
Package ‘adproclus’
November 10, 2023

Title Additive Profile Clustering Algorithms

Version 1.0.2

Description Obtain overlapping clustering models for object-by-variable data
matrices using the Additive Profile Clustering (ADPROCLUS) method.
Also contains the low dimensional ADPROCLUS method
for simultaneous dimension reduction and overlapping clustering.
For reference see Depril, Van Mechelen, Mirkin (2008)
<doi:10.1016/j.csda.2008.04.014> and Depril, Van Mechelen, Wilderjans
(2012) <doi:10.1007/s00357-012-9112-5>.

Depends R (>= 3.1.0)

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports checkmate, corrplot, gtools, igraph, NMFN, qgraph, stats,
withr

RoxygenNote 7.2.3

Collate 'adproclus-package.R' 'adproclus_classes.R' 'clustering.R'
'data.R' 'get_starts.R' 'utils.R' 'visualize.R'

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/henry-heppe/adproclus

BugReports https://github.com/henry-heppe/adproclus/issues

NeedsCompilation no

Author Henry Heppe [aut, cre, cph],
Julian Rossbroich [aut],
Jeffrey Durieux [aut],
Tom Wilderjans [aut]

Maintainer Henry Heppe <heppe.henry@gmail.com>

Repository CRAN

Date/Publication 2023-11-09 23:40:05 UTC

1

https://doi.org/10.1016/j.csda.2008.04.014
https://doi.org/10.1007/s00357-012-9112-5
https://github.com/henry-heppe/adproclus
https://github.com/henry-heppe/adproclus/issues

2 adpc

R topics documented:
adpc . 2
adproclus . 3
adproclus_low_dim . 6
CGdata . 9
get_random . 9
get_rational . 10
get_semirandom . 11
plot.adpc . 13
plot_cluster_network . 14
plot_profiles . 15
plot_vars_by_comp . 16
print.adpc . 17
print.summary.adpc . 18
summary.adpc . 18

Index 20

adpc Constructor for a (low dimensional) ADPROCLUS solution object

Description

Yields an object of class adpc, which can be printed, plotted and summarized by the corresponding
methods. Mandatory input are the membership matrixA and the profile matrixP (where the number
of columns from A corresponds to the number of rows in P), if the object is to represent a full
dimensional ADPROCLUS model. For a low dimensional ADPROCLUS model, the matrices C
andB have to be provided andP can be inferred from those. All other inputs are optional but may be
included so that the output from the summary(), print(), plot() is complete. For further details
on the (low dimensional) ADPROCLUS model and what every element of the objects means see
adproclus and adproclus_low_dim.

Usage

adpc(
A,
P,
sse = NULL,
totvar = NULL,
explvar = NULL,
iterations = NULL,
timer = NULL,
timer_one_run = NULL,
initial_start = NULL,
C = NULL,
B = NULL,
runs = NULL,

adproclus 3

parameters = NULL
)

Arguments

A Membership matrix A.

P Profile matrix P.

sse Sum of Squared Error.

totvar Total variance.

explvar Explained variance.

iterations Number of iterations.

timer Time needed to run the complete algorithm.

timer_one_run Time to complete this single algorithm start.

initial_start List containing type of start and start_allocation matrix.

C Low dimensional profiles matrix C.

B Matrix of base vectors connecting low dimensional components with original
variables B.

runs List of suboptimal models.

parameters List of algorithm parameters.

Value

Object of class adpc.

Examples

Create the information needed for a minimal object of class adpc
x <- stackloss
result <- adproclus(x, 3)
A <- result$A
P <- result$P

Use constructor to obtain object of class adpc
result_object <- adpc(A, P)

adproclus Additive profile clustering

Description

Perform additive profile clustering (ADPROCLUS) on object-by-variable data. Creates a model
that assigns the objects to overlapping clusters which are characterized in terms of the variables by
the so-called profiles.

4 adproclus

Usage

adproclus(
data,
nclusters,
start_allocation = NULL,
nrandomstart = 3,
nsemirandomstart = 3,
algorithm = "ALS1",
save_all_starts = FALSE,
seed = NULL

)

Arguments

data Object-by-variable data matrix of class matrix or data.frame.

nclusters Number of clusters to be used. Must be a positive integer.
start_allocation

Optional matrix of binary values as starting allocation for first run. Default is
NULL.

nrandomstart Number of random starts (see get_random). Can be zero. Increase for better
results, though longer computation time. Some research finds 500 starts to be a
useful reference.

nsemirandomstart

Number of semi-random starts (see get_semirandom)). Can be zero. Increase
for better results, though longer computation time. Some research finds 500
starts to be a useful reference.

algorithm Character string "ALS1" (default) or "ALS2", denoting the type of alternating
least squares algorithm. Can be abbreviated with "1" or "2".

save_all_starts

Logical. If TRUE, the results of all algorithm starts are returned. By default, only
the best solution is retained.

seed Integer. Seed for the random number generator. Default: NULL, meaning no
reproducibility.

Details

In this function, Mirkin’s (1987, 1990) Additive Profile Clustering (ADPROCLUS) method is used
to obtain an unrestricted overlapping clustering model of the object by variable data provided by
data.

The ADPROCLUS model approximates an I × J object by variable data matrix X by an I × J
model matrix M that can be decomposed into an I ×K binary cluster membership matrix A and a
K × J real-valued cluster profile matrix P , with K indicating the number of overlapping clusters.
In particular, the aim of an ADPROCLUS analysis is therefore, given a number of clusters K, to
estimate a model matrix M = AP which reconstructs the data matrix X as close as possible in a
least squares sense (i.e. sum of squared residuals). For a detailed illustration of the ADPROCLUS
model and associated loss function, see Wilderjans et al. (2011).

adproclus 5

The alternating least squares algorithms ("ALS1" and "ALS2") that can be used for minimization
of the loss function were proposed by Depril et al. (2008). In "ALS2", starting from an initial
random or rational estimate of A (see get_random and get_semirandom), A and P are alternately
re-estimated conditionally upon each other until convergence. The "ALS1" algorithm differs from
the previous one in that each row in A is updated independently and that the conditionally optimal
P is recalculated after each row update, instead of the end of the matrix. For a discussion and
comparison of the different algorithms, see Depril et al., 2008.

Warning: Computation time increases exponentially with increasing number of clusters, K. We
recommend to determine the computation time of a single start for each specific dataset and K
before increasing the number of starts.

Value

adproclus() returns a list with the following components, which describe the best model (from
the multiple starts):

model matrix. The obtained overlapping clustering model M of the same size as data.

A matrix. The membership matrix A of the clustering model. Clusters are sorted by size.

P matrix. The profile matrix P of the clustering model.

sse numeric. The residual sum of squares of the clustering model, which is minimized by the ALS
algorithm.

totvar numeric. The total sum of squares of data.

explvar numeric. The proportion of variance in data that is accounted for by the clustering model.

iterations numeric. The number of iterations of the algorithm.

timer numeric. The amount of time (in seconds) the complete algorithm ran for.

timer_one_run numeric. The amount of time (in seconds) the relevant single start ran for.

initial_start list. Containing the initial membership matrix, as well as the type of start that was
used to obtain the clustering solution. (as returned by get_random or get_semirandom)

runs list. Each element represents one model obtained from one of the multiple starts. Each
element contains all of the above information for the respective start.

parameters list. Contains the parameters used for the model.

References

Wilderjans, T. F., Ceulemans, E., Van Mechelen, I., & Depril, D. (2011S). ADPROCLUS: a graph-
ical user interface for fitting additive profile clustering models to object by variable data matrices.
Behavior Research Methods, 43(1), 56-65.

Depril, D., Van Mechelen, I., & Mirkin, B. (2008). Algorithms for additive clustering of rectangular
data tables. Computational Statistics and Data Analysis, 52, 4923-4938.

Mirkin, B. G. (1987). The method of principal clusters. Automation and Remote Control, 10:131-
143.

Mirkin, B. G. (1990). A sequential fitting procedure for linear data analysis models. Journal of
Classification, 7(2):167-195.

6 adproclus_low_dim

See Also

adproclus_low_dim for low dimensional ADPROCLUS

get_random for generating random starts

get_semirandom for generating semi-random starts

get_rational for generating rational starts

Examples

Loading a test dataset into the global environment
x <- stackloss

Quick clustering with K = 2 clusters
clust <- adproclus(data = x, nclusters = 2)

Clustering with K = 3 clusters,
using the ALS2 algorithm,
with 2 random and 2 semi-random starts
clust <- adproclus(x, 3,

nrandomstart = 2, nsemirandomstart = 2, algorithm = "ALS2"
)

Saving the results of all starts
clust <- adproclus(x, 3,

nrandomstart = 2, nsemirandomstart = 2, save_all_starts = TRUE
)

Clustering using a user-defined rational start profile matrix
(here the first 4 rows of the data)
start <- get_rational(x, x[1:4,])$A
clust <- adproclus(x, 4, start_allocation = start)

adproclus_low_dim Low dimensional ADPROCLUS

Description

Perform low dimensional additive profile clustering (ADPROCLUS) on object by variable data.
Use case: data to cluster consists of a large set of variables, where it can be useful to interpret the
cluster profiles in terms of a smaller set of components that represent the original variables well.

Usage

adproclus_low_dim(
data,
nclusters,
ncomponents,
start_allocation = NULL,

adproclus_low_dim 7

nrandomstart = 3,
nsemirandomstart = 3,
save_all_starts = FALSE,
seed = NULL

)

Arguments

data Object-by-variable data matrix of class matrix or data.frame.
nclusters Number of clusters to be used. Must be a positive integer.
ncomponents Number of components (dimensions) to which the profiles should be restricted.

Must be a positive integer.
start_allocation

Optional matrix of binary values as starting allocation for first run. Default is
NULL.

nrandomstart Number of random starts (see get_random). Can be zero. Increase for better
results, though longer computation time. Some research finds 500 starts to be a
useful reference.

nsemirandomstart

Number of semi-random starts (see get_semirandom)). Can be zero. Increase
for better results, though longer computation time. Some research finds 500
starts to be a useful reference.

save_all_starts

logical. If TRUE, the results of all algorithm starts are returned. By default, only
the best solution is retained.

seed Integer. Seed for the random number generator. Default: NULL, meaning no
reproducibility

Details

In this function, an extension by Depril et al. (2012) of Mirkins (1987, 1990) additive profile
clustering method is used to obtain a low dimensional overlapping clustering model of the object
by variable data provided by data. More precisely, the low dimensional ADPROCLUS model
approximates an I × J object by variable data matrix X by an I × J model matrix M . For K
overlapping clusters, M can be decomposed into an I × K binary cluster membership matrix A
and a K × J real-valued cluster profile matrix P s.t. M = AP. With the simultaneous dimension
reduction, P is restricted to be of reduced rank S < min(K,J), such that it can be decomposed
into P = CB′, with C a K × S matrix and B a J × S matrix. Now, a row in C represents
the profile values associated with the respective cluster in terms of the S components, while the
entries of B can be used to interpret the components in terms of the complete set of variables. In
particular, the aim of an ADPROCLUS analysis is therefore, given a number of clusters K and a
number of dimensions S, to estimate a model matrix M that reconstructs data matrix X as close
as possible in a least squares sense and simultaneously reduce the dimensions of the data. For a
detailed illustration of the low dimensional ADPROCLUS model and associated loss function, see
Depril et al. (2012).

Warning: Computation time increases exponentially with increasing number of clusters, K. We
recommend to determine the computation time of a single start for each specific dataset and K
before increasing the number of starts.

8 adproclus_low_dim

Value

adproclus_low_dim() returns a list with the following components, which describe the best model
(from the multiple starts):

model matrix. The obtained overlapping clustering model M of the same size as data.

model_lowdim matrix. The obtained low dimensional clustering model AC of size I × S

A matrix. The membership matrix A of the clustering model. Clusters are sorted by size.

P matrix. The profile matrix P of the clustering model.

c matrix. The profile values in terms of the low dimensional components.

B Variables-by-components matrix. Base vectors connecting low dimensional components with
original variables. matrix. Warning: for computing P use B′.

sse numeric. The residual sum of squares of the clustering model, which is minimized by the ALS
algorithm.

totvar numeric. The total sum of squares of data.

explvar numeric. The proportion of variance in data that is accounted for by the clustering model.

iterations numeric. The number of iterations of the algorithm.

timer numeric. The amount of time (in seconds) the complete algorithm ran for.

timer_one_run numeric. The amount of time (in seconds) the relevant single start ran for.

initial_start list. A list containing the initial membership matrix, as well as the type of start that
was used to obtain the clustering solution. (as returned by get_random or get_semirandom)

runs list. Each element represents one model obtained from one of the multiple starts. Each
element contains all of the above information.

parameters list. Containing the parameters used for the model.

References

Depril, D., Van Mechelen, I., & Wilderjans, T. F. (2012). Lowdimensional additive overlapping
clustering. Journal of classification, 29, 297-320.

See Also

adproclus for full dimensional ADPROCLUS

get_random for generating random starts

get_semirandom for generating semi-random starts

get_rational for generating rational starts

Examples

Loading a test dataset into the global environment
x <- stackloss

Low dimensional clustering with K = 3 clusters
where the resulting profiles can be characterized in S = 1 dimensions
clust <- adproclus_low_dim(x, 3, ncomponents = 1)

CGdata 9

CGdata Randomly generated data with underlying overlapping clusters.

Description

A computer generated object-by-variable dataset with an underlying nonrestricted overlapping clus-
tering structure. For illustrative purposes within the ADPROCLUS package only.

Usage

CGdata

Format

A data frame with 100 rows and 15 variables

get_random Generate initial random start

Description

Generate an initial random start for the (low dimensional) Additive Profile Clustering algorithm
(see adproclus and adproclus_low_dim).

Usage

get_random(data, nclusters, seed = NULL)

Arguments

data Object-by-variable data matrix of class matrix or data.frame.

nclusters Number of clusters to be used. Must be a positive integer.

seed Integer. Seed for the random number generator. Default: NULL

Details

get_random generates a random initial binary membership matrix A such that each entry is an
independen draw from a Bernoulli Distribution with π = 0.5.

For generating an initial start from random draws from the data, see get_semirandom. For gener-
ating an initial start based on a specific set of initial cluster centers, see get_rational.

Warning: This function does not obtain an ADPRCOLUS model. To perform aditive profile clus-
tering, see adproclus.

10 get_rational

Value

get_random() returns a list with the following components:

type A character string denoting the type of start (’Random Start’)

A A randomly generated initial Membership matrix

References

Wilderjans, T. F., Ceulemans, E., Van Mechelen, I., & Depril, D. (2010). ADPROCLUS: a graph-
ical user interface for fitting additive profile clustering models to object by variable data matrices.
Behavior Research Methods, 43(1), 56-65.

Depril, D., Van Mechelen, I., & Mirkin, B. (2008). Algorithms for additive clustering of rectangular
data tables. Computational Statistics and Data Analysis, 52, 4923-4938.

Depril, D., Van Mechelen, I., & Wilderjans, T. F. (2012). Lowdimensional additive overlapping
clustering. Journal of classification, 29, 297-320.

See Also

adproclus, adproclus_low_dim for details about membership and profile matrices

get_semirandom for generating semi-random starts

get_rational for generating rational starts

Examples

Obtain data from data set "Stackloss" and generate start allocation
start_allocation <- get_random(stackloss, 3)$A

get_rational Generate start allocation based on a priori profiles

Description

If cluster profiles are given a priori, this function can be used to compute the conditionally optimal
cluster membership matrix A which can then be used as a rational starting allocation for the (low
dimensional) ADPROCLUS procedure (see adproclus and adproclus_low_dim).

Usage

get_rational(data, starting_profiles)

Arguments

data Object-by-variable data matrix of class matrix or data.frame.
starting_profiles

A matrix where each row represents the profile values for a cluster. Needs to be
of same dimensions as P .

get_semirandom 11

Details

The function uses the same quadratic loss function and minimization method as the (low dimen-
sional) ADPROCLUS procedure does to find the next conditionally optimal membership matrix A.
(for details, see Depril et al., 2012).

Warning: This function does not obtain an ADPRCOLUS model. To perform additive profile
clustering, see adproclus.

Value

get_rational() returns a list with the following components:

type A character string denoting the type of start (’Rational Start’)

A An initial Membership matrix

References

Depril, D., Van Mechelen, I., & Wilderjans, T. F. (2012). Lowdimensional additive overlapping
clustering. Journal of classification, 29, 297-320.

See Also

adproclus, adproclus_low_dim for details about membership and profile matrices

get_random for generating random starts

get_semirandom for generating semi-random starts

Examples

Obtain data from standard data set "Stackloss"
x <- stackloss

Obtaining a user-defined rational start profile matrix
(here the first 4 rows of the data)
start_allocation <- get_rational(x, x[1:4,])$A

get_semirandom Generate initial semi-random start

Description

Generate an initial semi-random start for the (low dimensional) Additive Profile Clustering algo-
rithm (see adproclus and adproclus_low_dim).

Usage

get_semirandom(data, nclusters, seed = NULL)

12 get_semirandom

Arguments

data Object-by-variable data matrix of class matrix or data.frame.

nclusters Number of clusters to be used. Must be a positive integer.

seed Integer. Seed for the random number generator. Default: NULL

Details

An initial cluster membership matrix A is generated by finding the best A conditional on an initial
profile matrix P generated by drawing k randomly chosen, distinct, rows from data (for details, see
Depril et al., 2012).

Warning: This function does not obtain an ADPRCOLUS model. To perform aditive profile clus-
tering, see adproclus.

Value

get_semirandom returns a list with the following components:

type A character string denoting the type of start (’Semi-random Start’)

A An initial Membership matrix

References

Wilderjans, T. F., Ceulemans, E., Van Mechelen, I., & Depril, D. (2010). ADPROCLUS: a graph-
ical user interface for fitting additive profile clustering models to object by variable data matrices.
Behavior Research Methods, 43(1), 56-65.

Depril, D., Van Mechelen, I., & Mirkin, B. (2008). Algorithms for additive clustering of rectangular
data tables. Computational Statistics and Data Analysis, 52, 4923-4938.

#’ Depril, D., Van Mechelen, I., & Wilderjans, T. F. (2012). Lowdimensional additive overlapping
clustering. Journal of classification, 29, 297-320.

See Also

adproclus, adproclus_low_dim for details about membership and profile matrices

get_random for generating random starts

get_rational for generating rational starts

Examples

Obtain data from data set "Stackloss" and generate start allocation
start_allocation <- get_semirandom(stackloss, 3)$A

plot.adpc 13

plot.adpc Plotting a (low dimensional) ADPROCLUS solution

Description

When passing a (low dimensional) ADPROCLUS solution of class adpc to the generic plot(), this
method plots the solution in one of the following three ways:

Network Each cluster is a vertex and the edge between two vertices represents the overlap between
the corresponding clusters. The size of a vertex corresponds to the cluster size. The overlap is
represented through color, width and numerical label of the edge. The numerical edge-labels
can be relative (number of overlap observations / total observations) or absolute (number of
observations in both clusters).

Profiles Plot the profile matrix (P for full dimensional model, C for low dimensional model) in
the style of a correlation plot to visualize the relation of each cluster with each variable.

Variables by components Plot the low dimensional component-by-variable matrix B′ in the style
of a correlation plot to visualize the relation of each component with each original variable.
NOTE: Only works for low dimensional ADPROCLUS.

Usage

S3 method for class 'adpc'
plot(x, type = "Network", title = NULL, relative_overlap = TRUE, ...)

Arguments

x Object of class adpc. (Low dimensional) ADPROCLUS solution

type Choice for type of plot: one of "Network", "Profiles","vars_by_comp".
Default: "Network".

title String. OPTIONAL.

relative_overlap

Logical, only applies to plot of type = "Network". If TRUE (default), the num-
ber of observations belonging to two clusters is divided by the total number of
observations.

... additional arguments will be passed on to the functions plot_cluster_network(),
plot_profiles(), plot_vars_by_comp()

Value

Invisibly returns the input model.

14 plot_cluster_network

Examples

Loading a test dataset into the global environment
x <- stackloss

Quick low dimensional clustering with K = 3 clusters and S = 1 dimensions
clust <- adproclus_low_dim(x, 3, 1)

Produce three plots of the model
plot(clust, type = "Network")
plot(clust, type = "Profiles")
plot(clust, type = "vars_by_comp")

plot_cluster_network Network plot of a (low dimensional) ADPROCLUS solution

Description

Produce a representation of a (low dimensional) ADPROCLUS solution, where each cluster is a
vertex and the edge between two vertices represents the overlap between the corresponding clusters.
The size of a vertex corresponds to the cluster size. The overlap is represented through color, width
and numerical label of the edge. The numerical edge labels can be relative (number of overlap
observations / total observations) or absolute (number of observations in both clusters). NOTE:
This function can be called through the plot(model, type = "Network") function with model an
object of class adpc.

Usage

plot_cluster_network(
model,
title = "Cluster network of ADPROCLUS solution",
relative_overlap = TRUE,
filetype = NULL,
filename = NULL,
...

)

Arguments

model ADPROCLUS solution (class: adpc). Low dimensional model possible.

title String. Default: " Cluster network of ADPROCLUS solution"
relative_overlap

Logical. If TRUE (default), the number of observations belonging to two clusters
is divided by the total number of observations. If FALSE the number of observa-
tions in a cluster overlap will be displayed on the edges.

filetype Optional. Choose type of file to save the plot. Possible choices: "R", "pdf",
"svg", "tex", "jpg", "tiff", "png", "" Default: NULL does not create a
file.

plot_profiles 15

filename Optional. Name of the file without extension.

... Additional arguments passing to the qgraph::qgraph() function, to customize
the graph visualization.

Value

Invisibly returns the input model.

Examples

Loading a test dataset into the global environment
x <- stackloss

Quick low dimensional clustering with K = 3 clusters and S = 1 dimensions
clust <- adproclus_low_dim(x, 3, 1)

Plot the overlapping the clusters
plot_cluster_network(clust)

plot_profiles Plot profile matrix of ADPROCLUS solution

Description

Produce a representation of profile matrix P (or C for low dimensional solution) of an ADPRO-
CLUS solution of class adpc. The plot displays the profiles in the style of a correlation plot.
NOTE: This function can also be called through the plot(model, type = "Profiles") function
with model an object of class adpc.

Usage

plot_profiles(model, title = "Profiles of ADPROCLUS solution", ...)

Arguments

model Object of class adpc. (Low dimensional) ADPROCLUS solution

title String. Default: "Profiles of ADPROCLUS solution"

... Additional arguments passing to the corrplot::corrplot() function, to cus-
tomize the plot.

Value

Invisibly returns the input model.

16 plot_vars_by_comp

Examples

Loading a test dataset into the global environment
x <- stackloss

Quick clustering with K = 3 clusters
clust <- adproclus(x, 3)

Plot the profile scores of each cluster
plot_profiles(clust)

plot_vars_by_comp Plot variable to component matrix of ADPROCLUS solution

Description

Produce a representation of variable to component matrix B′ of a low dimensional ADPROCLUS
solution of class adpc. The plot displays the scores in the style of a correlation plot. NOTE: This
function can be called through the plot(model, type = "VarsByComp") function with model an
object of class adpc.

Usage

plot_vars_by_comp(
model,
title = "B' of Low Dimensional ADPROCLUS Solution",
...

)

Arguments

model Object of class adpc. Must be Low dimensional ADPROCLUS solution
title String. Default: "B’ of Low Dimensional ADPROCLUS Solution"
... Additional arguments passing to the corrplot::corrplot() function, to cus-

tomize the plot

Value

Invisibly returns the input model.

Examples

Loading a test dataset into the global environment
x <- stackloss

Quick low dimensional clustering with K = 3 clusters and S = 1 dimensions
clust <- adproclus_low_dim(x, 3, 1)

Plot the matrix B', connecting components with variables
plot_vars_by_comp(clust)

print.adpc 17

print.adpc Print basic information on ADPROCLUS solution

Description

For an object of class adpc as input, this method prints basic information about the ADPROCLUS
solution represented by the object. Works for both full and low dimensional solutions. Adjust the
parameters digits, matrix_rows, matrix_cols to change the level of detail printed.

Usage

S3 method for class 'adpc'
print(
x,
title = "ADPROCLUS solution",
digits = 3,
matrix_rows = 10,
matrix_cols = 15,
...

)

Arguments

x ADPROCLUS solution (class: adpc)

title String. Default: "ADPROCLUS solution"

digits Integer. The number of digits that all decimal numbers will be rounded to.

matrix_rows Integer. The number of matrix rows to display. OPTIONAL

matrix_cols Integer. The number of matrix columns to display. OPTIONAL

... ignored

Value

No return value, called for side effects.

Examples

Obtain data, compute model, print model
x <- stackloss
model <- adproclus(x, 3)
print(model)

18 summary.adpc

print.summary.adpc Print (low dimensional) ADPROCLUS summary

Description

Prints an object of class summary.adpc to represent and summarize a (low dimensional) ADPRO-
CLUS solution. A number of parameters for how the results should be printed can be passed as an
argument to summary.adpc() which then passes it on to this method. This method does not take a
model of class adpc directly as input.

Usage

S3 method for class 'summary.adpc'
print(x, ...)

Arguments

x Object of class summary.adpc

... ignored

Value

Invisibly returns object of class summary.adpc.

Examples

Obtain data, compute model, print summary of model
x <- stackloss
model <- adproclus(x, 3)
print(summary(model))

summary.adpc Summary of ADPROCLUS solution

Description

For an object of class adpc as input, this method yields a summary object of class summary.adpc
including group characteristics of the clusters in the solution. Works for both full and low dimen-
sional solutions. Adjust the parameters digits, matrix_rows, matrix_cols to change the level
of detail for the printing of the summary.

summary.adpc 19

Usage

S3 method for class 'adpc'
summary(
object,
title = "ADPROCLUS solution",
digits = 3,
matrix_rows = 10,
matrix_cols = 5,
...

)

Arguments

object ADPROCLUS solution (class: adpc). Low dimensional model possible.

title String. Default: "ADPROCLUS solution"

digits Integer. The number of digits that all decimal numbers will be rounded to.

matrix_rows Integer. The number of matrix rows to display. OPTIONAL

matrix_cols Integer. The number of matrix columns to display. OPTIONAL

... ignored

Value

Invisibly returns object of class summary.adpc.

Examples

Obtain data, compute model, summarize model
x <- stackloss
model <- adproclus(x, 3)
model_summary <- summary(model)

Index

∗ datasets
CGdata, 9

adpc, 2
adproclus, 2, 3, 8–12
adproclus_low_dim, 2, 6, 6, 9–12

CGdata, 9

get_random, 4–8, 9, 11, 12
get_rational, 6, 8–10, 10, 12
get_semirandom, 4–11, 11

plot.adpc, 13
plot_cluster_network, 14
plot_profiles, 15
plot_vars_by_comp, 16
print.adpc, 17
print.summary.adpc, 18

summary.adpc, 18

20

	adpc
	adproclus
	adproclus_low_dim
	CGdata
	get_random
	get_rational
	get_semirandom
	plot.adpc
	plot_cluster_network
	plot_profiles
	plot_vars_by_comp
	print.adpc
	print.summary.adpc
	summary.adpc
	Index

