent distributions without any data, 28
Contour plot (on the sphere) of the ESAG and Kent distributions, 32
Contour plot (on the sphere) of the SESPC distribution, 34
Contour plot of a mixture of von Mises-Fisher distributions model, 35
Contour plot of spherical data using a von Mises-Fisher kernel density estimate, 36
Contour plots of some rotational symmetric distributions, 38

* Cross validation

```
Cross validation in von
        Mises-Fisher discrminant
        analysis,44
Cross validation with ESAG
        discrminant analysis,45
```

Cross validation with Purkayastha discrminant analysis, 47

* Cross-validation

Tuning of the k-NN regression, 151

* Directional data

Directional-package, 4

* Directional k-NN algorithm
k-NN algorithm using the arc cosinus distance, 74
Tuning of the k-NN algorithm using the arc cosinus distance, 150
* Discriminant analysis

Cross validation for estimating the classification rate, 42
Cross validation in von Mises-Fisher discrminant analysis, 44
Cross validation with ESAG discrminant analysis, 45
Cross validation with Purkayastha discrminant analysis, 47
Directional-package, 4
Prediction in discriminant analysis based on ESAG distribution, 102
Prediction in discriminant analysis based on Purkayastha distribution, 103
Prediction in discriminant analysis based on von Mises-Fisher distribution, 104

* ESAG distribution

Contour plot (on the sphere) of the ESAG and Kent distributions, 32
Hypothesis test for IAG distribution over the ESAG distribution, 67
Simulation of random values from the ESAG distribution, 128
Simulation of random values from the SESPC distribution, 129

* Equality of concentrations

A test for testing the equality of the concentration parameters for ciruclar data, 6
Test of equality of the concentration parameters for
circular data, 144

* Euclidean coordinates

Euclidean transformation, 58
Inverse of the Euclidean transformation, 73

* Euclidean data
k-NN regression, 75
Tuning of the k-NN regression, 151
* Fisher-Bingham distribution

Saddlepoint approximations of the Fisher-Bingham distributions, 116
Simulation of random values from a spherical Fisher-Bingham distribution, 122

* Goodness of fit test

Hypothesis test for IAG
distribution over the ESAG distribution, 67
Hypothesis test for von Mises-Fisher distribution over Kent distribution, 69

* Graphs

Directional-package, 4

* Grouped data

Summary statistics for grouped circular data, 140

* Hypothesis testing

A test for testing the equality of the concentration parameters for ciruclar data, 6
Test for equality of concentration parameters for spherical data, 143
Test of equality of the concentration parameters for circular data, 144
Uniformity test for circular data, 153

* IAG distribution

Hypothesis test for IAG distribution over the ESAG distribution, 67

* Inverse transformation

Inverse of Lambert's equal area projection, 72

* Kent distribution

Contour plot (on the plane) of the

ESAG and Kent distributions without any data, 28
Contour plot (on the sphere) of the ESAG and Kent distributions, 32
Hypothesis test for von Mises-Fisher distribution over Kent distribution, 69
Logarithm of the Kent distribution normalizing constant, 78
MLE of the Kent distribution, 90
Simulation of random values from a spherical Fisher-Bingham distribution, 122
Simulation of random values from a spherical Kent distribution, 123

* Kernel density estimate

Tuning of the bandwidth parameter in the von Mises kernel, 147
Tuning of the bandwidth parameter in the von Mises-Fisher kernel, 148
von Mises-Fisher kernel density estimation for (hyper-) spherical data, 156

* Kernel density
von Mises kernel density estimation, 154
* Lambert's equal area projection

Inverse of Lambert's equal area projection, 72
Lambert's equal area projection, 77

* Matrix Fisher distribution

MLE of the Matrix Fisher distribution on SO(3), 92

* Maximum likelihood estimation

MLE of the Matrix Fisher distribution on SO(3), 92

* Median direction

Spherical and hyperspherical median, 131

* Mixtures of von Mises-Fisher distributions

BIC for the model based clustering using mixtures of von Mises-Fisher distributions, 11
Contour plot of a mixture of von Mises-Fisher distributions
model, 35
Simulation of random values from a mixture of von Mises-Fisher distributions, 120

* Model based clustering

Mixtures of Von Mises-Fisher distributions, 81

* Normalising constant

Logarithm of the Kent distribution normalizing constant, 78
Saddlepoint approximations of the Fisher-Bingham distributions, 116

* Projected normal

Circular or angular regression, 22

* Random values simulation

Simulation of random values from a Bingham distribution, 119
Simulation of random values from a mixture of von Mises-Fisher distributions, 120
Simulation of random values from rotationally symmetric distributions, 124
Simulation of random values from some circular distributions, 126

* Regression

Directional-package, 4

* Rejection sampling

Simulation of random values from a Bingham distribution, 119

* Rotation matrix

Random sample of matrices in SO(p), 107
Rotation matrix from a rotation axis and angle of rotation, 112
Rotation matrix to rotate a spherical vector along the direction of another, 114

* SESPC distribution

Contour plot (on the sphere) of the SESPC distribution, 34
MLE of the SESPC distribution, 94

* $\mathbf{S O}(\mathbf{p})$

Random sample of matrices in SO (p), 107

* Saddlepoint approximation

Logarithm of the Kent distribution normalizing constant, 78
Saddlepoint approximations of the Fisher-Bingham distributions, 116

* Simulated data

Simulation of random values from a spherical Fisher-Bingham distribution, 122
Simulation of random values from a spherical Kent distribution, 123

* Simulation of random values

Simulation from a Bingham distribution using any symmetric matrix A, 117

* Simulation

Directional-package, 4

* Spherical coordinates

Euclidean transformation, 58
Inverse of the Euclidean transformation, 73

* Spherical data

Directional-package, 4
k-NN regression, 75
Lambert's equal area projection, 77
Spherical-spherical correlation, 137
Spherical-spherical regression, 138
Test for equality of concentration parameters for spherical data, 143
Tuning of the k-NN regression, 151

* Spherical-Spherical regression

Spherical-spherical regression, 138

* Squared correlation

Spherical-spherical correlation, 137

* Summary statistics

Summary statistics for circular data, 139
Summary statistics for grouped circular data, 140

* Supervised classification
$\mathrm{k}-\mathrm{NN}$ algorithm using the arc cosinus distance, 74

Tuning of the $k-N N$ algorithm using the arc cosinus distance, 150

* Tuning of the bandwidth

Tuning of the bandwidth parameter in the von Mises-Fisher kernel, 148

* Tuning the bandwidth

Tuning of the bandwidth parameter in the von Mises kernel, 147

* Uniformity test

Uniformity test for circular data, 153

* Von Mises distribution

Summary statistics for circular data, 139
Summary statistics for grouped circular data, 140

* Von Mises-Fisher distributions

Cross validation for estimating the classification rate, 42
Prediction in discriminant analysis based on ESAG distribution, 102
Prediction in discriminant analysis based on Purkayastha distribution, 103
Prediction in discriminant analysis based on von Mises-Fisher distribution, 104

* Wood distribution

Density of the Wood bimodal distribution on the sphere, 57
MLE of the Wood bimodal distribution on the sphere, 95

* bivariate angular Gaussian

MLE of some circular distributions, 85

* circular data

Directional-package, 4
MLE of some circular distributions, 85

* directional data

Angular central Gaussian random values simulation, 7
Conversion of cosines to azimuth and plunge, 39

* k-NN regression
k-NN regression, 75

Tuning of the k-NN regression, 151

* maximum likelihood estimation

MLE of the Kent distribution, 90
MLE of the SESPC distribution, 94

* random values simulation

Angular central Gaussian random values simulation, 7

* simulation

Simulation of random values from the ESAG distribution, 128
Simulation of random values from the SESPC distribution, 129

* spherical data

MLE of the SESPC distribution, 94
Simulation of random values from the ESAG distribution, 128
Simulation of random values from the SESPC distribution, 129

* unit vectors

Generation of unit vector(s) with a given angle, 63

* von Mises distribution

Tuning of the bandwidth parameter in the von Mises kernel, 147

* von Mises kernel
von Mises kernel density estimation, 154
* von Mises-Fisher distribution

Contour plots of some rotational symmetric distributions, 38
Cross validation in von Mises-Fisher discrminant analysis, 44
Cross validation with ESAG discrminant analysis, 45
Cross validation with Purkayastha discrminant analysis, 47
Hypothesis test for von Mises-Fisher distribution over Kent distribution, 69
Mixtures of Von Mises-Fisher distributions, 81
Simulation of random values from rotationally symmetric distributions, 124
Simulation of random values from some circular distributions, 126

Tuning of the bandwidth parameter in the von Mises-Fisher kernel, 148

* von Mises-Fisher kernel

Contour plot of spherical data using a von Mises-Fisher kernel density estimate, 36

* von Mises-Fisher
von Mises-Fisher kernel density estimation for (hyper-) spherical data, 156

* wrapped Cauchy distribution

MLE of some circular distributions, 85

A test for testing the equality of the concentration parameters for ciruclar data, 6
acg.mle, 8, 90, 128
acg.mle (MLE of (hyper-)spherical rotational symmetric distributions), 82
africa (Maps of the world and the continents), 80
Angular central Gaussian random values simulation, 7
Anova for (hyper-)spherical data, 8
Anova for circular data, 10
Arotation, 41, 42, 58, 73, 108, 113, 115
Arotation (Rotation axis and angle of rotation given a rotation matrix), 111
asia (Maps of the world and the continents), 80

BIC for the model based clustering using mixtures of von Mises-Fisher distributions, 11
bic.mixvmf, 51, 82, 121
bic.mixvmf (BIC for the model based clustering using mixtures of von Mises-Fisher distributions), 11
Bootstrap 2-sample mean test for (hyper-)spherical data, 12
Bootstrap 2-sample mean test for circular data, 14
Bootstrap ANOVA for (hyper-)spherical data, 15

Bootstrap ANOVA for circular data, 17
cardio.mle (MLE of some circular distributions), 85
Check visually whether matrix Fisher samples is correctly generated or not, 18
cipc.mle (MLE of some circular distributions), 85
cipc.reg (Circular or angular regression), 22
circ.cor1, 24, 25, 93, 137, 139
circ.cor1 (Circular correlations between two circular variables), 20
circ.cor2, 21, 22, 24, 25, 137, 139
circ.cor2 (Circular correlations between two circular variables), 20
circ.cors1 (Circular correlations between one and many circular variables), 19
circ.cors2 (Circular correlations between one and many circular variables), 19
circ.dcor, 130
circ.dcor (Circular distance correlation between two circular variables), 21
circ.summary, 5, 65, 87, 90, 127, 128, 141
circ.summary (Summary statistics for circular data), 139
circbeta.mle (MLE of some circular distributions), 85
circexp.mle (MLE of some circular distributions), 85
circlin.cor, 21, 22, 24
circlin.cor (Circular-linear correlation), 24
circpurka.reg (Circular or angular regression), 22
Circular correlations between one and many circular variables, 19
Circular correlations between two circular variables, 20
Circular distance correlation between two circular variables, 21
Circular or angular regression, 22
Circular-linear correlation, 24
colspml.mle, 88
colspml.mle (Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions), 25
Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions, 25
Column-wise uniformity Watson test for circular data, 27
colvm.mle (Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions), 25
colwatsons (Column-wise uniformity Watson test for circular data), 27
conc.test, 5, 7, 100, 144
conc.test (Test of equality of the concentration parameters for circular data), 144
Contour plot (on the plane) of the ESAG and Kent distributions without any data, 28
Contour plot (on the sphere) of a mixture of von Mises-Fisher distributions, 29
Contour plot (on the sphere) of some spherical rotational symmetric distributions, 30
Contour plot (on the sphere) of the ESAG and Kent distributions, 32
Contour plot (on the sphere) of the SESPC distribution, 34
Contour plot of a mixture of von Mises-Fisher distributions model, 35
Contour plot of spherical data using a von Mises-Fisher kernel density estimate, 36
Contour plots of some rotational symmetric distributions, 38
Conversion of cosines to azimuth and plunge, 39
Converting a rotation matrix on SO(3) to an unsigned unit quaternion, 40
Converting an unsigned unit quaternion to rotation matrix on SO(3), 41
cosap (Conversion of cosines to

```
        azimuth and plunge), 39
cosnn,67
cosnn(The k-nearest neighbours using
        the cosinus distance),145
Cross validation for estimating the
        classification rate,42
Cross validation in von Mises-Fisher
        discrminant analysis,44
Cross validation with ESAG discrminant
        analysis,45
Cross validation with Purkayastha
        discrminant analysis,47
Cumulative distribution function of
        circular distributions,48
dcardio(Density of some circular
        distributions), 52
dcipc(Density of some circular
        distributions), 52
dcircbeta(Density of some circular
        distributions),52
dcircexp,50
dcircexp(Density of some circular
        distributions), 52
dcircpurka,50
dcircpurka(Density of some circular
        distributions),52
Density of a mixture of von
        Mises-Fisher distributions, 50
Density of some (hyper-)spherical
        distributions,51
Density of some circular
        distributions,52
Density of the SESPC distribution, 54
Density of the spherical ESAG and Kent
    distributions,56
Density of the Wood bimodal
        distribution on the sphere, 57
desag, 5, 54, 55, 58, 90, 128
desag(Density of the spherical ESAG
        and Kent distributions),56
dgcpc (Density of some circular
        distributions), 52
dggvm(Density of some circular
        distributions),52
dirda.cv, 62
dirda.cv(Cross validation for
        estimating the classification
        rate), 42
```

Directional-package, 4
dirknn, 44-46, 48, 67, 103-105, 146, 151
dirknn (k-NN algorithm using the arc cosinus distance), 74
dirknn.tune, $75,146,153$
dirknn.tune (Tuning of the $k-N N$ algorithm using the arc cosinus distance), 150
dkent, 54, 58
dkent (Density of the spherical ESAG and Kent distributions), 56
dmixvmf(Density of a mixture of von Mises-Fisher distributions), 50
dmmvm, 50
dmmvm (Density of some circular distributions), 52
dpkbd (Density of some (hyper-) spherical distributions), 51
dpurka (Density of some
(hyper-) spherical
distributions), 51
dsespc, 95, 129
dsespc (Density of the SESPC distribution), 54
dspcauchy (Density of some (hyper-) spherical distributions), 51
dspml (Density of some circular distributions), 52
dvm, 50
dvm (Density of some circular distributions), 52
dvmf (Density of some (hyper-) spherical distributions), 51
dwood (Density of the Wood bimodal distribution on the sphere), 57
dwrapcauchy (Density of some circular distributions), 52
embed.aov, 144
embed.aov (Anova for (hyper-) spherical data), 8
embed.boot (Bootstrap 2-sample mean test for (hyper-)spherical data), 12
embed.circaov, 7, 145
embed.circaov (Anova for circular data), 10
embed.perm(Permutation based 2-sample mean test for
(hyper-) spherical data), 99
embedcirc.boot (Bootstrap 2-sample mean test for circular data), 14
embedcirc.perm (Permutation based 2-sample mean test for circular data), 100
esag.contour, 33
esag. contour (Contour plot (on the plane) of the ESAG and Kent distributions without any data), 28
esag.da, 44, 103, 104
esag.da (Cross validation with ESAG discrminant analysis), 45
esag.mle, 52, 57, 68, 95, 96, 128, 133, 135, 136
esag.mle (MLE of the ESAG distribution), 89
esag.reg, 133
esag.reg (Spherical regression using the ESAG distribution), 134
esagda.pred (Prediction in discriminant analysis based on ESAG distribution), 102
etoa (Transform unit vectors to angular data), 146
euclid, 40, 71, 73, 77
euclid (Euclidean transformation), 58
euclid.inv, 40, 58
euclid.inv (Inverse of the Euclidean transformation), 73
Euclidean transformation, 58
eul2rot, 40, 60
eul2rot (Rotation matrix on SO(3) from three Euler angles), 113
Euler angles from a rotation matrix on SO(3), 59
europe (Maps of the world and the continents), 80
f.rbing, 118, 123, 124
f.rbing (Simulation of random values from a Bingham distribution), 119
fb.saddle, 78, 91
fb.saddle (Saddlepoint approximations of the Fisher-Bingham distributions), 116
fishkent, 27, 68, 69
fishkent (Hypothesis test for von Mises-Fisher distribution over Kent distribution), 69
Forward Backward Early Dropping selection for circular data using the SPML regression, 60
gcpc.mle (MLE of some circular distributions), 85
gcpc.reg (Circular or angular regression), 22
Generate random folds for cross-validation, 62
Generation of unit vector(s) with a given angle, 63
ggvm.mle, 53
ggvm.mle (MLE of some circular distributions), 85
Goodness of fit test for grouped data, 64
group.gof, 50
group.gof (Goodness of fit test for grouped data), 64
group. vm, 140
group.vm (Summary statistics for grouped circular data), 140

Habeck's rotation matrix generation, 65
habeck.rot (Habeck's rotation matrix generation), 65
Haversine distance matrix, 66
haversine.dist (Haversine distance matrix), 66
hcf.aov, 13, 16, 100, 144
hcf.aov (Anova for (hyper-) spherical data), 8
hcf.boot, 9, 16, 100
hcf.boot (Bootstrap 2-sample mean test for (hyper-)spherical data), 12
hcf.circaov, 7, 15, 18, 101, 140, 145
hcf.circaov (Anova for circular data), 10
hcf.perm, 13
hcf.perm (Permutation based 2-sample mean test for
(hyper-) spherical data), 99
hcfboot, 9, 13
hcfboot (Bootstrap ANOVA for (hyper-) spherical data), 15
hcfcirc.boot, 11
hcfcirc.boot (Bootstrap 2-sample mean test for circular data), 14
hcfcirc.perm (Permutation based 2-sample mean test for circular data), 100
hcfcircboot, 11, 15
hcfcircboot (Bootstrap ANOVA for circular data), 17
hclr.aov, 11
hclr.aov (Anova for (hyper-) spherical data), 8
hclr.boot (Bootstrap 2-sample mean test for (hyper-)spherical data), 12
hclr.circaov, 9
hclr.circaov (Anova for circular data), 10
hclr.perm (Permutation based 2-sample mean test for
(hyper-)spherical data), 99
hclrcirc.boot (Bootstrap 2-sample mean test for circular data), 14
hclrcirc. perm (Permutation based
2-sample mean test for circular data), 100
het.aov, $15,18,101,144$
het.aov (Anova for (hyper-)spherical data), 8
het. boot (Bootstrap 2-sample mean test for (hyper-)spherical data), 12
het.circaov, 7, 145
het. circaov (Anova for circular data), 10
het. perm (Permutation based 2-sample mean test for (hyper-)spherical data), 99
hetboot (Bootstrap ANOVA for (hyper-)spherical data), 15
hetcirc.boot (Bootstrap 2-sample mean test for circular data), 14
hetcirc.perm (Permutation based 2-sample mean test for circular data), 100
hetcircboot (Bootstrap ANOVA for
circular data), 17
Hypothesis test for IAG distribution over the ESAG distribution, 67
Hypothesis test for SIPC distribution over the SESPC distribution, 68
Hypothesis test for von Mises-Fisher distribution over Kent distribution, 69
iag.mle, $80,90,125$
iag.mle (MLE of (hyper-) spherical rotational symmetric distributions), 82
iag.reg, 135, 136
iag.reg (Spherical regression using rotationally symmetric distributions), 132
iagd (Density of some (hyper-) spherical distributions), 51
iagesag, 68-70, 109
iagesag (Hypothesis test for IAG distribution over the ESAG distribution), 67
Interactive 3D plot of spherical data, 71
Inverse of Lambert's equal area projection, 72
Inverse of the Euclidean
transformation, 73
k-NN algorithm using the arc cosinus distance, 74
k-NN regression, 75
kent. contour, 32, 33, 39
kent. contour (Contour plot (on the plane) of the ESAG and Kent distributions without any data), 28
kent. logcon, 116
kent. logcon (Logarithm of the Kent distribution normalizing constant), 78
kent.mle, 52, 57, 68, 70, 78, 90, 91, 96, 110, 116, 132, 143
kent.mle (MLE of the Kent distribution), 90
kmeans, 11, 81
knn.reg, 44, 103-105, 153
knn.reg (k-NN regression), 75
knnreg. tune, 76
knnreg.tune (Tuning of the $k-N N$ regression), 151
kuiper, 27, 107, 109
kuiper (Uniformity test for circular data), 153
lambert, 58, 71-73, 115
lambert (Lambert's equal area projection), 77
Lambert's equal area projection, 77
lambert.inv, 77, 115
lambert.inv (Inverse of Lambert's equal area projection), 72
Logarithm of the Kent distribution normalizing constant, 78
lr.aov, 144
lr.aov (Anova for (hyper-) spherical data), 8
lr.boot (Bootstrap 2-sample mean test for (hyper-)spherical data), 12
lr.circaov, 7, 145
lr.circaov (Anova for circular data), 10
lr.perm (Permutation based 2-sample mean test for
(hyper-)spherical data), 99
lrcirc.boot (Bootstrap 2-sample mean test for circular data), 14
lrcirc.perm (Permutation based 2-sample mean test for circular data), 100
makefolds, 43
makefolds (Generate random folds for cross-validation), 62
Many simple circular or angular regressions, 79
Maps of the world and the continents, 80
matrixfisher.mle, 119
matrixfisher.mle (MLE of the Matrix Fisher distribution on SO(3)), 92
meandir.test (Test for a given mean direction), 142
mediandir, 98
mediandir (Spherical and hyperspherical median), 131
mediandir_2(Spherical and hyperspherical median), 131
Mixtures of Von Mises-Fisher distributions, 81
mixvmf. contour, 12,82
mixvmf. contour (Contour plot of a mixture of von Mises-Fisher distributions model), 35
mixvmf.mle, 5, 12, 30, 36, 45, 51, 75, 105, 121, 151
mixvmf.mle (Mixtures of Von Mises-Fisher distributions), 81
MLE of (hyper-)spherical rotational symmetric distributions, 82
MLE of some circular distributions, 85
MLE of some circular distributions with multiple samples, 87
MLE of the ESAG distribution, 89
MLE of the Kent distribution, 90
MLE of the Matrix Fisher distribution on SO(3), 92
MLE of the Purkayashta distribution, 93
MLE of the SESPC distribution, 94
MLE of the Wood bimodal distribution on the sphere, 95
mmvm.mle (MLE of some circular distributions), 85
multispml.mle (MLE of some circular distributions with multiple samples), 87
multivm.mle (MLE of some circular distributions with multiple samples), 87
multivmf.mle (MLE of (hyper-)spherical rotational symmetric distributions), 82

Naive Bayes classifiers for circular data, 96
Normalised spatial median for directional data, 98
north.america (Maps of the world and the continents), 80
nsmedian, 132
nsmedian (Normalised spatial median for directional data), 98
oceania (Maps of the world and the continents), 80

```
pc.test,68,70
pc.test (Hypothesis test for SIPC
    distribution over the SESPC
    distribution),68
pcardio(Cumulative distribution
    function of circular
    distributions),48
pcipc (Cumulative distribution
    function of circular
    distributions),48
pcircbeta(Cumulative distribution
    function of circular
    distributions),48
pcircexp (Cumulative distribution
        function of circular
        distributions),48
pcircpurka (Cumulative distribution
        function of circular
        distributions),48
Permutation based 2-sample mean test
        for (hyper-)spherical data,99
Permutation based 2-sample mean test
        for circular data, 100
pgcpc (Cumulative distribution
        function of circular
        distributions),48
pkbd.contour (Contour plots of some
        rotational symmetric
        distributions), 38
pkbd.mle(MLE of (hyper-)spherical
        rotational symmetric
        distributions), 82
pmmvm(Cumulative distribution
        function of circular
        distributions),48
Prediction in discriminant analysis
        based on ESAG distribution,102
Prediction in discriminant analysis
        based on Purkayastha
        distribution, 103
Prediction in discriminant analysis
        based on von Mises-Fisher
        distribution, 104
Prediction with some naive Bayes
        classifiers for circular data,
        105
Projections based test of uniformity,
        1 0 6
```

pspml (Cumulative distribution function of circular distributions), 48
ptest, 109, 154
ptest (Projections based test of uniformity), 106
purka.contour (Contour plots of some rotational symmetric distributions), 38
purka.da(Cross validation with Purkayastha discrminant analysis), 47
purka.mle, 50, 87, 88
purka.mle (MLE of the Purkayashta distribution), 93
purkada.pred (Prediction in discriminant analysis based on Purkayastha distribution), 103
pvm, 65
pvm (Cumulative distribution function of circular distributions), 48
pwrapcauchy (Cumulative distribution
function of circular distributions), 48
quat2rot, 41
quat2rot (Converting an unsigned unit quaternion to rotation matrix on SO(3)), 41
racg, $85,125,127$
racg (Angular central Gaussian random values simulation), 7
Random sample of matrices in $\mathrm{SO}(\mathrm{p}), 107$
rayleigh, 107, 143, 154
rayleigh (Rayleigh's test of uniformity), 108
Rayleigh's test of uniformity, 108
rbingham, 63, 116, 120, 123, 124
rbingham (Simulation from a Bingham distribution using any symmetric matrix A), 117
rcipc (Simulation of random values from some circular distributions), 126
rcircbeta (Simulation of random values from some circular distributions), 126
rcircexp (Simulation of random values from some circular distributions), 126
rcircpurka (Simulation of random values from some circular distributions), 126
Read a file as a Filebacked Big Matrix, 110
read.fbm (Read a file as a Filebacked Big Matrix), 110
resag, 90
resag (Simulation of random values from the ESAG distribution), 128
rfb, 5, 63, 116, 118, 120, 123-125
rfb (Simulation of random values from a spherical Fisher-Bingham distribution), 122
rgcpe (Simulation of random values from some circular distributions), 126
riag (Simulation of random values from rotationally symmetric distributions), 124
rkent, 52, 57, 118, 120, 123
rkent (Simulation of random values from a spherical Kent distribution), 123
rmatrixfisher, 92
rmatrixfisher (Simulation from a Matrix Fisher distribution on SO(3)), 118
rmixvmf, $12,82,125$
rmixvmf (Simulation of random values from a mixture of von Mises-Fisher distributions), 120
rot.matrix, 42, 108, 111,115
rot.matrix (Rotation matrix from a rotation axis and angle of rotation), 112
rot2eul, 114
rot2eul (Euler angles from a rotation matrix on SO(3)), 59
rot2quat, 42
rot2quat (Converting a rotation matrix on $\mathrm{SO}(3)$ to an unsigned unit quaternion), 40
rotation, 41, 42, 108, 111, 113
rotation (Rotation matrix to rotate a spherical vector along the direction of another), 114
Rotation axis and angle of rotation given a rotation matrix, 111
Rotation matrix from a rotation axis and angle of rotation, 112
Rotation matrix on SO(3) from three Euler angles, 113
Rotation matrix to rotate a spherical vector along the direction of another, 114
rpkbd (Simulation of random values from rotationally symmetric distributions), 124
rsespc, 95
rsespc (Simulation of random values from the SESPC distribution), 129
rsop, 111, 113, 115
rsop (Random sample of matrices in SO(p)), 107
rspcauchy (Simulation of random values from rotationally symmetric distributions), 124
rspml (Simulation of random values from some circular distributions), 126
rvmf, $8,39,51,63,85,87,118,120,121,123$, 124, 127
rvmf (Simulation of random values from rotationally symmetric distributions), 124
rvonmises, $8,54,65,87,125,140,141,154$
rvonmises (Simulation of random values from some circular distributions), 126
rwrapcauchy (Simulation of random values from some circular distributions), 126

Saddlepoint approximations of the Fisher-Bingham distributions, 116
sespc.mle, 55, 69, 129
sespc.mle (MLE of the SESPC distribution), 94
sespc.reg (Spherical regression using the SESPC distribution), 135

Simulation from a Bingham distribution using any symmetric matrix A, 117
Simulation from a Matrix Fisher distribution on SO(3), 118
Simulation of random values from a Bingham distribution, 119
Simulation of random values from a mixture of von Mises-Fisher distributions, 120
Simulation of random values from a spherical Fisher-Bingham distribution, 122
Simulation of random values from a spherical Kent distribution, 123
Simulation of random values from rotationally symmetric distributions, 124
Simulation of random values from some circular distributions, 126
Simulation of random values from the ESAG distribution, 128
Simulation of random values from the SESPC distribution, 129
sipc.mle, 95
sipc.mle (MLE of (hyper-) spherical rotational symmetric distributions), 82
sipc.reg (Spherical regression using rotationally symmetric distributions), 132
south.america (Maps of the world and the continents), 80
spcauchy. contour (Contour plots of some rotational symmetric distributions), 38
spcauchy.mle (MLE of (hyper-) spherical rotational symmetric distributions), 82
spher.cor, 24, 139
spher.cor (Spherical-spherical correlation), 137
spher.dcor, 22
spher.dcor (Spherical and hyper-spherical distance correlation), 130
spher.esag. contour, 29, 30, 32, 35
spher.esag.contour (Contour plot (on the sphere) of the ESAG and Kent distributions), 32
spher.kent.contour (Contour plot (on the sphere) of the ESAG and Kent distributions), 32
spher.mixvmf.contour, 32
spher.mixvmf.contour (Contour plot (on the sphere) of a mixture of von Mises-Fisher distributions), 29
spher.pkbd.contour (Contour plot (on the sphere) of some spherical rotational symmetric distributions), 30
spher. purka.contour, 33
spher. purka.contour (Contour plot (on the sphere) of some spherical rotational symmetric distributions), 30
spher.reg, 24, 76, 137, 153
spher.reg (Spherical-spherical regression), 138
spher.sespc.contour, 95
spher.sespc.contour (Contour plot (on the sphere) of the SESPC distribution), 34
spher.spcauchy. contour, 35
spher. spcauchy. contour (Contour plot (on the sphere) of some spherical rotational symmetric distributions), 30
spher.vmf.contour, 30
spher.vmf.contour (Contour plot (on the sphere) of some spherical rotational symmetric distributions), 30
spherconc.test, 100
spherconc.test (Test for equality of concentration parameters for spherical data), 143
sphereplot, $39,81,90,91,96,139,144$
sphereplot (Interactive 3D plot of spherical data), 71
Spherical and hyper-spherical distance correlation, 130
Spherical and hyperspherical median, 131

Spherical regression using rotationally symmetric distributions, 132
Spherical regression using the ESAG distribution, 134
Spherical regression using the SESPC distribution, 135
Spherical-spherical correlation, 137
Spherical-spherical regression, 138
spml.fbed (Forward Backward Early Dropping selection for circular data using the SPML regression), 60
spml.mle, 26, 61, 80, 128, 140
spml.mle (MLE of some circular distributions), 85
spml.nb (Naive Bayes classifiers for circular data), 96
spml.reg, 5, 20, 21, 25, 26, 61, 76, 80, 133, 135, 136, 139
spml.reg (Circular or angular regression), 22
spml.regs, 61
spml.regs (Many simple circular or angular regressions), 79
spmlnb. pred (Prediction with some naive Bayes classifiers for circular data), 105
Summary statistics for circular data, 139
Summary statistics for grouped circular data, 140
tang. conc (A test for testing the equality of the concentration parameters for ciruclar data), 6
Test for a given mean direction, 142
Test for equality of concentration parameters for spherical data, 143
Test of equality of the concentration parameters for circular data, 144
The k-nearest neighbours using the cosinus distance, 145
Transform unit vectors to angular data, 146

Tuning of the bandwidth parameter in the von Mises kernel, 147
Tuning of the bandwidth parameter in the von Mises-Fisher kernel, 148
Tuning of the $k-N N$ algorithm using the arc cosinus distance, 150
Tuning of the $\mathrm{k}-\mathrm{NN}$ regression, 151
Uniformity test for circular data, 153
vec (Generation of unit vector(s) with a given angle), 63
visual.check (Check visually whether matrix Fisher samples is correctly generated or not), 18
vm.kde, 140, 141, 148, 149, 156
vm.kde (von Mises kernel density estimation), 154
vm.mle, 26, 85
vm.nb, 106
vm.nb (Naive Bayes classifiers for circular data), 96
vmf. contour, 29, 36, 37, 71
vmf.contour (Contour plots of some rotational symmetric distributions), 38
vmf.da, 46, 48, 105, 151
vmf. da (Cross validation in von Mises-Fisher discrminant analysis), 44
vmf.kde, 37, 148, 149, 155
vmf.kde (von Mises-Fisher kernel density estimation for (hyper-)spherical data), 156
vmf.kerncontour, 29, 36, 39, 149
vmf.kerncontour (Contour plot of spherical data using a von Mises-Fisher kernel density estimate), 36
vmf.mle, 26, 39, 45, 70, 87, 91, 96, 110, 125, $132,133,137,140,143,154,156$
vmf.mle (MLE of (hyper-) spherical rotational symmetric distributions), 82
vmf.reg (Spherical regression using rotationally symmetric distributions), 132
vmfda.pred, 44-46, 48, 75, 103, 104
vmfda.pred(Prediction in discriminant analysis based on von
Mises-Fisher distribution), 104
vmfkde.tune, 37, 148, 155, 156
vmfkde.tune (Tuning of the bandwidth parameter in the von Mises-Fisher kernel), 148
vmkde.tune, $149,155,156$
vmkde.tune (Tuning of the bandwidth parameter in the von Mises kernel), 147
vmnb. pred, 97, 147
vmnb.pred (Prediction with some naive Bayes classifiers for circular data), 105
von Mises kernel density estimation, 154
von Mises-Fisher kernel density estimation for (hyper-)spherical data, 156
watson, 27
watson (Uniformity test for circular data), 153
weibull.nb, 97, 147
weibullnb. pred, 106
wood.mle, 57, 58, 91
wood.mle (MLE of the Wood bimodal distribution on the sphere), 95
worldmap (Maps of the world and the continents), 80
wrapcauchy.mle (MLE of some circular distributions), 85

