Home
About ISIS
Support
Download

ISIS 3

Documentation
Tutorials
Technical Documents

ISIS 2

Documentation
Tutorials
Technical Documents

Search

USGS

ISIS 3 Application Documentation


slpmap

Printer Friendly View | TOC | Home

Create slope, aspect, or percent slope data cube.

Overview Parameters

Description

This program creates a new cube containing slope (radians, degree,s or percent) or aspect (radians, degrees) data from an input cube. This program computes the slope and aspect of an input cube and outputs the results. An individual slope, aspec, or percent slope cube can be rendered using this program.

Data requirements to run slpmap:

  • A digital terrain model (DTM) with DN values representing the radius or elevation of a target body, or
  • Any ISIS cube that is a level 1 or level 2 image (can be multiband).

Horne's algorithm is used to compute the slope or aspect. A 3x3 kernel:
      A  B  C
      D  E  F
      G  H  I
    
Each output pixel is computed as follows:
      SLOPE EQUATION
      [dz/dx] = ((C + 2F + I) - (A + 2D + G)) / (8 * X_PIXEL_RESOLUTION)
      [dz/dy] = ((G + 2H + I) - (A + 2B + C)) / (8 * Y_PIXEL_RESOLUTION)

      slope = ATAN ( SQRT ( [dz/dx]^2 + [dz/dy]^2 ) )
      percentslope = slope / 90
    
The slope equation above assumes the pixels are not square: hence X_PIXEL_RESOLUTION and Y_PIXEL_RESOLUTION. That is, the x distance across the pixel is not equal to the y distance form top to bottom of the pixel.
      ASPECT EQUATION
      [dz/dx] = ((C + 2F + I) - (A + 2D + G)) / 8
      [dz/dy] = ((G + 2H + I) - (A + 2B + C)) / 8

      aspect = 90 - ATAN2 ([dz/dy], -[dz/dx])
      if (aspect < 0) then aspect = aspect + 360
    

Slope: Slope is typically between 0 and 90 degrees, were 0 is flat and 90 is vertical.Slope may be output in radians, degrees, or percent slope.

Aspect: The aspect represents the direction or 0 to 360 degrees of the slope in pixel space (see figure below). From the center pixel (E), 0 degrees is straight towards B (generally north), 45 is towards C, 90 is towards F, 135 is towards I, 180 is towards H, and so on.


      A  B  C
      D  E  F
      G  H  I
    

Scale Construction: By default, the program will attempt to remove any scaling differences by using the map projection information (PIXRES=AUTOMATIC). This computation is done at every pixel so the correct x-to-y ratio is computed. This is important, for example, for global maps where the x/y ratio deviates with distance from the latitude and/or longitude of true scale in a map projection. This only works for radius DTMs.

What if the input cube Z units are in elevation values instead of radius values?

The default setting PIXRES=AUTOMATIC will not work. You will need to set PIXRES=FILE (recommended for a map projected file) or PIXRES=USER. Note: unlike PIXRES=AUTOMATIC, these later two methods do not correct for distortions int he map projection. They will return good results for smaller regious when the map projection is defined to minimixe distortions (e.g. LROC NAC or HIRISE sereo DTMs).

What if the input cube is not map projected?

If the image lacks a map projection,you must provide the pixel resolution via PIXRES=USER (for this option the pixels are assumed to be square). You must also provide a single value using the RESOLUTION parameter that will be applied to all pixels in the image and in both directions.

What if the xy units are not the same as the z units?

The program assumes the xy units are the same as the z (pixel) units. By default the program assumes the units are the same, but allows you to scale the z units to the xy units using the CONVERSIONFACTOR parameter if the PIXRES=USER option is selected.


Categories


History

Brian Peck2006-12-25 Original version
Steven Lambright2008-10-06 Changed slope and aspect algorithms
Jeff Anderson2012-08-02 Changed the slope algorithm to compute the sample and line resolution at each pixel. Previously the algorithm used the resolution at the center of the image. In projected images the resolution varies as you move away from the latitude and/or longitude of true scale. Also, improved the documentation and added user options to output percent slope.
Debbie A. Cook2012-12-10 Removed unused Projection.h include. References #775
Stuart Sides2013-01-30 Backward Compatibility Issue: Changed the default output to be slope rather than percent slope. Backward Compatibility Issue: Removed ability to supply a conversion factor when using the automatic resolution option (CONVERSION=AUTOMATIC). AUTOMATIC, assumes the DNs in the cube have units of meters. Added a test to the CONVERSION=AUTOMATIC option so DNs in the cube with negative values will cause a better error to be shown. Added a BANDBIN group to the output cube labels.
Kimberly Oyama2014-03-28 Added the FILE option to the PIXRES parameter. This allows the user to specify that the pixel resolution from the input cube's projection should be used. Updated the documentation. Fixes #1764.

Parameter Groups

Files

Name Description
FROM Input cube
TO Output cube

Output Options

Name Description
OUTPUTOutput type: slope, aspect, or percent slope
UNITSUnits of the output image

Scaling Options

Name Description
PIXRESDefines the pixel resolution (width and height)
CONVERSIONConversion from z units to spatial units
RESOLUTIONPixel resolution
X

Files: FROM


Description

Use this parameter to select the input cube.The algorithm is applied to all bands of a multiband cube.

Type cube
File Mode input
Filter *.cub
Close Window
X

Files: TO


Description

Use this parameter to define the filename of the resultant slope, aspect, or percent slope cube.

Type cube
File Mode output
Pixel Type real
Close Window
X

Output Options: OUTPUT


Description

This specifies the type of output pixels that will be created. The output file will contain either slope, aspect, or, percent slope.

Type string
Default SLOPE
Option List:
Option Brief Description
SLOPECreate slope cube This creates a slope cube.
ASPECTCreate aspect cube This creates an aspect cube. That is, the direction/azimuth of the slope.

Exclusions

  • PIXRES
  • RESOLUTION
  • CONVERSION
PERCENTSLOPECreate percent slope cube This creates a slope cube whose pixel values are percentages (slope/90) instead of angles.

Exclusions

  • UNITS
Close Window
X

Output Options: UNITS


Description

Units of the output pixels

Type string
Default DEGREES
Option List:
Option Brief Description
RADIANSOutput pixels in radians The output pixels will be in radians, between 0 and PI/2 for slope and 0 and 2PI for aspect.
DEGREESOutput pixels in degrees The output pixels will be in degrees, between 0 and 90 for slope and 0 and 360 for aspect.
Close Window
X

Scaling Options: PIXRES


Description

This determines how the resolution of the input pixels will be defined.

Type string
Default AUTOMATIC
Option List:
Option Brief Description
AUTOMATICAutomatically compute the resolution per pixel using the map projection The program will use the map projection to compute the resolution (X and Y) of each pixel to ensure the slope is computed properly. This option requires that the input cube be a radius file, a cube in which the DN values represent the radius of the target at that point (no negative DN values).

Exclusions

  • RESOLUTION
  • CONVERSION
FILEPixel Resolution of FROM cube's projection. The input cube must be projected if this option is selected. The pixel resolution will come from the mapping group of the input cube.

Exclusions

  • RESOLUTION
USERUser defined pixel resolution If the input cube does not have a map projection this option can be used to define the resolution which is assumed to be square. A single resolution is used for the entire image in both the X and Y directions. Note: If the pixel height varies significantly from the width, the slope will not be computed correctly.
Close Window
X

Scaling Options: CONVERSION


Description

This parameter is a multiplicative factor for the resolution. It is used to convert the spatial units (pixels) to the correct distance units. Since the slope algorithm depends on cancelling out the units, the conversion factor from the z vertical (input pixel) units to the xy horizontal (spatial) units needs to be considered. For example, if the xy units are in meters and the z units are in kilometers the unit conversion factor should be 1000 as we are converting z kilometers to xy meters. The default presumes the units are the same.

Type double
Default 1.0
Close Window
X

Scaling Options: RESOLUTION


Description

Defines both the X and Y pixel resolution to be used across the entire image. Note that if the pixel height varies significantly from the width, the slope will not be computed correctly.

Type double
Close Window