
Package ‘PreProcess’
October 12, 2022

Version 3.1.7

Date 2019-05-01

Title Basic Functions for Pre-Processing Microarrays

Author Kevin R. Coombes

Maintainer Kevin R. Coombes <krc@silicovore.com>

Description Provides classes to pre-process microarray gene
expression data as part of the OOMPA collection of packages
described at <http://oompa.r-forge.r-project.org/>.

Depends R (>= 3.0), methods, graphics, stats, oompaBase (>= 3.0)

License Apache License (== 2.0)

LazyLoad yes

biocViews Microarray, PreProcessing

URL http://oompa.r-forge.r-project.org/

NeedsCompilation no

Repository CRAN

Date/Publication 2019-05-06 16:30:03 UTC

R topics documented:
Channel-class . 2
channelize-method . 4
ChannelType-class . 5
CompleteChannel-class . 8
generics . 11
graph.utility . 12
matrix.utility . 13
Pipeline-class . 14
Processor-class . 16
stat.utility . 18

Index 20

1

http://oompa.r-forge.r-project.org/
http://oompa.r-forge.r-project.org/

2 Channel-class

Channel-class Class "Channel"

Description

An object of the Channel class represents a single kind of measurement performed at all spots of
a microarray channel. These objects are essentially just vectors of data, with length equal to the
number of spots on the microarray, with some extra metadata attached.

Usage

Channel(parent, name, type, vec)
S4 method for signature 'Channel,missing'
plot(x, y, ...)
S4 method for signature 'Channel'
hist(x, breaks=67, xlab=x@name, main=x@parent, ...)
S4 method for signature 'Channel'
summary(object, ...)
S4 method for signature 'Channel'
print(x, ...)
S4 method for signature 'Channel'
show(object)
S4 method for signature 'Channel'
image(x, main=x@name, sub=NULL, ...)

Arguments

parent character string representing the name of a parent object from which this object
was derived

name character string with a displayable name for this object

type object of class ChannelType

vec numeric vector

x object of class Channel

y nothing; the new Rd format requires documenting missing parameters

breaks see the documentation for the default hist

xlab character string specifying the label for x axis

main character string specifying the main title for the plot

sub character string specifying subtitle for the plot

object object of class Channel

... extra arguments for generic or plotting routines

Channel-class 3

Details

As described in the help pages for ChannelType, each microarray hybridization experiment pro-
duces one or more channels of data. Channel objects represent a single measurement performed at
spots in one microarray channel. The raw data from a full experiment typically contains multiple
measurements in multiple channels.

The full set of measurements is often highly processed (by, for example, background subtraction,
normalization, log transformation, etc.) before it becomes useful. We have added a history slot
that keeps track of how a Channel was produced. By allowing each object to maintain a record of
its history, it becomes easier to document the processing when writing up the methods for reports
or papers. The history slot of the object is updated using the generic function process together
with a Processor object.

Value

The print, hist, and image methods all invisibly return the Channel object on which they were
invoked.

The print and summary methods return nothing.

Slots

parent: character string representing the name of a parent object from which this object was de-
rived.

name: character string with a displayable name for this object

type: object of class ChannelType

x: numeric vector

history: list that keeps a record of the calls used to produce this object

Methods

print(object, . . .) Print all the data on the object. Since this includes the entire data vector, you
rarely want to do this.

show(object) Print all the data on the object. Since this includes the entire data vector, you rarely
want to do this.

summary(object, . . .) Write out a summary of the object.

plot(object, . . .) Produce a scatter plot of the measurement values in the slot x of the object
against their index , which serves as a surrogate for the position on the microarray. Additional
graphical parameters are passed along.

hist(object, . . .) Produce a histogram of the data values in slot x of the object. Additional graph-
ical parameters are passed along.

image(object, . . .) This method produces a two-dimensional "cartoon" image of the measurement
values, with the position in the cartoon corresponding to the two-dimensional arrangement of
spots on the actual microarray. Additional graphical parameters are passed along.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

4 channelize-method

See Also

ChannelType, process, Processor

Examples

showClass("Channel")

simulate a moderately realistic looking microarray
nc <- 100 # number of rows
nr <- 100 # number of columns
v <- rexp(nc*nr, 1/1000) # "true" signal intensity (vol)
b <- rnorm(nc*nr, 80, 10) # background noise
s <- sapply(v-b, max, 1) # corrected signal intensity (svol)
ct <- ChannelType('user', 'random', nc, nr, 'fake')
raw <- Channel(name='fraud', type=ct, parent='', vec=v)
subbed <- Channel(name='fraud', parent='', type=ct, vec=s)
rm(nc, nr, v, b, s) # clean some stuff

summary(subbed)
summary(raw)

par(mfrow=c(2,1))
plot(raw)
hist(raw)

par(mfrow=c(1,1))
image(raw)

finish the cleanup
rm(ct, raw, subbed)

channelize-method Method "channelize"

Description

channelize is a generic function used to propagate the class of derived objects through a processing
pipeline.

Usage

S4 method for signature 'ANY'
channelize(object, ...)

Arguments

object an object for which pipeline propagation is desired

... additional arguments affecting the elapsed time produced

ChannelType-class 5

Details

Having abstracted away the notion of extracting a particular measurement from a CompleteChannel
object and producing a simple Channel, we need a way to allow object-oriented programming and
derived classes to work with our Processor and Pipeline routines. The underlying idea is that spe-
cific kinds of microarrays or specific software to quantify microarrays might have special properties
that should be exploited in processing. For example, the first few generations of microarrays printed
at M.D. Anderson spotted every cDNA clone in duplicate. The analysis of such arrays should ex-
ploit this additional structure. In order to do so, we must derive classes from CompleteChannel
and Channel and ensure that the classes of extracted objects are propagated correctly through the
processing pipeline. The channelize method achieves this goal.

Value

Returns a string, which represents the name of a class (suitable for passing to the new constructor)
extracted from an object belonging to a class derived from CompleteChannel.

Note

The sections above document the method’s usage by OOMPA’s pipeline, not the actual intent of the
generic itself.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

See Also

Channel, CompleteChannel, Pipeline, Processor

ChannelType-class Class "ChannelType"

Description

This class represents the "type" of a microarray channel.

Usage

ChannelType(mk, md, nc, nr, gl, design="")
setDesign(object, design)
getDesign(object)
S4 method for signature 'ChannelType'
print(x, ...)
S4 method for signature 'ChannelType'
show(object)
S4 method for signature 'ChannelType'
summary(object, ...)

6 ChannelType-class

Arguments

mk character string specifying the name of the manufacturer of the microarray (e.g.,
’Affymetrix’)

md character string specifying the model of the microarray (e.g., ’Hu95A’)

nc scalar integer specifying the number of columns in the array

nr scalar integer specifying the number of rows in the array

gl character string specifying the material used to label samples

design character string containing the name of an object describing details about the
design of the microarray

object object of class ChannelType

x object of class ChannelType

... extra arguments for generic or plotting routines

Details

Microarrays come in numerous flavors. At present, the two most common types are the synthesized
oligonucleotide arrays produced by Affymetrix and the printed cDNA arrays on glass, which started
in Pat Brown’s lab at Stanford. In earlier days, it was also common to find nylon microarrays, with
the samples labeled using a radioactive isotope. The glass arrays are distinguished from other kinds
of arrays in that they typically cohybridize two different samples simultaneously, using two different
fluorescent dyes. The fluorescence from each dye is scanned separately, producing two images and
thus two related sets of data from the same microarray. We refer to these parallel data sets within
an array as “channels”.

An object of the ChannelType class represents a combination of the kind of microarray along
with the kind of labeling procedure. These objects are intended to be passed around as part of more
complex objects representing the actual gene expression data collected from particular experiments,
in order to be able to eventually tie back into the description of what spots were laid down when the
array was produced.

The ChannelType object only contains a high level description of the microarray, however. Detailed
information about what biological material was laid down at each spot on the microarray is stored
elsewhere, in a “design” object. Within a ChannelType object, the design is represented simply
by a character string. This string should be the name of a separate object containing the detailed
design information. This implementation allows us to defer the design details until later. It also
saves space by putting the details in a single object instead of copying them into every microarray.
Finally, it allows that single object to be updated when better biological annotations are available,
with the benefits spreading immediately to all the microarray projects that use that design.

Value

The ChannelType constructor returns a valid object of the class.

The setDesign function invisibly returns the ChannelType object on which it was invoked.

The getDesign function returns the design object referred to by the design slot in the ChannelType
object. If this string does not evaluate to the name of an object, then getDesign returns a NULL value.

ChannelType-class 7

Slots

maker: character string specifying the name of the manufacturer of the microarray

model: character string specifying the model of the microarray

nCol: scalar integer specifying number of columns in the array

nRow: scalar integer specifying number of rows in the array

glow: character string specifying the material used to label samples

design: character string containing the name of an object describing details about the design of
the microarray

Methods

print(x, . . .) Prints all the information in the object

show(object) Prints all the information in the object

summary(object, . . .) Writes out a summary of the object

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

See Also

Channel

Examples

showClass("ChannelType")

x <- ChannelType('Affymetrix', 'oligo', 100, 100, 'fluor')
x
print(x)
summary(x)

y <- setDesign(x, 'fake.design')
print(y)
summary(y)
d <- getDesign(y)
d

rm(d, x, y) # cleanup

8 CompleteChannel-class

CompleteChannel-class Class "CompleteChannel"

Description

An object of the CompleteChannel class represents one channel (red or green) of a two-color
fluorescence microarray experiment. Alternatively, it can also represent the entirety of a radioactive
microarray experiment. Affymetrix experiments produce data with a somewhat different structure
because they use multiple probes for each target gene.

Usage

CompleteChannel(name, type, data)
S4 method for signature 'CompleteChannel'
print(x, ...)
S4 method for signature 'CompleteChannel'
show(object)
S4 method for signature 'CompleteChannel'
summary(object, ...)
S4 method for signature 'CompleteChannel'
as.data.frame(x, row.names=NULL, optional=FALSE)
S4 method for signature 'CompleteChannel,missing'
plot(x, main=x@name, useLog=FALSE, ...)
S4 method for signature 'CompleteChannel'
image(x, ...)
S4 method for signature 'CompleteChannel'
analyze(object, useLog=FALSE, ...)
S4 method for signature 'CompleteChannel,Processor'
process(object, action, parameter)
S4 method for signature 'CompleteChannel'
channelize(object, ...)

Arguments

name character string specifying the name of the object

type object of class ChannelType

data data frame. For the pre-defined “extraction” processors to work correctly, this
should include columns called vol, bkgd, svol, SD, and SN.

x object of class CompleteChannel

object object of class CompleteChannel

main character string specifying the title for the plot

useLog logical scalar. If TRUE, convert to logarithmic values.

action object of class Processor used to process a CompleteChannel

parameter any object that makes sense as a parameter to the function represented by the
Processor action

CompleteChannel-class 9

row.names See as.data.frame

optional See as.data.frame

... extra arguments for generic or plotting routines

Details

The names come from the default column names in the ArrayVision software package used at
M.D. Anderson for quantifying glass or nylon microarrays. Column names used by other software
packages should be mapped to these.

Value

The analyze method returns a list of three density functions.

The return value of the process function depends on the Processor performing the action, but is
typically a Channel object.

Graphical methods invisibly return the object on which they were invoked.

Slots

name: character string containing the name of the object
type: object of class ChannelType
data: data frame
history: list that keeps a record of the calls used to produce this object

Methods

print(x, . . .) Print all the data on the object. Since this includes the data frame, you rarely want to
do this.

show(object) Print all the data on the object. Since this includes the data frame, you rarely want to
do this.

summary(object, . . .) Write out a summary of the object.
as.data.frame(x,row.names=NULL, optional=FALSE) Convert the CompleteChannel object into

a data frame. As you might expect, this simply returns the data frame in the data slot of the
object.

plot(x, useLog=FALSE, . . .) Produces three estimated density plots: one for the signal, one for the
background, and one for the background-corrected signal. Additional graphical parameters are
passed along. The logical flag useLog determines whether the data are log-transformed before
estimating and plotting densities.

analyze(object, useLog=FALSE, . . .) This method computes the estimated probability density
functions for the three data components (signal, background, and background-corrected sig-
nal), and returns them as a list.

image(object, . . .) Uses the image method for Channel objects to produce geographically aligned
images of the log-transformed intensity and background estimates.

channelize(object, . . .) character string giving the name of the class of a channel that is produced
when you process a CompleteChannel object.

process(object, action, parameter=NULL) Use the Processor action to process the CompleteChannel
object. Returns an object of the class described by channelize, which defaults to Channel.

10 CompleteChannel-class

Pre-defined Processors

The library comes with several Processor objects already defined; each one takes a CompleteChannel
as input, extracts a single value per spot, and produces a Channel as output.

PROC.BACKGROUND Extract the vector of local background measurements.

PROC.SIGNAL Extract the vector of foreground signal intensity measurements.

PROC.CORRECTED.SIGNAL Extract the vector of background-corrected signal measurements. Note
that many software packages automatically truncate these value below at zero, so this need
not be the same as SIGNAL - BACKGROUND.

PROC.NEG.CORRECTED.SIGNAL Extract the vector of background-corrected signal intensities by
subtracting the local background from the observed foreground, without truncation.

PROC.SD.SIGNAL Extract the vector of pixel standard deviations of the signal intensity.

PROC.SIGNAL.TO.NOISE Extract the vector of signal-to-noise ratios, defined as CORRECTED.SIGNAL
divided by the standard deviation of the background pixels.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

See Also

process, Processor, Pipeline, Channel, as.data.frame

Examples

showClass("CompleteChannel")

simulate a complete channel object
v <- rexp(10000, 1/1000)
b <- rnorm(10000, 60, 6)
s <- sapply(v-b, function(x) {max(0, x)})
ct <- ChannelType('user', 'random', 100, 100, 'fake')
x <- CompleteChannel(name='fraud', type=ct,

data=data.frame(vol=v, bkgd=b, svol=s))
rm(v, b, s, ct)

summary(x)

opar <- par(mfrow=c(2,3))
plot(x)
plot(x, main='Log Scale', useLog=TRUE)
par(opar)

opar <- par(mfrow=c(2,1))
image(x)
par(opar)

b <- process(x, PROC.NEG.CORRECTED.SIGNAL)
summary(b)

generics 11

q <- process(b, PIPELINE.STANDARD)
summary(q)

q <- process(x, PIPELINE.MDACC.DEFAULT)
summary(q)

cleanup
rm(x, b, q, opar)

generics Methods "process" and "analyze"

Description

New generic functions for processing and analyzing microarrays.

Usage

S4 method for signature 'ANY'
process(object, action, parameter=NULL)
S4 method for signature 'ANY'
analyze(object, ...)

Arguments

object any OOMPA class representing a microarrays or a set of microarrays

action the action to process the class

parameter any parameters needed to execute the process

... extra arguments for generic routines

Details

In general, the analyze method represents an expensive computational step carried out in prepara-
tion for a graphical display, but the semantics may differ from class to class. The default implemen-
tation of the method performs the null analysis; that is, the return value is identical to the object that
is passed in as the first argument.

The process method represents a function that acts on the data of some object to process it in some
way. For example, normalizing a set of microarray data is typically one processing step in a long
series that is required to take the raw data and turn it into something useful.

Value

The form of the value returned by either process or analyze depends on the class of its argument.
See the documentation of the particular methods for details of what is produced by that method.

12 graph.utility

Author(s)

Kevin R. Coombes <krc@silicovore.com>, P. Roebuck <proebuck@mdanderson.org>

See Also

Pipeline, Processor

graph.utility OOMPA graphical utility functions

Description

Utility functions for graphics.

Usage

ellipse(a, b, x0=0, y0=0, ...)
f.qq(x, main="", cut=0, ...)
f.qt(x, df, main="", cut=0, ...)

Arguments

a Half the length of the elliptical axis in the x-direction

b Half the length of the elliptical axis in the y-direction

x0 X-coordinate of the center of the ellipse

y0 Y-coordinate of the center of the ellipse

main A text string

cut A real number

df An integer; the number of degrees of freedom in the t-test

... Additional graphical parameters passed on to lower-level functions

x A numeric vector

Details

The ellipse function draws an ellipse on an existing plots. The ellipses produced by this function
are oriented with their major and minor axes parallel to the coordinate axes. The current implemen-
tation uses points internally.

The function f.qq is a wrapper that combines qqnorm and qqline into a single function call.

The function f.qt is a wrapper that produces quantile-quantile plots comparing the observed vector
x with a T-distribution.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

matrix.utility 13

See Also

points

Examples

x <- rnorm(1000, 1, 2)
y <- rnorm(1000, 1, 2)
plot(x,y)
ellipse(1, 1, col=6, type='l', lwd=2)
ellipse(3, 2, col=6, type='l', lwd=2)
f.qq(x, main='Demo', col='blue')
f.qq(x, cut=3)
f.qt(x, df=3)
f.qt(x, df=40)

matrix.utility OOMPA Matrix Utility Functions

Description

Utility functions for manipulating matrices.

Usage

flipud(x)
fliplr(x)

Arguments

x a matrix

Value

The flipud function returns a matrix the same size as x, with the order of the rows reversed, so
the matrix has been flipped vertically. The fliplr function returns a matrix the same size as x but
flipped horizontally, with the order of the columns reversed.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

Examples

mat <- matrix(1:6, 2, 3)
mat
flipud(mat)
fliplr(mat)

14 Pipeline-class

Pipeline-class Class "Pipeline"

Description

A Pipeline represents a standard multi-step procedure for processing microarray data. A Pipeline
represents a series of Processors that should be applied in order. You can think of a pipeline
as a completely defined (and reusable) set of transformations that is applied uniformly to every
microarray in a data set.

Usage

S4 method for signature 'ANY,Pipeline'
process(object, action, parameter=NULL)
S4 method for signature 'Pipeline'
summary(object, ...)
makeDefaultPipeline(ef = PROC.SIGNAL, ep = 0,

nf = PROC.GLOBAL.NORMALIZATION, np = 0,
tf = PROC.THRESHOLD, tp = 25,
lf = PROC.LOG.TRANSFORM, lp = 2,
name = "standard pipe",
description = "my method")

Arguments

object In the process method, any object appropriate for the input to the Pipeline. In
the summary method, a Pipeline object.

action A Pipeline object used to process an object.

parameter Irrelevant, since the Pipeline ignores the parameter when process is invoked.

... Additional arguments are as in the underlying generic methods.

ef “Extractor function”: First Processor in the Pipeline, typically a method that
extracts a single kind of raw measurement from a microarray

ep Default parameter value for ef

nf “Normalization function” : Second Processor in the Pipeline, typically a nor-
malization step.

np Default parameter value for nf

tf “Threshold function” : Third Processor in the Pipeline, typically a step that
truncates data below at some threshold.

tp Default parameter value for tf

lf “Log function” : Fourth Processor in the Pipeline, typically a log transfor-
mation.

lp Default parameter value for lf

name A string; the name of the pipeline

description A string; a longer description of the pipeline

Pipeline-class 15

Details

A key feature of a Pipeline is that it is supposed to represent a standard algorithm that is applied to
all objects when processing a microarray data set. For that reason, the parameter that can be passed
to the process function is ignored, ensuring that the same parameter values are used to process all
objects. By contrast, each Processor that is inserted into a Pipeline allows the user to supply a
parameter that overrides its default value.

We provide a single constructor, makeDefaultPipeline to build a specialized kind of Pipeline,
tailored to the analysis of fluorescently labeled single channels in a microarray experiment. More
general Pipelines can be constructed using new.

Value

The return value of the generic function process is always an object related to its input, which
keeps a record of its history. The precise class of the result depends on the functions used to create
the Pipeline.

Slots

proclist: A list of Processor objects.

name: A string containing the name of the object

description: A string containing a longer description of the object

Methods

process(object, action, parameter) Apply the series of functions represented by the Pipeline
action to the object, updating its history appropriately. The parameter is ignored, since the
Pipeline always uses its default values.

summary(object, . . .) Write out a summary of the object.

Pre-defined Pipelines

The library comes with two Pipeline objects already defined

PIPELINE.STANDARD Takes a Channel object as input. Performs global normalization by rescaling
the 75th percentile to 1000, truncates below at 25, then performs log (base-two) transforma-
tion.

PIPELINE.MDACC.DEFAULT Takes a CompleteChannel as input, extracts the raw signal intensity,
and then performs the same processing as PIPELINE.STANDARD.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Channel, CompleteChannel, process

16 Processor-class

Examples

showClass("Pipeline")

simulate a moderately realistic looking microarray
nc <- 100
nr <- 100
v <- rexp(nc*nr, 1/1000)
b <- rnorm(nc*nr, 80, 10)
s <- sapply(v-b, max, 1)
ct <- ChannelType('user', 'random', nc, nr, 'fake')
subbed <- Channel(name='fraud', parent='', type=ct, vec=s)
rm(ct, nc, nr, v, b, s) # clean some stuff

example of standard data processing
processed <- process(subbed, PIPELINE.STANDARD)

summary(processed)

par(mfrow=c(2,1))
plot(processed)
hist(processed)

par(mfrow=c(1,1))
image(processed)

rm(subbed, processed)

Processor-class Class "Processor"

Description

A Processor represents a function that acts on the data of a some object to process it in some way.
The result is always another related object, which should record some history about exactly how it
was processed.

Usage

S4 method for signature 'Channel,Processor'
process(object, action, parameter=NULL)
S4 method for signature 'Processor'
summary(object, ...)

Arguments

object In the process method, a Channel object. In the summary method, a Processor
object

action A Processor object used to process a Channel.

Processor-class 17

parameter Any object that makes sense as a parameter to the function represented by the
Processor action

... Additional arguments are as in the underlying generic methods.

Value

The return value of the generic function process is always an object related to its Channel input,
which keeps a record of its history. The precise class of the result depends on the function used to
create the Processor.

Slots

f: A function that will be used to process microarray-related object

default: The default value of the parameters to the function f

name: A string containing the name of the object

description: A string containing a longer description of the object

Methods

process(object, action, parameter) Apply the function represented by action to the Channel ob-
ject, updating the history appropriately. If the parameter is NULL, then use the default value.

summary(object, . . .) Write out a summary of the object.

Pre-defined Processors

The library comes with several Processor objects already defined; each one takes a Channel as
input and produces a modified Channel as output.

PROC.SUBTRACTOR Subtracts a global constant (default: 0) from the data vector in the Channel.

PROC.THRESHOLD Truncates the data vector below, replacing the values below a threshold (default:
0) with the threshold value.

PROC.GLOBAL.NORMALIZATION Normalizes the data vector in the Channel by dividing by a global
constant. If the parameter takes on its default value of 0, then divide by the 75th percentile.

PROC.LOG.TRANSFORM Performs a log transformation of the data vector. The parameter specifies
the base of the logarithm (default: 2).

PROC.MEDIAN.EXPRESSED.NORMALIZATION Normalizes the data vector by dividing by the median
of the expressed genes, where “expressed” is taken to mean “greater than zero”.

PROC.SUBSET.NORMALIZATION Normalizes the data vector by dividing by the median of a subset of
genes. When the parameter has a default value of 0, then this method uses the global median.
Otherwise, the parameter should be set to a logical or numerical vector that selects the subset
of genes to be used for normalization.

PROC.SUBSET.MEAN.NORMALIZATION Normalizes the data vector by dividing by the mean of a sub-
set of genes. When the parameter has a default value of 0, then this method uses the global
mean. Otherwise, the parameter should be set to a logical or numerical vector that selects the
subset of genes to be used for normalization.

18 stat.utility

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Channel, CompleteChannel, process, Pipeline

Examples

showClass("Processor")

simulate a moderately realistic looking microarray
nc <- 100
nr <- 100
v <- rexp(nc*nr, 1/1000)
b <- rnorm(nc*nr, 80, 10)
s <- sapply(v-b, max, 1)
ct <- ChannelType('user', 'random', nc, nr, 'fake')
subbed <- Channel(name='fraud', parent='', type=ct, vec=s)
rm(ct, nc, nr, v, b, s) # clean some stuff

example of standard data processing
nor <- process(subbed, PROC.GLOBAL.NORMALIZATION)
thr <- process(nor, PROC.THRESHOLD, 25)
processed <- process(thr, PROC.LOG.TRANSFORM, 2)

summary(processed)

par(mfrow=c(2,1))
plot(processed)
hist(processed)

par(mfrow=c(1,1))
image(processed)

rm(nor, thr, subbed, processed)

stat.utility OOMPA Statistical Utility Functions

Description

Utility functions for statistical computations.

Usage

f.above.thresh(a, t)
f.cord(x, y, inf.rm)
f.oneway.rankings(r, s)

stat.utility 19

Arguments

a a vector

t a real number

x a vector

y a vector

inf.rm a logical value

r vector

s vector

Value

f.above.thresh returns the fraction of elements in the vector a that are greater than the threshold
t.

f.cord returns the concordance coefficient between the two input vectors x and y. If inf.rm is
true, then infinite values are removed before computing the concordance; missing values are always
removed.

f.oneway.rankings is implemented as order(s)[r] and I cannot recall why we defined it or
where we used it.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

Examples

x <- rnorm(1000, 1, 2)
y <- rnorm(1000, 1, 2)
f.above.thresh(x, 0)
f.above.thresh(y, 0)
f.cord(x, y)

Index

∗ aplot
graph.utility, 12

∗ array
matrix.utility, 13

∗ classes
Channel-class, 2
ChannelType-class, 5
CompleteChannel-class, 8
Pipeline-class, 14
Processor-class, 16

∗ manip
Channel-class, 2
channelize-method, 4
ChannelType-class, 5
CompleteChannel-class, 8
Pipeline-class, 14
Processor-class, 16

∗ methods
channelize-method, 4
generics, 11

∗ univar
stat.utility, 18

analyze (generics), 11
analyze,ANY-method (generics), 11
analyze,CompleteChannel-method

(CompleteChannel-class), 8
as.data.frame, 9, 10
as.data.frame,CompleteChannel-method

(CompleteChannel-class), 8

Channel, 5, 7, 9, 10, 15, 18
Channel (Channel-class), 2
Channel-class, 2
channelize (channelize-method), 4
channelize,ANY-method

(channelize-method), 4
channelize,CompleteChannel-method

(CompleteChannel-class), 8
channelize-method, 4

ChannelType, 2–4, 8, 9
ChannelType (ChannelType-class), 5
ChannelType-class, 5
CompleteChannel, 5, 15, 18
CompleteChannel

(CompleteChannel-class), 8
CompleteChannel-class, 8

ellipse (graph.utility), 12

f.above.thresh (stat.utility), 18
f.cord (stat.utility), 18
f.oneway.rankings (stat.utility), 18
f.qq (graph.utility), 12
f.qt (graph.utility), 12
fliplr (matrix.utility), 13
flipud (matrix.utility), 13

generics, 11
getDesign (ChannelType-class), 5
graph.utility, 12

hist, 2
hist,Channel-method (Channel-class), 2

image,Channel-method (Channel-class), 2
image,CompleteChannel-method

(CompleteChannel-class), 8

makeDefaultPipeline (Pipeline-class), 14
matrix.utility, 13

Pipeline, 5, 10, 12, 18
Pipeline (Pipeline-class), 14
Pipeline-class, 14
PIPELINE.MDACC.DEFAULT

(Pipeline-class), 14
PIPELINE.STANDARD (Pipeline-class), 14
plot,Channel,missing-method

(Channel-class), 2

20

INDEX 21

plot,CompleteChannel,missing-method
(CompleteChannel-class), 8

points, 12, 13
print,Channel-method (Channel-class), 2
print,ChannelType-method

(ChannelType-class), 5
print,CompleteChannel-method

(CompleteChannel-class), 8
PROC.BACKGROUND

(CompleteChannel-class), 8
PROC.CORRECTED.SIGNAL

(CompleteChannel-class), 8
PROC.GLOBAL.NORMALIZATION

(Processor-class), 16
PROC.LOG.TRANSFORM (Processor-class), 16
PROC.MEDIAN.EXPRESSED.NORMALIZATION

(Processor-class), 16
PROC.NEG.CORRECTED.SIGNAL

(CompleteChannel-class), 8
PROC.SD.SIGNAL (CompleteChannel-class),

8
PROC.SIGNAL (CompleteChannel-class), 8
PROC.SUBSET.MEAN.NORMALIZATION

(Processor-class), 16
PROC.SUBSET.NORMALIZATION

(Processor-class), 16
PROC.SUBTRACTOR (Processor-class), 16
PROC.THRESHOLD (Processor-class), 16
process, 3, 4, 10, 15, 18
process (generics), 11
process,ANY,Pipeline-method

(Pipeline-class), 14
process,ANY-method (generics), 11
process,Channel,Processor-method

(Processor-class), 16
process,CompleteChannel,Processor-method

(CompleteChannel-class), 8
process,Processor-method

(Processor-class), 16
Processor, 3–5, 9, 10, 12, 14, 15
Processor (Processor-class), 16
Processor-class, 16

setDesign (ChannelType-class), 5
show,Channel-method (Channel-class), 2
show,ChannelType-method

(ChannelType-class), 5
show,CompleteChannel-method

(CompleteChannel-class), 8

stat.utility, 18
summary,Channel-method (Channel-class),

2
summary,ChannelType-method

(ChannelType-class), 5
summary,CompleteChannel-method

(CompleteChannel-class), 8
summary,Pipeline-method

(Pipeline-class), 14
summary,Processor-method

(Processor-class), 16

	Channel-class
	channelize-method
	ChannelType-class
	CompleteChannel-class
	generics
	graph.utility
	matrix.utility
	Pipeline-class
	Processor-class
	stat.utility
	Index

