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Abstract

A method is presented for determining the latitude, longitude, and altitude of each pixel in a remotely sensed image of a

planet for the case where there is significant surface topography. The method works by sequentially stepping along the

line-of-sight of each pixel in an image until an intersection with the planet surface is detected. The position and altitude of

each pixel on the planet can then be used for further analysis and allows comparison with other data sets. For pixels where

no intersection occurs the altitude and location of the tangent point are determined. These pixels are important as they

provide views of the planet limb and are useful for studying the vertical structure of the atmosphere. Provision is made for

reference to an oblate spheroid when calculating the tangent point, which is required for atmospheric applications on

oblate planets such as the Earth. The algorithm requires a digital elevation model, along with the viewing geometry and

position of the instrument. Illustrative examples are given using the Martian MOLA topography data set for oblique and

limb viewing cases.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In remote sensing we often have spatially resolved
measurements of a planet. In a given image, each
pixel corresponds to either a point on the surface or
a point off the limb of the planet. The horizon
separates the two cases but is not always obvious
from the image alone, especially if an atmosphere is
present. For correct interpretation of such data it is
necessary to know if the line-of-sight of each pixel
e front matter r 2008 Elsevier Ltd. All rights reserved
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intersects with the surface and if so where the
intersection occurs. Measurements can then be
correlated with local surface features or other data
sets. If high resolution surface imaging is the
primary mission objective, observations are usually
acquired with a near-nadir viewing geometry. In
these cases distortions introduced by topography
are minimal and the latitude and longitude of each
pixel are simple to determine using analytical
geometry by approximating the planet to a sphere
or oblate spheroid.

However, topography can introduce significant
distortion when images are taken obliquely, such
as when performing limb scanning of a planet’s
.
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Fig. 1. Examples of how topography can influence the position of the intersection point between line-of-sight and surface. Symbols are:

square with two diamonds; satellite; open circles; intersect points when planet is spherical (dashed line); solid circles; intersect points with
illustrated topography (thick solid line). (a) Sub-nadir viewing geometry. Mountains cause intersect point to shift closer to spacecraft and

depressions cause intersect point to move further away. (b) Shallow angle limb viewing geometry. Mountains can cause surface

intersections with lines-of-sight that would otherwise be of the planet’s limb. For shallow viewing angles the effect of topography on the

intersect point can be very large.

1http://edc.usgs.gov/products/elevation/gtopo30.html
2http://www.psi.edu/pds/resource/oshape.html
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atmosphere (e.g. Mars Climate Sounder (MCS) on
Mars Reconnaissance Orbiter) or wide-angle ima-
ging of small irregular bodies such as asteroids
(e.g. the Near Earth Asteroid Rendezvous mission).
If the planet/object has significant topography
compared to the projected pixel size then viewing
the surface at oblique angles significantly affects the
location of the intersect point or even whether an
intersect occurs at all. This effect is illustrated in
Fig. 1. As the viewing angle increases and pixels get
closer to the limb the effect of topography increases.
For example, a ray that would just graze the surface
of a spherical planet may intersect with a mountain
that occurs before or after the tangent point
(Fig. 1b). If these effects are not taken into account
data could be misinterpreted.

Remote sensing observations are acquired for
studying the surface, atmosphere, or both. For
surface studies we would like to know whether the
line-of-sight of each pixel in the detector array
intersects with the surface, the latitude and long-
itude of the intersect point, the altitude of the local
topography, and possibly the emission angle (angle
between line-of-sight and zenith). Pixels that do not
offer a surface view are generally not used for such
studies.

For studies of the atmosphere we are also
interested in pixels that do not intersect with the
surface but instead offer a grazing incidence of the
planet’s limb. These data are extremely useful for
determining the vertical structure of the atmo-
sphere. Therefore, we need to know whether each
pixel corresponds to a limb or surface view, the
latitude and longitude of the tangent point, and the
altitude of the tangent point above the local surface.
Here we consider the case where a gridded digital
elevation model (DEM) is available and the space-
craft position and viewing vectors are known.
DEMs are now a widely available and important
resource for geological and geophysical applica-
tions. For the Earth, numerous topography data
sets are available. For example, the USGS GTO-
PO30 data set,1 which covers the entire globe at
30 arc sec (� 1 km) resolution or the recent very high
resolution topography data from the Shuttle Radar
Topography Mission (Farr et al., 2007) which has a
resolution of about 1 arc sec (� 30m). Topographic
data sets are also becoming available for other Solar
System bodies. The most widely used of which is the
MOLA topography of Mars (Zuber et al., 1992;
Smith et al., 2001). Examples of other DEMs
are: Magellan topography of Venus (Ford and
Pettengill, 1992); topographic models of Mars’
moons (Thomas, 1993); optical shape models for
small solar system bodies by Peter Thomas available
from NASA’s Planetary Data System2; and the
topography of the asteroid EROS from the NEAR-
Shoemaker mission (Zuber et al., 2000; Thomas
et al., 2002).

The problem of determining the intersection of a
ray with a gridded DEM has no analytical solution
and a numerical technique must be employed. In
this paper a method is presented for determining the
geometric properties of each pixel in a remotely
sensed image with respect to a DEM of the surface.
The DEM is assumed to cover the entire globe, but
the same method could easily be extended for use

http://edc.usgs.gov/products/elevation/gtopo30.html
http://www.psi.edu/pds/resource/oshape.html
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with local DEMs. When calculating the tangent
point, the atmosphere of the planet is not assumed
to be spherical, but instead made up of ellipsoidal
shells. This extra complexity is required as most
large planets with an atmosphere are best described
by an oblate spheroid and the spherical assumption
would introduce a bias in subsequent analysis.

Example applications are given for Mars using
the MOLA DEM with both synthetic and real
observations of the atmosphere and surface. The
algorithm is implemented in FORTRAN and the
source code is made freely available.

2. Method

The overall method involves incrementally step-
ping along the line-of-sight of each pixel until an
intersection with the surface DEM is detected. If no
intersection is detected the tangent point is deter-
mined analytically. By incrementally stepping along
the line-of-sight we avoid having to re-project the
entire DEM into the frame of the spacecraft, which
would be computationally expensive given the large
size of even modest resolution DEMs.

2.1. DEM format

The method requires a DEM that is evenly
gridded in both latitude and longitude. Planeto-
centric latitude, longitude, and radius are used to
define the DEM as they are equivalent to the
spherical polar coordinate system, which simplifies
the mathematics. If the DEM is in planetographic
coordinates then it must first be converted into
planetocentric coordinates and re-gridded onto an
evenly spaced grid. Planetocentric coordinates are
also more appropriate for irregular bodies such as
small moons and asteroids.

The DEM information is stored in two files: (1)
an ASCII file containing header information with
file extension .hdr (see Table 1); and (2) a binary
Table 1

Header information about DEM stored in .hdr file

Variable Symbol Type Description

ppd mpix Integer Pixels per degree

rmax rmax Real Maximum planet radius

f f Real Oblateness of planeta

re req Real Equatorial radiusa

aThese quantities are only required if ellipsoidal tangent point

is required, otherwise set f ¼ 0 and req ¼ 1.
file containing radii data with file extension .dem.
The planet’s surface is split up into pixels and this
file consists of an ordered list of radii from the
planet centre to the surface at the centre of each
pixel. Data are ordered by row then column, so all
longitudes at a given latitude are specified first, then
all longitudes at the next latitude, and so on. The
resolution of the DEM is defined in terms of
number of pixels per degree mpix, which is assumed
to be the same for both latitude and longitude
coordinates. Therefore, the number of DEM pixels
is nf ¼ 360=mpix in the longitude coordinate and
ny ¼ 180=mpix in the latitude coordinate. The DEM
format is shown in Fig. 2, and is similar to readily
available DEMs such as GTOPO (Earth) and
MOLA (Mars).

The use of a binary file saves disk space and
allows individual records to be accessed directly
without reading in the entire data set. This offers a
time saving for cases with large, detailed, DEMs
and sparsely measured data as radii can be read-in
only if required. The record number k of the jth row
(latitude) and ith column (longitude) is given by

k ¼ ðj � 1Þnf þ i (1)
Longitude (°)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i

Fig. 2. Format of DEM. A rectangular area (in latitude–longi-

tude space) is split into a fine grid of evenly spaced pixels. Pixel

centres (spots) are each assigned a radius value. Longitudes are

east-positive and latitudes are north-positive. Radii are stored in

a binary .dem file ordered by longitude then latitude as indicated

by the black winding arrow. Indices i and j refer to longitude and

latitude grid positions, respectively. In this paper the DEM is

assumed to have global coverage.
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When k is known, the corresponding radius can be
read directly from the binary .dem file as required.

2.2. Calculating the radius at arbitrary latitude

and longitude

Due to the cyclicity of longitudes, we first define a
function Dðf1;f2Þ, which is the eastward angle of f2

from f1. For example, Dð10�; 350�Þ ¼ 340� and
Dð350�; 10�Þ ¼ 20�.

To calculate the interpolated radius r for a given
test point with latitude y and longitude f, we first
find the indices k of four radii values ðr1; r2; r3; r4Þ
that surround the point of interest (see Fig. 3):

r1ði ¼ i1; j ¼ j1Þ (2)

r2ði ¼ i2; j ¼ j1Þ (3)

r3ði ¼ i1; j ¼ j2Þ (4)

r4ði ¼ i2; j ¼ j2Þ (5)

The regular nature of the DEM grid allows i and j,
and hence k, to be quickly calculated as follows:

i1 ¼cDðf1;fÞmpix þ 1b (6)

i2 ¼ i1 þ 1 (7)

j1 ¼cðy� y1Þmpix þ 1b (8)

j2 ¼ j1 þ 1 (9)

where y1 and f1 are the minimum latitude and
longitude in the DEM grid, and cb indicates
truncation to the nearest lowest integer. To allow
r1 r2

r3 r4

ra

rb

r
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Fig. 3. Radius r at point ðf; yÞ is determined from bilinear

interpolation of radii ðr124Þ from the four surrounding pixels.

Grid spacing is 1=mpix in both latitude and longitude.
for longitude cyclicity, if i2 ¼ nf þ 1 then i2 ¼ 1.
The record numbers of the four radii are calculated
using Eq. (1).

Note that because the radii are defined for the
centre of the DEM pixels there are no radii points
exactly coincident with the poles. Therefore, if our
test point is within half a pixel width of the pole the
average radius at the pole is calculated and used for
interpolation.

Therefore, j1 ¼ 0 corresponds to the south pole,
so an average radius for the polar point is calculated
from all points with j ¼ 1 and assigned to r1 and r2.
Similarly, j2 ¼ ny þ 1 corresponds to the north pole
and an average polar radius is calculated from all
points with j ¼ ny and assigned to r3 and r4.

To determine the radius r of the test point bi-
linear interpolation (Press et al., 1992) is used,
which is both fast and robust:

ra ¼ r1 þmpixdfðr2 � r1Þ (10)

rb ¼ r3 þmpixdfðr4 � r3Þ (11)

r ¼ ra þmpixdyðrb � raÞ (12)

where ra and rb are the interpolated radii at constant
latitude between r1 � r2 and r3 � r4, respectively.

2.3. Sequential ray stepping to intersect point

The basis of this algorithm is to incrementally
step along the viewing vector (line-of-sight). At each
increment the distance to the planet centre is
calculated. When this distance is less than the
interpolated radius from the DEM an intersection
has occurred somewhere between the last two test
points. The intersection point is refined using
successive interpolation and iteration. This is
explained in detail below.

From now on vectors are defined by bold
lowercase letters (e.g. x), vector magnitudes are
defined by the corresponding italicised lowercase
letters (e.g. x), and points in space are defined by
uppercase letters (e.g. X).

2.3.1. Defining the viewing geometry

To define where the instrument is looking we
require two vectors: one to describe the position of
the instrument/spacecraft and another to describe
which direction the instrument is pointed. The
viewing geometry can be defined in either Cartesian
or spherical polar coordinates with the origin
coincident with the planet centre. A general
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Fig. 4. Definition of viewing geometry parameters for a line-of-

sight that intersects the surface: O;origin=centre of planet;

rmax;maximum radius of planet; dashed line; circle of radius

rmax; solid undulating line; topography; s ¼ distance from O to

spacecraft; l; line-of-sight vector; d0 and dm ¼ minimum and

maximum distances over which an intersection is possible;

P; intersection point; and T ; spherical tangent point.
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Cartesian position vector ðx; y; zÞ in a right handed
Cartesian frame is related to spherical polar
coordinates ðf; y; rÞ by

x ¼ r cosðyÞ cosðfÞ (13)

y ¼ r cosðyÞ sinðfÞ (14)

z ¼ r sinðyÞ (15)

where f is the eastward-positive longitude, y is the
latitude, and r is the distance from the planet centre.
The x-axis corresponds to (f ¼ 0�,y ¼ 0�), the
y-axis to (f ¼ 90�,y ¼ 0�), and the z-axis is aligned
with the rotation axis pointing due north along the
line y ¼ 90�. Therefore, the spacecraft position
vector is defined by s ¼ ðfs; ys; rsÞ or s ¼ ðxs; ys; zsÞ.

Now consider an instrument on the spacecraft
with a detector element pointing in direction
l ¼ ðxl ; yl ; zlÞ. Here, l is a unit direction vector and
can also be described in spherical polar coordinates
as l ¼ ðfl ; yl ; 1Þ if it is translated to the origin. We
refer to l as the line-of-sight vector.

Unless we are dealing with an instrument with a
single pixel it is also necessary to define the
orientation of the detector array. This can be
defined by another unit direction vector q parallel
to one side of the array. Each detector pixel is
then assigned an individual line-of-sight vector so
that we need not assume even pixel spacing in our
instrument.

For example, consider a rectangular array with
nh � nv elements and pixel spacing dh radians in the
detector’s horizontal h direction and dv radians in
the detector’s vertical v direction. If the centre of the
field of view has line-of-sight vector l0, and the unit
direction vector of the detector’s vertical side is q.
The unit direction vectors of the detector array’s
horizontal h and vertical v axes are

h ¼
l ^ q

jl ^ qj
(16)

v ¼ q (17)

where ^ represents the vector cross-product and j j
indicates taking the magnitude of a vector. The
line-of-sight vector lij of each pixel in the array is
defined by

lij ¼ l0 þ sin i �
nh þ 1

2

� �
dh

� �
h

þ sin j �
nv þ 1

2

� �
dv

� �
v (18)
Note that lij is not a unit vector and requires
normalising. This expression is used in Section 4.1
to construct synthetic observations with a rectan-
gular array.

2.3.2. Finding the intersection point

The viewing geometry is shown in Fig. 4. First we
calculate the limb viewing angle c0 using the dot
product of the line-of-sight vector and spacecraft
vector:

cosc0 ¼
�s � l

s
(19)

Note that if cosc0o0 (i.e. c0490�) then the line-of-
sight is pointing away from the planet and no
tangent point exists in the direction that the
instrument is looking.

Second the position vector of the tangent point T

is calculated

t ¼ sþ s cosc0l (20)

When stepping along the ray to look for an
intersection, there is no need to step along the
entire ray. This is because we know the maximum
planet radius rmax so we only need to step along the
portion of the ray over which an intersection is
possible. Therefore, we calculate the minimum d0

and maximum dm distance along the ray that we
need to search:

d0 ¼ s cosc0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2max � t2

q
(21)

dm ¼ s cosc0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2max � t2

q
(22)
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The step size along the ray is chosen such that it
subtends an angle da at the planet centre equal to
half the DEM grid spacing to ensure Nyquist
sampling of the topography:

da ¼
cos y
2mpix

(23)

The factor of cos y ensures that sampling is
fine enough near the poles, where the great circle
spacing of the longitude nodes scales as cos y.
Note that to prevent da collapsing to zero at
the poles the minimum and maximum allowable
values of y in this equation are y1 and yny . If
smoothing has been applied to the DEM such that
topography has a constant great circle angular
resolution, the cos y factor can be omitted. This
gives faster operation of the algorithm over the
poles. Note that da determines the number of steps
that must be taken to reach the intersect point.
Hence the computation time scales linearly with the
grid resolution mpix.

During the ray stepping we specify test points g

along the ray, at which to test for intersections with
the surface. The position vector of the first test point
g0 is defined by

g0 ¼ sþ d0l (24)

Subsequent test points are generated by using the
previous test point and the angular step size da to
calculate the distance moved along the ray dg from
gi to giþ1. From Fig. 5a it can be seen that

ciþ1 ¼ ci þ da (25)
δα

ψi ψi+1

δg

gi gi+1

gi
gi+1

Fig. 5. Stepping along a ray to look for an intersection. (a) Definition o

(b) An intersection has occurred between gi and giþ1. P0 is interpolated

found by iteration, v and u are the fractional distances to P0 along

directions used in text when solving for v.
The step size dg along the ray is then found using
the sine rule:

dg ¼
sinðdaÞgi

sinðp� ciþ1Þ
(26)

Therefore

diþ1 ¼ di þ dg (27)

and

giþ1 ¼ sþ diþ1l (28)

Because g0, c0, and d0 are known we can find gi for
any i by sequential stepping.

To determine if an intersection has occurred
between test points gi and giþ1, we calculate the
latitude and longitude of each test point

ygi
¼ sin�1

giz

gi

� �
(29)

fgi
¼ tan�1

giy

gix

� �
(30)

and calculate the radius ri at this point from the
DEM using the method in Section 2.2. We continue
stepping along the ray until giþ1 is below the surface
(i.e. giþ1oriþ1) or we reach the maximum distance
along the line-of-sight vector dm, in which case no
intersection has occurred and the observation is of
the planet limb.

If an intersect does occur we assume the
topography is linear between the test points and
gi gi+1P’
P

ri

ri+1

v

u

δα

y x

f test points g along line-of-sight and associated angles/distances.

estimate of intersect point, P is the actual intersect point and is

gi–giþ1 and ri–riþ1, respectively. x and y indicate perpendicular
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interpolate to find the predicted intersection point
P0 (see Fig. 5b). At P0

gi þ vðgiþ1 � giÞ ¼ ri þ uðriþ1 � riÞ (31)

where v and u are the fractions moved along the
vectors giþ1 � gi and riþ1 � ri, respectively. Separat-
ing this vector equation into two perpendicular
components (x and y shown in Fig. 5b) in the plane
containing the ray and the origin gives

vgiþ1 sin da ¼ uriþ1 sin da (32)

gi þ vðgiþ1 cos da� giÞ ¼ ri þ uðriþ1 cos da� riÞ.

(33)

Solving these simultaneous equations for v gives

v ¼
riþ1ðri � giÞ

giþ1ri � giriþ1
(34)

Therefore, the predicted intersection point is

p0 ¼ gi þ vdgl (35)

The planet radius rp0 at this point is then inter-
polated from the DEM and compared to p0.

If rp04p0 then the interpolated point is below
the surface. In this case the interpolation is
repeated with

giþ1 ¼ p0 (36)

riþ1 ¼ rp0 (37)

dg ¼ vdg (38)

If rp0op0 then the interpolated point is above
the surface. In this case the interpolation is repea-
ted with

gi ¼ p0 (39)

ri ¼ rp0 (40)

dg ¼ ð1� vÞdg (41)

The interpolation and refinement of the test points
is repeated until rp0 ¼ p0 to within a specified
tolerance. Then p ¼ p0 and we have found the
position vector of the intersection point. This
process only takes one or two iterations because
the angular step size is less than the DEM grid
spacing so the assumption of linear topography
between test points is accurate after one or two
steps.
2.4. Properties of intersection point

From the position vector p of the intersection
point we can calculate all the required properties.
The latitude yp, longitude fp, radius rp at P are
given by

yp ¼ sin�1
zp

p

� �
(42)

fp ¼ tan�1
yp

xp

� �
(43)

rp ¼ p (44)

For atmospheric studies the emission angle � at the
surface is important as it defines the path length
through the atmosphere. The emission angle is
defined by the angle between the line-of-sight vector
and the normal n to the surface of the best fitting
oblate spheroid at ðfp; ypÞ

� ¼ cos�1ð�n � lÞ (45)

The normal n is calculated using the equations
for an ellipsoid. The surface of an ellipsoid
with equatorial radius req and polar radius rpol is
defined by

x2

r2eq
þ

y2

r2eq
þ

z2

r2pol
¼ 1 (46)

The oblateness f and eccentricity e of an oblate
spheroid are defined by

f ¼
req � rpol

req
(47)

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2eq � r2pol

r2eq

s
(48)

These quantities are related by e2 ¼ f ð2� f Þ.
Rearranging Eq. (46) using r2pol ¼ r2eqð1� e2Þ from
Eq. (47) gives

x2 þ y2 þ
z2

1� e2
¼ r2eq (49)

A general surface defined in 3D by function
F ðx; y; zÞ ¼ 0 has surface normal n ¼ 5F (Boas,
1983). Therefore, the normal n to the ellipsoid
surface at P is

n ¼ xp; yp;
zp

1� e2

� �
(50)

Other quantities such as the solar azimuth can also
be calculated from n and p if the position vector of
the sun is known.
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2.4.1. Tangent point for an oblate spheroid

If the line-of-sight does not intersect the planets
surface then we have a view of the planet’s limb. If
we are only interested in the solid surface these data
can be ignored. However, if we are interested in the
planet’s atmosphere these measurements are im-
portant and it is necessary to determine the latitude,
longitude, and altitude of the tangent point. If the
planet is an oblate spheroid, as most planets large
enough to have an atmosphere are, then the tangent
T

Tc

Sc S
l

T´

T´c

S´c
S´

l´

Fig. 6. (a) Tangent point of an oblate spheroidal planet (grey

area). For a sphere the tangent point would occur at T, but for an

oblate spheroid the tangent point occurs at point Tc such that

line-of-sight vector is perpendicular to surface normal. Sc is point

on surface directly below Tc. (b) z-axis has been scaled such that

the ellipsoid is transformed into a sphere, which allows the scaled

tangent point T 0c to be determined analytically.
point occurs at a different position to that for a
sphere.

At the tangent point Tc of a ray to an oblate
spheroid (or ellipsoid) the ray does not subtend an
angle of 90� to the radius line. Instead it subtends
an angle of 90� with the surface normal. This is
illustrated in Fig. 6. In addition to Tc, we require
the point on the planet’s surface Sc directly
below Tc.

With reference to Fig. 6a, the surface normal nc

from Sc to Tc is given by

nc ¼ �sc þ sþ al (51)

where a is the distance from the spacecraft to Tc

along the line-of-sight. The surface normal and the
line-of-sight are perpendicular so the dot product
is zero:

l � ð�sc þ sþ alÞ ¼ 0 (52)

Therefore, rearranging and using l � l ¼ 1 gives

a ¼ l � ðsc � sÞ (53)

We now apply a linear stretch to the z-axis such that
the ellipsoid is transformed into a sphere (Fig. 6b).
The scale factor w is given by

w ¼
req

rpol
¼

1

1� f
(54)

All vectors have their z-components scaled by
w and are indicated with a ‘‘dash’’. Note that Tc

is not stretched—instead T 0c is defined by the
intersection between the projection of s0c and the
stretched line-of-sight. The spherical tangent point
T 0c is then

t0c ¼ s0 þ js0 � l̂0jl̂0 (55)

where the hat on l̂0 indicates re-normalisation to unit
length. The point directly below the tangent point in
the stretched frame is

s0c ¼ t0c
req

jt0cj
(56)

Scaling back to geographic coordinates by multi-
plying the z-components by 1=w gives sc and hence a

by using Eq. (53). tc is then given by

tc ¼ sþ al (57)

and the perpendicular distance between the line-of-
sight and the ellipsoid surface d is

d ¼ jtc � scj (58)
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Table 2

Summary of main subroutines

Routine name Brief description

zcalc_planet_intersect.f Main routine

zdem_open.f Opens and checks DEM

zdem_read.f Reads entire DEM (used if

dem_read_mode¼ 0)

zdem_radius.f Interpolates DEM at given lat/

lon (used if

dem_read_mode¼ 0)

zdem_radius_increment.f Interpolates DEM at given lat/

lon using incremental read

(used if dem_read_mode¼ 1)

zcrossp.f Vector cross product

zrotate_about_vector.f Rotate a vector about another

vector by a specified angle

ztangent_ellipsoid.f Calculated tangent point to an

ellipsoid

flondiff.f The function D
fvsep.f Angle between two vectors

All subroutines are written in FORTRAN77.
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The longitude and latitude of Sc (position vector
sc ¼ ðxc; yc; zcÞ) are

fc ¼ sin�1
zcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
c þ y2

c þ z2c
p
 !

(59)

yc ¼ tan�1
yc

xc

� �
(60)

To find the radius rc of the spheroid at ðfc; ycÞ

substitute x ¼ rc cos yc cosfc, y ¼ rc cos yc sinfc,
and z ¼ rc sin yc into Eq. (46) to give

rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2eqð1� e2Þ

1� e2 cos2 yc

s
(61)

The altitude of the tangent point Tcalt above the
DEM surface is then given by the perpendicular
height of the ellipsoid above the DEM plus the
perpendicular distance between the line-of-sight and
ellipsoid

Tcalt ¼ ðrc � rðfc; ycÞÞ cos gþ d (62)

where rðfc; ycÞ is the planet radius at ðfc; ycÞ

interpolated from the DEM, g is the angle
between nc and sc, and d is the distance between
the line-of-sight and the oblate spheroid from
Eq. (58). Using the dot product this can be re-
written as

Tcalt ¼ ðrc � rðfc; ycÞÞ
sc � nc

scnc

þ d (63)
3. Code description

The algorithm described in the previous section
has been implemented in FORTRAN77. The code
has been compiled and run successfully using
the Intel Fortran Compiler and the G77 (GNU)
compiler.

The main subroutines are summarised in
Table 2—the most important of which is zcalc_
planet_intersect.f. The inputs for this rou-
tine are arrays of spacecraft positions, line-of-sight
vectors, the location of the DEM, and the quantities
in Table 1. For an image with N pixels taken while
the spacecraft was at a single location, there would
be N identical spacecraft position vectors and N

line-of-sight vectors—one for each pixel. The out-
puts are the position vectors p, t, tc, sc, along with
the emission angles.
A test program test_planet_intersect.f
is included to illustrate how the subroutines are
used.

When running the program there are two options
that must be set:

dem_read_mode:

This sets the way that the DEM is read in and can
be either 0 or 1:

0: The entire DEM is read in before performing
calculations. This offers a run-time saving if
there are many pixels or a dense coverage
of measurements. This will not be possible if
there is insufficient RAM to load the whole DEM
at once.

1: The DEM points are read in one at a
time as required. This offers a run-time
saving if there are only a few measurements. It is
also useful if RAM is limited or the DEM is very
large.

step_mode:

This determines whether to include the factor of
cosðyÞ in Eq. (23).

0: Omit factor of cosðyÞ. This is appropriate if the
DEM has been smoothed to have a constant great
circle resolution. The algorithm will operate faster
in this mode.

1: Include factor of cosðyÞ. This is needed if the
DEM has a none constant resolution and includes
finer topographic features at the poles, where grid
points bunch up.

zcalc_planet_intersect.f
zcalc_planet_intersect.f
test_planet_intersect.f
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It is also important to know whether we are
observing a large planet or an irregular body.
Planets large enough to retain a substantial
atmosphere are well described by oblate spheroids.
In these cases the equatorial radius req and
oblateness f must be set in the .hdr file to
define the oblate spheroid so that Tc can be
calculated. For small irregular bodies such as
asteroids the calculation of an oblate spheroid
tangent point is not relevant. In these cases the
oblateness should be set to zero and req to unity,
which will give Tc ¼ T .

4. Examples using MOLA topography data

In this section synthetic and real observations
are used to illustrate how the routines could be
used. Both test cases are for Mars and we use
the topography data from the Mars Orbiter
Laser Altimeter (MOLA) on board NASA’s
Mars Global Surveyor spacecraft (Zuber et al.,
1992; Smith et al., 2001), which is available
from NASA’s PDS Geosciences Node.3 Fig. 7
shows a plot of the MOLA topography in
Mollweide global projection (Bugayevskiy and
Snyder, 1995). Contouring and plotting uses the
Generic Mapping Tools software (Wessel and
Smith, 1998).

4.1. Example 1: oblique surface view

(synthetic data)

Consider a very simple case where Mars’ surface
has a temperature TðzÞ, which falls linearly from a
3http://pds-geosciences.wustl.edu/missions/mgs/mola.html
value of T0 at the mean planetary surface level to
TðzÞ at altitude z above the mean surface level.

TðzÞ ¼ T0 � Gz (64)

where G is the ‘‘lapse rate’’ in K/km.
We observe a scene on Mars from orbit with an

infrared radiometer, which measures the spectral
radiance F (units: Wm�2 sr�1 m�1) emitted by the
planet at wavelength l.

The spectral radiance F ðT ; lÞ emitted by a black
body at temperature T and wavelength l is given by
the Plank function:

F ðT ; lÞ ¼
2hc2

l5ðexpðhc=kTlÞ � 1Þ
(65)

where h is the Plank constant, k is the Boltzmann
constant, and c is the speed of light. This expression
was used to generate synthetic radiances to which
Gaussian random noise was added to simulate
measurement error using the routine gasdev.f
from Press et al. (1992). Eq. (65) was then re-
arranged to give T as the subject and used to
convert the synthetic radiances into brightness
temperatures by assuming that Mars emits as a
black body. These brightness temperatures are
plotted in Fig. 8a, which shows a scene contain-
ing the volcano Olympus Mons observed with a
101� 101 pixel array.

One possible aim of analysing such a data set is to
relate each of the measured brightness temperatures
to locations on the planet’s surface and determine
the parameters G and T0 from the observed data set.
To do this we need to know the latitude, longitude,
and surface altitude for each pixel.

This is achieved by using the ray stepping
technique described in Section 2.3. Fig. 8b shows

http://pds-geosciences.wustl.edu/missions/mgs/mola.html
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Fig. 8. Synthetic observation of an oblique view of Olympus Mons. (a) Shows brightness temperature measured by a 101� 101 pixel
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Colder temperatures (lighter colours) occur at greater elevations. Dots show pixel positions. (b) Shows data after re-projection into
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Shows a map view of topography interpolated from the DEM for pixels that intersect with the surface (lighter colours indicate higher

topography). (d) Shows basic analysis of transformed data set in order to find lapse rate and T0. Determining latitude, longitude, and

altitude for each pixel greatly simplifies such analysis.
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the measured data converted into a map view in
latitude–longitude coordinates. Each pixel also
has an altitude assigned to it based on the DEM
(Fig. 8c).

Once the pixel positions and altitude have been
mapped it becomes possible to perform further
analysis on the data. The altitude is plotted against
brightness temperature in Fig. 8d, which can be
used to determine G and T0 from the gradient and
intercept of a least-squares straight line fit. Conver-
sion to a map view also facilitates comparison
with additional data sets taken from different view
points.
4.2. Example 2: limb view of atmosphere (MCS)

Here we consider observations of Mars’ limb
made by MCS (McCleese et al., 2007) on-board
NASA’s Mars Reconnaissance Orbiter (MRO).
MRO is in a polar orbit and the MCS instrument
observes Mars primarily in a forward limb scanning
mode with nine linear arrays of 21 pixels, each
covering a different wavelength band. The linear
pixel arrays are aligned perpendicular to the horizon
and overlap with the atmosphere and surface so
that atmospheric properties can be determined
as a function of altitude. Fig. 9a shows MOLA
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now plotted against tangent altitude above the Mars reference ellipsoid. Contours are altitude of oblate tangent point above local surface

in kilometres. Pixels that intersect with surface are not plotted. Patterned area shows along-track topography variation for comparison.

The information obtained about each pixel from the ray stepping technique is essential for further analysis such as measuring atmospheric

temperature as a function of altitude.
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topography overlaid with the orbital tracks of MRO
for a 24 h period.

The measured (normalised) radiances are shown
in Fig. 9b as a function of latitude and pixel
number. In this raw data it is difficult to assess
whether the observed features in the radiance are
due to pointing, topography, or the atmosphere. In
Fig. 9c the ray stepping technique has been used to
select pixels that only sample the atmosphere and
determine the altitude of the tangent point above
the local surface for each of these pixels. The
tangent altitude information can be used to assign
altitudes to atmospheric properties derived from the
measured radiances—resulting in vertical profiles of
temperature and cloud density for example. This
technique was used by Teanby et al. (2007) to obtain
vertical profiles of temperature and dust in Mars’
atmosphere.
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5. Discussion

A ray stepping technique is presented for determin-
ing the intersection between a planet’s surface and the
line-of-sight of pixels in a remotely sensed image. The
method requires a DEM for the planet being
observed and the instrument viewing geometry.

For lines-of-sight that intersect with the surface the
latitude, longitude, altitude, and emission angle at the
intersect point are determined. For purely atmospheric
paths (i.e. views of the planet limb) the location of the
atmospheric tangent point of each image pixel is
returned. When calculating the tangent point and
emission angle, provision is made for planets that are
oblate spheroids. Therefore the method is appropriate
for both surface and atmospheric remote sensing
applications. However, it is most useful for limb studies
of the atmosphere and images of the surface taken at
oblique angles, such as whole-body or wide-angle views
of irregular asteroids and moons.

Example applications using the MOLAMars DEM
are given to illustrate use of the method for studies of
the surface and atmosphere. For surface applications,
obliquely viewed images can be transformed into
latitude/longitude maps and an altitude and emission
angle assigned to each pixel. For atmospheric limb
studies, the tangent point altitude of each pixel along
with whether or not an intersection with the surface
occurs is returned. This greatly aids interpretation of
such data sets and permits further analysis.

Processing time scales linearly with the DEM grid
resolution so that very high resolution grids do not
result in very long run times. A suite a FORTRAN
subroutines and test programs to perform these
transformations are available from the Computers
and Geosciences web site.
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