1. MySQL Connector/J

MySQL provides connectivity for client applications developed in the Java programming language viaa JDBC driver, which is called
MySQL Connector/J.

MySQL Connector/JisaJDBC-3.0 Type 4 driver, which means that is pure Java, implements version 3.0 of the JDBC specification,
and communicates directly with the MySQL server using the MySQL protocol.

Although JDBC is useful by itself, we would hope that if you are not familiar with JDBC that after reading the first few sections of this
manual, that you would avoid using naked JDBC for al but the most trivial problems and consider using one of the popular persistence

frameworks such as Hibernate, Spring's JDBC templates or I batis SQL Maps to do the majority of repetitive work and heavier lifting
that is sometimes required with JDBC.

This section is not designed to be a complete JDBC tutorial. If you need more information about using JDBC you might be interested in
the following online tutorials that are more in-depth than the information presented here:
e JDBC Basics— A tutoria from Sun covering beginner topicsin JDBC

« JDBC Short Course — A more in-depth tutorial from Sun and JGuru
Key topics:
« For help with connection strings, connection options setting up your connection through JDBC, see Section 1.4.1,

“Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J’.

¢ For tips on using Connector/J and JDBC with generic J2EE toolkits, see Section 1.5.2, “Using Connector/J with J2EE and Other
Java Frameworks’.

« Developers using the Tomcat server platform, see Section 1.5.2.2, “Using Connector/J with Tomcat”.
« Developers using JBoss, see Section 1.5.2.3, “Using Connector/J with JBoss'.

* Developers using Spring, see Section 1.5.2.4, “Using Connector/J with Spring”.

1.1. Connector/J Versions

There are currently four versions of MySQL Connector/J available:

e Connector/J5.1iscurrent in alpha status. It provides compatibility with all the functionality of MySQL, including 4.1, 5.0, 5.1 and
the 6.0 alpha release featuring the new Falcon storage engine. Connector/J 5.1 provides ease of development features, including
auto-registration with the Driver Manager, standardized validity checks, categorized SQL Exceptions, support for the JDBC-4.0
XML processing, per connection client information, NCHAR, NVARCHAR and NCL OB types. Thisrelease also includes all bug fixes
up to and including Connector/J 5.0.6.

¢ Connector/J 5.0 provides support for al the functionality offered by Connector/J 3.1 and includes distributed transaction (XA) sup-
port.

¢ Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides support for all the functionality
in MySQL 5.0 except distributed transaction (XA) support.

¢ Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or MySQL 4.1 servers, athough it

will provide basic compatibility with later versions of MySQL. Connector/J 3.0 does not support server-side prepared statements,
and does not support any of the features in versions of MySQL later than 4.1.

The current recommended version for Connector/Jis 5.0. This guide covers al three connector versions, with specific notes given
where a setting applies to a specific option.

1.1.1. Java Versions Supported

http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html

MySQL Connector/J

MySQL Connector/J supports Java-2 JVMs, including:

e JDK 1.2.x (only for Connector/J 3.1.x or earlier)

« JDK 1.3x
« JDK 14x
« JDK 1.5.x

If you are building Connector/J from source using the source distribution (see Section 1.2.4, “Installing from the Development Source
Tree”) then you must use JDK 1.4.x or newer to compiler the Connector package.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.X.

Because of the implementation of j ava. sql . Savepoi nt, Connector/J 3.1.0 and newer will not run on JDK's older than 1.4 unless
the class verifier isturned off (by setting the - Xver i f y: none option to the Javaruntime). Thisis because the class verifier will try to
load the class definition for j ava. sql . Savepoi nt eventhough it is not accessed by the driver unless you actually use savepoint
functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than 1.4.x, asit relies on
java. util.Li nkedHashMap which wasfirst available in JDK-1.4.0.

1.2. Connector/J Installation

You can install the Connector/J package using two methods, using either the binary or source distribution. The binary distribution
provides the easiest methods for installation; the source distribution enables you to customize your installation further. With either solu-
tion, you must manually add the Connector/J location to your Java CLASSPATH.

1.2.1. Installing Connector/J from a Binary Distribution

The easiest method of installation isto use the binary distribution of the Connector/J package. The binary distribution is available either
asaTar/Gzip or Zip file which you must extract to a suitable location and then optionally make the information about the package
available by changing your CLASSPATH (see Section 1.2.2, “Installing the Driver and Configuring the CLASSPATH").

MySQL Connector/Jis distributed as a .zip or .tar.gz archive containing the sources, the classfiles, and the JAR archive named
nysql - connect or -j ava- [ver si on] - bi n. j ar, and starting with Connector/J 3.1.8 a debug build of the driver in afile named
nmysql - connect or-j ava-[version]-bin-g.jar.

Starting with Connector/J 3.1.9, the . cl ass filesthat constitute the JAR files are only included as part of the driver JAR file.

Y ou should not use the debug build of the driver unlessinstructed to do so when reporting a problem ors bug to MySQL AB, asit isnot
designed to be run in production environments, and will have adverse performance impact when used. The debug binary also depends
on the Aspect/J runtime library, which islocated inthesrc/ | i b/ aspectjrt.j ar filethat comeswith the Connector/J distribution.

Y ou will need to use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for the .zip
archive, andt ar for the .tar.gz archive). Because there are potentially long filenames in the distribution, we use the GNU tar archive
format. Y ou will need to use GNU tar (or an application that understands the GNU tar archive format) to unpack the .tar.gz variant of
the distribution.

1.2.2. Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql - connect -
or-java-[version]-bin.jar inyour classpath, either by adding the full path to it to your CLASSPATH environment variable,
or by directly specifying it with the command line switch -cp when starting your VM.

If you are going to use the driver with the JDBC DriverManager, you would usecom mnysql . j dbc. Dri ver asthe classthat imple-
ments java.sgl.Driver.

Y ou can set the CLASSPATH environment variable under UNIX, Linux or Mac OS X either locally for a user within their . profi | e,
. | ogi n or other login file. You can also set it globally by editing the global / et ¢/ profi | e file.

For example, under a C shell (csh, tcsh) you would add the Connector/J driver to your CLASSPATH using the following:

2

MySQL Connector/J

shel | > set env CLASSPATH / pat h/ mysql - connect or - j ava- [ver] - bi n. j ar : $CLASSPATH

Or with a Bourne-compatible shell (sh, ksh, bash):

export set CLASSPATH=/ pat h/ nysql - connector-j ava-[ver]-bin.jar: $CLASSPATH

Within Windows 2000, Windows X P and Windows Server 2003, you must set the environment variable through the System control
panel.

If you want to use MySQL Connector/J with an application server such as Tomcat or JBoss, you will have to read your vendor's docu-
mentation for more information on how to configure third-party class libraries, as most application serversignore the CLASSPATH en-
vironment variable. For configuration examples for some J2EE application servers, see Section 1.5.2, “Using Connector/J with J2EE
and Other Java Frameworks’. However, the authoritative source for JDBC connection pool configuration information for your particu-
lar application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the driver's .jar file in the WEB-
INF/lib subdirectory of your webapp, asthisis a standard location for third party class libraries in J2EE web applications.

Y ou can also use the MysqglDataSource or MysglConnectionPool DataSource classesinthecom nysql . j dbc. j dbc2. opt i onal
package, if your J2EE application server supports or requires them. Starting with Connector/J 5.0.0, the
j avax. sql . XADat aSour ce interface isimplemented via the

com nysqgl . j dbc. j dbc2. optional . Mysqgl XADat aSour ce class, which supports XA distributed transactions when used in
combination with MySQL server version 5.0.

The various MysglDataSource classes support the following parameters (through standard set mutators):

e user
e password

¢ serverName (see the previous section about fail-over hosts)
o databaseName

* port

1.2.3. Upgrading from an Older Version

MySQL AB triesto keep the upgrade process as easy as possible, however asis the case with any software, sometimes changes need to
be made in new versions to support new features, improve existing functionality, or comply with new standards.

This section has information about what users who are upgrading from one version of Connector/J to another (or to a new version of the
MySQL server, with respect to JDBC functionality) should be aware of.

1.2.3.1. Upgrading from MySQL Connector/J 3.0to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Mgjor changes are isolated to new
functionality exposed in MySQL-4.1 and newer, which includes Unicode character sets, server-side prepared statements, SQL State
codes returned in error messages by the server and various performance enhancements that can be enabled or disabled via configuration
properties.

« Unicode Character Sets— Seethe next section, aswell as Character Set Support, for information on this new feature of MySQL.
If you have something misconfigured, it will usually show up as an error with amessagesimilarto| | | egal ni x of coll a-
tions.

¢ Server-side Prepared Statements— Connector/J 3.1 will automatically detect and use server-side prepared statements when they
are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing viaall variants of Connect i on. pr epar eSt at enent () to
determineif it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead pre-
paresit as a client-side emulated prepared statement. Y ou can disable this feature by passing emulateUnsupportedPstmts=false in
your JDBC URL.

http://dev.mysql.com/doc/refman/5.0/en/charset.html

MySQL Connector/J

If your application encounters issues with server-side prepared statements, you can revert to the older client-side emul ated prepared
statement code that is still presently used for MySQL servers older than 4.1.0 with the connection property useServerPrepSt-
mts=false

¢ Datetimeswith all-zero components (0000- 00- 00 . . .) — These values can not be represented reliably in Java. Connector/J
3.0.x aways converted them to NULL when being read from a ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered as this is the most correct behavior according to
the JDBC and SQL standards. This behavior can be modified using the zeroDateTimeBehavior configuration property. The allow-
ablevauesare:

e excepti on (the default), which throws an SQL Exception with an SQL State of S1009.
e convert ToNul | , which returns NULL instead of the date.
* round, which rounds the date to the nearest closest value whichis0001- 01- 01.

Starting with Connector/J 3.1.7, Resul t Set . get St ri ng() can be decoupled from this behavior via noDatetimeString-
Sync=true (the default valueisf al se) so that you can get retrieve the unaltered all-zero value as a String. It should be noted that
this also precludes using any time zone conversions, therefore the driver will not allow you to enable noDatetimeStringSync and
useTimezone at the same time.

¢ New SQL State Codes — Connector/J 3.1 uses SQL:1999 SQL State codes returned by the MySQL server (if supported), which are
different from the legacy X/Open state codes that Connector/J 3.0 uses. If connected to aMySQL server older than MySQL-4.1.0
(the oldest version to return SQL States as part of the error code), the driver will use a built-in mapping. Y ou can revert to the old
mapping by using the configuration property useSql StateCodes=fal se.

e ResultSet.getString() —CalingResul t Set. get String() onaBLOB columnwill now return the address of the
byte[] array that representsit, instead of a String representation of the BLOB. BLOBs have no character set, so they can't be conver-
ted to java.lang.Strings without dataloss or corruption.

To store stringsin MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as ajava.sql.Clob.

¢ Debug builds— Starting with Connector/J 3.1.8 a debug build of the driver in afile named
nysql - connect or-j ava- [ver si on] - bi n-g. j ar isshipped adongside the normal binary jar file that is named nysq|l -
connector-java-[version]-bin.jar.

Starting with Connector/J 3.1.9, we don't ship the .class files unbundled, they are only available in the JAR archives that ship with
the driver.

Y ou should not use the debug build of the driver unlessinstructed to do so when reporting a problem or bug to MySQL AB, asitis
not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also de-
pends on the Aspect/J runtime library, whichislocated inthesr c/ | i b/ aspectjrt.j ar filethat comeswith the Connector/J
distribution.

1.2.3.2. IDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

« Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding was not supported by the
server, however the JIDBC driver could use it, allowing storage of multiple character setsin latinl tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this functionality, and can not up-
grade them to use the official Unicode character support in MySQL server version 4.1 or newer, you should add the following prop-
erty to your connection URL:

used dUTF8Behavi or =t r ue

e Server-side Prepared Satements - Connector/J 3.1 will automatically detect and use server-side prepared statements when they are
available (MySQL server version 4.1.0 and newer). If your application encountersissues with server-side prepared statements, you
can revert to the older client-side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServer PrepSt nt s=f al se

MySQL Connector/J

1.2.4. Installing from the Development Source Tree

Caution

Y ou should read this section only if you are interested in helping us test our new code. If you just want to get MySQL
Connector/J up and running on your system, you should use a standard rel ease distribution.

Toinstall MySQL Connector/J from the development source tree, make sure that you have the following prerequisites:

e Subversion, to check out the sources from our repository (available from http://subversion.tigris.org/).

e Apache Ant version 1.6 or newer (available from http://ant.apache.org/).

e JDK-1.4.2 or later. Although MySQL Connector/J can be installed on older JIDKs, to compile it from source you must have at least
JDK-1.4.2.

The Subversion source code repository for MySQL Connector/Jis located at http://svn.mysqgl.com/svnpublic/connector-j. In general,

you should not check out the entire repository because it contains every branch and tag for MySQL Connector/J and is quite large.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. Atthetime of thiswriting, there are three active branches of Connector/J: br anch_3_0,branch_3_1andbranch_5_0.

Check out the latest code from the branch that you want with the following command (replacing [mej or] and [mi nor] with
appropriate version numbers):

shell > svn co »
http://svn. nysql.conl svnpublic/connector-j/branches/branch_[major]_[mnor]/connector-j

Thiscreatesaconnect or -] subdirectory in the current directory that contains the latest sources for the requested branch.

2. Changelocationto theconnect or - | directory to make it your current working directory:

shel | > cd connector-j

3. Issuethe following command to compile the driver and createa. j ar file suitable for installation:

shel | > ant di st

Thiscreatesabui | d directory in the current directory, where all build output will go. A directory is created inthe bui | d direct-
ory that includes the version number of the sources you are building from. This directory contains the sources, compiled . cl ass
files,and a. j ar file suitable for deployment. For other possible targets, including ones that will create afully packaged distribu-
tion, issue the following command:

shell > ant --projecthelp

4. A newly created . j ar file containing the JDBC driver will be placed in the directory
bui | d/ nysql - connect or -j ava-[version].

Install the newly created JDBC driver asyou would abinary . j ar filethat you download from MySQL by following the instruc-
tionsin Section 1.2.2, “Installing the Driver and Configuring the CLASSPATH’.

1.3. Connector/J Examples

Examples of using Connector/J are located throughout this document, this section provides a summary and links to these examples.

¢ Example 1, “Obtaining a connection from the Dr i ver Manager”

« Example 2, “Using java.sql.Statement to execute a SELECT query”

http://subversion.tigris.org/
http://ant.apache.org/
http://svn.mysql.com/svnpublic/connector-j

MySQL Connector/J

« Example 3, “Stored Procedures’

¢« Example4, “Using Connecti on. prepareCal |l ()"

« Example5, “Registering output parameters”

* Example6, “Setting Cal | abl eSt at enent input parameters’

« Example 7, “Retrieving results and output parameter values’

¢ Example 8, “Retrieving AUTO_| NCREMENT column values using St at enent . get Gener at edKeys()”
« Example 9, “Retrieving AUTO_| NCREMENT column valuesusing SELECT LAST | NSERT _I D()”

e Example 10, “Retrieving AUTO_| NCREMENT column valuesin Updat abl e Resul t Set s”

« Example 11, “Using a connection pool with a J2EE application server”

« Example 12, “Example of transaction with retry logic”

1.4. Connector/J (JDBC) Reference

This section of the manual contains reference material for MySQL Connector/J, some of which is automatically generated during the
Connector/J build process.

1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connect-
or/J

The name of the class that implements java.sgl.Driver in MySQL Connector/Jiscom nysql . j dbc. Dri ver. The
org.gjt.mmnysql . Driver classnameis also usable to remain backward-compatible with MM.MySQL. Y ou should use this
class name when registering the driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/Jis as follows, with itemsin square brackets ([,]) being optional:

jdbc:nysql://[host][,failoverhost...][:port]/[database] »
[?propertyNanel] [=pr opertyVal uel] [&r opertyNanme2] [=pr opertyVal ue2] ...

If the hostname is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306, the default port number for
MySQL servers.

jdbc:nysql://[host:port],[host:port].../[database] »
[?propert yNanel] [=pr oper t yVal uel] [&pr opert yNane2] [=pr opert yVal ue?] . ..

If the database is not specified, the connection will be made with no default database. In this case, you will need to either call the set -
Cat al og() method on the Connection instance or fully-specify table names using the database name (i.e. SELECT db-

nane. t abl enane. col name FROM dbnane. t abl enane. . .) inyour SQL. Not specifying the database to use upon connec-
tion is generally only useful when building tools that work with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any number of slave hosts and till perform read-only
queries. Fail-over only happens when the connection isinan aut oConmi t (tr ue) state, because fail-over can not happen reliably
when atransaction isin progress. Most application servers and connection pools set aut oConmi t tot r ue at the end of every transac-
tion/connection use.

The fail-over functionality has the following behavior:

« If the URL property autoReconnect isfalse: Failover only happens at connection initialization, and failback occurs when the driver
determines that the first host has become available again.

¢ If the URL property autoReconnect is true: Failover happens when the driver determines that the connection has failed (before every

query), and falls back to the first host when it determines that the host has become available again (after quer i esBe-
foreRetryMast er queries have been issued).

MySQL Connector/J

In either case, whenever you are connected to a “failed-over" server, the connection will be set to read-only state, so queries that would
modify datawill have exceptions thrown (the query will never be processed by the MySQL server).

Configuration properties define how Connector/J will make a connection to aMySQL server. Unless otherwise noted, properties can be
set for a DataSource object or for a Connection object.

Configuration Properties can be set in one of the following ways:

¢ Using the set* () methods on MySQL implementations of java.sgl.DataSource (which is the preferred method when using imple-
mentations of java.sql.DataSource):
» com.mysgl.jdbc.jdbc2.optional .Mysql DataSource
» com.mysgl.jdbc.jdbc2.optional .Mysgl ConnectionPool DataSource

¢ Asakey/value pair in the java.util.Propertiesinstance passed to Dr i ver Manager . get Connecti on() or
Driver. connect ()

¢ AsaJDBC URL parameter inthe URL giventoj ava. sql . Dri ver Manager . get Connection(),
java.sql.Driver.connect () orthe MySQL implementations of thej avax. sql . Dat aSour ce set URL() method.

Note

If the mechanism you use to configure a JDBC URL is XML-based, you will need to use the XML character literal & amp;
to separate configuration parameters, as the ampersand is a reserved character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default Since Ver-
Value sion

user The user to connect as all

password The password to use when connecting al

socketFactory The name of the class that the driver should use for creating socket | com.mysql.j {3.0.3

connectionsto the server. This class must implement the interface |dbc.Standar
‘com.mysqgl.jdbc.SocketFactory' and have public no-args construct- | dSocket-

or. Factory

connectTimeout Timeout for socket connect (in milliseconds), with 0 being no 0 301
timeout. Only works on JDK-1.4 or newer. Defaultsto '0'.

socketTimeout Timeout on network socket operations (0O, the default means no 0 301
timeout).

useConfigs L oad the comma-delimited list of configuration properties before 315

parsing the URL or applying user-specified properties. These con-
figurations are explained in the 'Configurations' of the documenta-
tion.

interactiveClient Set the CLIENT_INTERACTIVE flag, which tells MySQL to false 3.1.0
timeout connections based on INTERACTIVE_TIMEOUT instead
of WAIT_TIMEOUT

local SocketAddress Hostname or | P address given to explicitly configure the interface 5.05
that the driver will bind the client side of the TCP/IP connection to
when connecting.

propertiesTransform An implementation of 314
com.mysq|l.jdbc.ConnectionPropertiesTransform that the driver
will use to modify URL properties passed to the driver before at-
tempting a connection

useCompression Use zlib compression when communicating with the server false 3.0.17
(true/false)? Defaults to 'false'.

MySQL Connector/J

Networking.

Property Name

Definition

Default
Value

SinceVer-
sion

tcpKeepAlive

If connecting using TCP/IP, should the driver set
SO_KEEPALIVE?

true

5.0.7

tcpNoDelay

If connecting using TCP/IP, should the driver set
SO_TCP_NODELAY (disabling the Nagle Algorithm)?

true

5.0.7

tcpRevBuUf

If connecting using TCP/IP, should the driver set SO_RCV_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

5.0.7

tcpSndBuf

If connecting using TCP/IP, shuold the driver set SO_SND_BUF
to the given value? The default value of '0', means use the platform
default value for this property)

5.0.7

tepTrafficClass

If connecting using TCP/IP, should the driver set traffic class or
type-of-service fields ? See the documentation for
javanet.Socket.setTrafficClass() for more information.

5.0.7

High Availability and Clustering.

Property Name

Definition

Default
Value

Since Ver-
sion

autoReconnect

Should the driver try to re-establish stale and/or dead connections?
If enabled the driver will throw an exception for a queries issued
on astale or dead connection, which belong to the current transac-
tion, but will attempt reconnect before the next query issued on the
connection in anew transaction. The use of thisfeature is not re-
commended, because it has side effects related to session state and
data consistency when applications don'thandle SQL Exceptions
properly, and is only designed to be used when you are unable to
configure your application to handle SQL Exceptions resulting
from dead andstale connections properly. Alternatively, investig-
ate setting the MySQL server variable "wait_timeout"to some high
value rather than the default of 8 hours.

false

11

autoReconnectForPools

Use a reconnection strategy appropriate for connection pools
(defaults to 'false’)

false

3.13

failOverReadOnly

When failing over in autoReconnect mode, should the connection
be set to ‘read-only'?

true

3.0.12

maxReconnects

Maximum number of reconnects to attempt if autoReconnect is
true, defaultis'3'.

11

reconnectAtTxEnd

If autoReconnect is set to true, should the driver attempt reconnec-
tionsat the end of every transaction?

false

3.0.10

initial Timeout

If autoReconnect is enabled, theinitial time to wait between re-
connect attempts (in seconds, defaultsto '2").

11

roundRobinL oadBalance

When autoReconnect is enabled, and failoverReadonly is false,
should we pick hosts to connect to on a round-robin basis?

false

312

queriesBeforeRetryM aster

Number of queries to issue before falling back to master when
failed over (when using multi-host failover). Whichever condition
ismet first, 'queriesBeforeRetryMaster' or 'secondsBeforeRetry-
Master' will cause an attempt to be made to reconnect to the mas-
ter. Defaults to 50.

50

302

secondsBeforeRetryM aster

How long should the driver wait, when failed over, before attempt-
ing to reconnect to the master server? Whichever condition is met
first, ‘queriesBeforeRetryMaster' or 'secondsBeforeRetryMaster’
will cause an attempt to be made to reconnect to the master. Time
in seconds, defaultsto 30

30

302

MySQL Connector/J

resourceld A globally unique name that identifies the resource that this data- 5.0.1
source or connection is connected to, used for XARe-
source.isSameRM () when the driver can't determine this value
based on hostnames used in the URL

Security.

Property Name Definition Default SinceVer-

Value sion

allowMultiQueries Allow the use of ;' to delimit multiple queries during one state- false 311
ment (true/false), defaultsto ‘false'

useSSL Use SSL when communicating with the server (true/false), de- false 3.02
faultsto 'false’

requireSSL Require SSL connection if useSSL=true? (defaults to ‘false’). false 310

allowLoadLocalnfile Should the driver allow use of 'LOAD DATA LOCAL INFILE..." [true 303
(defaults to 'true’).

allowUrlInLocalInfile Should the driver allow URLsin'LOAD DATA LOCAL INFILE' |false 314
statements?

paranoid Take measures to prevent exposure sensitive information in error | false 301
messages and clear data structures holding sensitive data when
possible? (defaults to 'false')

Performance Extensions.

Property Name Definition Default Since Ver-

Value sion

callableStmtCacheSize If ‘cacheCallableStmts' is enabled, how many callable statements {100 312
should be cached?

metadataCacheSize The number of queries to cacheResultSetMetadata for if cacheRes- |50 311
ultSetMetaData is set to 'true’ (default 50)

prepStmtCacheSize If prepared statement caching is enabled, how many prepared 25 3.0.10
statements should be cached?

prepStmtCacheSqlLimit If prepared statement caching is enabled, what'sthe largest SQL | 256 3.0.10
the driver will cache the parsing for?

alwaysSendSetl solation Should the driver always communicate with the database when true 317
Connection.setTransactionlsolation() is called? If set to false, the
driver will only communicate with the database when the reques-
ted transaction isolation is different than the whichever is newer,
the last value that was set via Connec-
tion.setTransactionl solation(), or the value that was read from the
server when the connection was established.

maintainTimeStats Should the driver maintain various internal timersto enableidle |true 3.19
time calculations as well as more verbose error messages when the
connection to the server fails? Setting this property to false re-
moves at least two callsto System.getCurrentTimeMillis() per
query.

useCursorFetch If connected to MySQL > 5.0.2, and setFetchSize() > 0 on astate- |false 5.00
ment, should that statement use cursor-based fetching to retrieve
rows?

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via ServerPrepared- | 1048576 319
Statements

cacheCallableStmts Should the driver cache the parsing stage of CallableStatements |false 312

cachePrepStmts Should the driver cache the parsing stage of PreparedStatements of |false 3.0.10

client-side prepared statements, the "check" for suitability of serv-
er-side prepared and server-side prepared statements themselves?

9

MySQL Connector/J

cacheResultSetM etadata

Should the driver cache ResultSetMetaData for Statements and
PreparedStatements? (Req. JDK-1.4+, true/false, default 'false’)

false

311

cacheServerConfiguration

Should the driver cache the results of 'SHOW VARIABLES' and
'SHOW COLLATION' on aper-URL basis?

false

3.15

defaultFetchSize

The driver will call setFetchSize(n) with this value on al newly-
created Statements

3.19

dontTrackOpenResources

The JDBC specification requires the driver to automatically track
and close resources, however if your application doesn't do a good
job of explicitly calling close() on statements or result sets, this
can cause memory leakage. Setting this property to true relaxes
this constraint, and can be more memory efficient for some applic-
ations.

false

3.17

dynamicCalendars

Should the driver retrieve the default calendar when required, or
cache it per connection/session?

false

3.15

elideSetAutoCommits

If using MySQL-4.1 or newer, should the driver only issue 'set
autocommit=n' queries when the server's state doesn't match the
requested state by Connection.setAutoCommit(boolean)?

false

3.13

enableQueryTimeouts

When enabled, query timeouts set via State-

ment.setQuery Timeout() use a shared java.util. Timer instance for
scheduling. Even if the timeout doesn't expire before the query is
processed, there will be memory used by the TimerTask for the
given timeout which won't be reclaimed until the time the timeout
would have expired if it hadn't been cancelled by the driver. High-
load environments might want to consider disabling this function-
aity.

true

5.06

hol dResultsOpenOverStatementClose

Should the driver close result sets on Statement.close() as required
by the JDBC specification?

false

3.17

|loadBalanceStrategy

If using a load-balanced connection to connect to SQL nodesin a
MySQL Cluster/NDB configuration(by using the URL prefix "jd-
be:mysql:loadbalance://"), which load balancin algorithm should
the driver use: (1) "random" - the driver will pick arandom host
for each request. This tends to work better than round-robin, as the
randomness will somewhat account for spreading |oads where re-
quests vary in response time, while round-robin can sometimes
lead to overloaded nodes if there are variationsin response times
across the workload. (2) "bestResponseTime" - the driver will
route the request to the host that had the best response time for the
previous transaction.

random

5.0.6

locatorFetchBufferSize

If 'emulatelocators' is configured to 'true’, what size buffer should
be used when fetching BLOB data for getBinarylnputStream?

1048576

321

rewriteBatchedStatements

Should the driver use multiqueries (irregardless of the setting of
"alowMultiQueries") as well as rewriting of prepared statements
for INSERT and REPLACE into multi-value inserts/replaces when
executeBatch() is called? Notice that this has the potential for SQL
injection if using plain java.sgl.Statements and your code doesn't
sanitize input correctly. Notice that if you don't specify stream
lengths when using PreparedStatement.set* Stream(),the driver
won't be able to determine the optimium number of parameters per
batch and you might receive an error from the driver that the res-
ultant packet istoo large. Statement.getGeneratedKeys() for these
rewritten statements only works when the entire batch includes IN-
SERT statements.

false

3.1.13

useDynamicCharsetInfo

Should the driver use a per-connection cache of character set in-
formation queried from the server when necessary, or use a built-
in static mapping that is more efficient, but isn't aware of custom
character sets or character setsimplemented after the release of the
JDBC driver?(this only affects the "padCharswithSpace" config-
uration property and the ResultSet-
MetaData.getColumnDisplayWidth() method).

true

506

10

MySQL Connector/J

useFastDateParsing Useinternal String->Date/Time/Teimstamp conversion routinesto |true 5.0.5
avoid excessive object creation?

useFastlntParsing Useinternal String->Integer conversion routines to avoid excess- |true 314
ive object creation?

uselvmCharsetConverters Always use the character encoding routines built into the VM, false 5.0.1
rather than using lookup tables for single-byte character sets?

usel ocal SessionState Should the driver refer to the internal values of autocommit and false 317
transaction isolation that are set by Connection.setAutoCommit()
and Connection.setTransactionl solation() and transaction state as
maintained by the protocol, rather than querying the database or
blindly sending commands to the database for commit() or roll-
back() method calls?

useReadA headl nput Use newer, optimized non-blocking, buffered input stream when | true 315
reading from the server?

Debuging/Profiling.

Property Name Definition Default SinceVer-

Value sion

logger The name of aclass that implements ‘com.mysql.jdbc.log.Log' that |com.mysql.j |3.1.1
will be used to log messagesto.(default is dbc.log.Sta
‘com.mysqgl.jdbc.log.StandardL ogger’, which logs to STDERR) ndardL og-

ger

gatherPerfMetrics Should the driver gather performance metrics, and report them via |false 312
the configured logger every 'reportMetricsintervalMillis' milli-
seconds?

profileSQL Trace queries and their execution/fetch times to the configured false 310
logger (true/false) defaultsto ‘false'

profileSql Deprecated, use 'profileSQL" instead. Trace queries and their exe- 2014
cution/fetch times on STDERR (true/false) defaults to 'false'

reportMetricsintervalMillis If 'gatherPerfMetrics is enabled, how often should they be logged |30000 312
(inmsg)?

maxQuerySizeTolL og Controls the maximum length/size of aquery that will get logged |2048 313
when profiling or tracing

packetDebugBufferSize The maximum number of packets to retain when 'enablePacketDe- |20 313
bug' istrue

slowQueryThresholdMillis If 'logSlowQueries is enabled, how long should a query (in ms) 2000 312
beforeit islogged as 'slow'?

slowQuery ThresholdNanos If 'useNanosForElapsedTime' is set to true, and this property isset |0 5.0.7
to anon-zero value, the driver will use this threshold (in nano-
second units) to determine if aquery was slow.

useUsageA dvisor Should the driver issue 'usage’ warnings advising proper and effi- |false 311
cient usage of JDBC and MySQL Connector/J to the log
(trueffalse, defaults to 'false’)?

autoGenerateT estcaseScript Should the driver dump the SQL it is executing, including server- |false 319
side prepared statementsto STDERR?

dumpM etadataOnColumnNotFound Should the driver dump the field-level metadata of aresult set into |false 3.113
the exception message when ResultSet.findColumn() fails?

dumpQueriesOnException Should the driver dump the contents of the query sent to the server |false 313
in the message for SQL Exceptions?

enablePacketDebug When enabled, aring-buffer of ‘packetDebugBufferSize' packets |false 313
will be kept, and dumped when exceptions are thrown in key areas
in the driver's code

explainSlowQueries If 'logSlowQueries is enabled, should the driver automatically is- |false 312

sue an 'EXPLAIN' on the server and send the results to the con-

11

MySQL Connector/J

figured log at aWARN level?

includel nnodbStatuslnDeadl ockExcep- | Include the output of "SHOW ENGINE INNODB STATUS'in |fadse 5.0.7

tions exception messages when deadlock exceptions are detected?

logSlowQueries Should queries that take longer than 'slowQueryThresholdMillis |false 312
be logged?

logXaCommands Should the driver log XA commands sent by MysglXaConnection |false 5.05
to the server, at the DEBUG level of logging?

resultSetSizeThreshold If the usage advisor is enabled, how many rows should aresult set {100 5.05
contain before the driver warnsthat it is suspiciously large?

traceProtocol Should trace-level network protocol be logged? false 312

useNanosForElapsedTime For profiling/debugging functionality that measures elapsed time, |false 5.0.7
should the driver try to use nanoseconds resolution if available
(JDK >=1.5)?

Miscellaneous.

Property Name Definition Default Since Ver-

Value sion

useUnicode Should the driver use Unicode character encodings when handling |true 119
strings? Should only be used when the driver can't determine the
character set mapping, or you are trying to force' the driver to use
acharacter set that MySQL either doesn't natively support (such as
UTF-8), true/false, defaults to 'true'

characterEncoding If 'useUnicode' is set to true, what character encoding should the 119
driver use when dealing with strings? (defaultsis to ‘autodetect’)

characterSetResults Character set to tell the server to return results as. 3.013

connectionCollation If set, tells the server to use this collation via 'set colla- 3.0.13
tion_connection'

sessionVariables A comma-separated list of name/value pairsto be sent as SET 318
SESSION ... to the server when the driver connects.

allowNanAndinf Should the driver allow NaN or +/- INF valuesin PreparedState- |false 3.15
ment.setDouble()?

autoClosePStmtStreams Should the driver automatically call .close() on streams/readers false 3112
passed as arguments via set* () methods?

autoDeseridize Should the driver automatically detect and de-serialize objects false 315
stored in BLOB fields?

capitalizeTypeNames Capitalize type names in DatabaseM etaData? (usually only useful |false 207
when using WebObjects, true/false, defaults to 'false’)

clobCharacterEncoding The character encoding to use for sending and retrieving TEXT, 5.0.0
MEDIUMTEXT and LONGTEXT valuesinstead of the con-
figured connection characterEncoding

clobberStreamingResults Thiswill cause a'streaming' ResultSet to be automatically closed, |false 3.09
and any outstanding data still streaming from the server to be dis-
carded if another query is executed before all the data has been
read from the server.

continueBatchOnError Should the driver continue processing batch commands if one true 3.03
statement fails. The JIDBC spec allows either way (defaults to
'true’).

createDatabasel fNotExist Creates the database given in the URL if it doesn't yet exist. As- |false 319
sumes the configured user has permissions to create databases.

empty StringsConvertToZero Should the driver allow conversions from empty string fields to true 318
numeric values of '0'?

emulatel ocators N/A false 3.10

12

MySQL Connector/J

emulateUnsupportedPstmts

Should the driver detect prepared statements that are not supported
by the server, and replace them with client-side emulated ver-
sions?

true

3.17

generateSimpleParameterM etadata

Should the driver generate simplified parameter metadata for Pre-
paredStatements when no metadata is available either because the
server couldn't support preparing the statement, or server-side pre-
pared statements are disabled?

false

505

ignoreNonTxTables

Ignore non-transactional table warning for rollback? (defaults to
'false).

false

3.09

jdbcCompliantTruncation

Should the driver throw java.sgl.DataT runcation exceptions when
dataistruncated asis required by the JDBC specification when
connected to a server that supports warnings(MySQL 4.1.0 and
newer)?

true

312

maxRows

The maximum number of rows to return (0, the default means re-
turn all rows).

al versions

noAccessToProcedureBodies

When determining procedure parameter types for CallableState-
ments, and the connected user can't access procedure bodies
through "SHOW CREATE PROCEDURE" or select on
mysql.proc should the driver instead create basic metadata (all
parameters reported as INOUT VARCHARS) instead of throwing
an exception?

false

5.0.3

noDatetimeStringSync

Don't ensure that Result-
Set.getDatetimeType().toString().equal S(Resul tSet.getString())

false

3.17

noTimezoneConversionForTimeType

Don't convert TIME values using the server timezone if ‘use-
Timezone'="true'

false

5.00

null Catal ogM eansCurrent

When DatabaseM etadataM ethods ask for a'catalog’ parameter,
does the value null mean use the current catalog? (thisis not JD-
BC-compliant, but follows legacy behavior from earlier versions
of the driver)

true

3.18

nullNamePatternM atchesAl |l

Should DatabaseM etaData methods that accept * pattern paramet-
erstreat null the same as'%' (thisis not JIDBC-compliant, however
older versions of the driver accepted this departure from the spe-
cification)

true

3.18

overrideSupportsl ntegrityEnhance-
mentFacility

Should the driver return "true" for Database-

M etaData.supportsl ntegrityEnhancementFacility() even if the
database doesn't support it to workaround applications that require
this method to return "true" to signal support of foreign keys, even
though the SQL specification states that this facility contains much
more than just foreign key support (one such application being
OpenOffice)?

false

3112

padCharswithSpace

If aresult set column has the CHAR type and the value does not
fill the amount of characters specified in the DDL for the column,
should the driver pad the remaining characters with space (for AN-
S| compliance)?

false

506

pedantic

Follow the JDBC spec to the letter.

false

3.00

pinGlobal TxToPhysical Connection

When using XAConnections, should the driver ensure that opera-
tions on agiven XD are always routed to the same physical con-
nection? This alows the XAConnection to support "XA START ...
JOIN" after "XA END" has been called

false

501

popul atel nsertRowWithDefaultValues

When using ResultSets that are CONCUR_UPDATABLE, should
the driver pre-poulate the "insert" row with default values from the
DDL for the table used in the query so those values are immedi-
ately available for ResultSet accessors? This functionality requires
acall to the database for metadata each time aresult set of this
typeiscreated. If disabled (the default), the default values will be
populated by the an internal call to refreshRow() which pulls back
default values and/or values changed by triggers.

false

5.0.5

processEscapeCodesForPrepStmts

Should the driver process escape codesin queries that are pre-

true

3112

13

MySQL Connector/J

pared?

relaxAutoCommit

If the version of MySQL the driver connects to does not support
transactions, till allow calls to commit(), rollback() and setAuto-
Commit() (true/false, defaultsto ‘false’)?

false

2.0.13

retainStatementA fterResultSetClose

Should the driver retain the Statement reference in a ResultSet
after ResultSet.close() has been called. Thisis not JDBC-com-
pliant after JIDBC-4.0.

false

3111

rollbackOnPooledClose

Should the driver issue arollback() when the logical connection in
apool is closed?

true

3.0.15

runningCTS13

Enables workarounds for bugs in Sun's JIDBC compliance testsuite
version 1.3

false

317

serverTimezone

Override detection/mapping of timezone. Used when timezone
from server doesn't map to Java timezone

3.02

strictFloatingPoint

Used only in older versions of compliance test

false

3.00

strictUpdates

Should the driver do strict checking (all primary keys selected) of
updatable result sets (true, false, defaults to 'true)?

true

3.04

tinyIntlisBit

Should the driver treat the datatype TINYINT(1) asthe BIT type
(because the server silently converts BIT -> TINYINT(1) when
creating tables)?

true

3.0.16

transformedBitlsBoolean

If the driver converts TINYINT(1) to a different type, should it use
BOOLEAN instead of BIT for future compatibility with MySQL-
5.0, asMySQL-5.0 hasaBIT type?

false

3.19

treatUti| DateAsTimestamp

Should the driver treat java.util.Date asa TIMESTAMP for the
purposes of PreparedStatement.setObject()?

true

505

ultraDevHack

Create PreparedStatements for prepareCall() when required, be-
cause UltraDev is broken and issues a prepareCall() for _all_ state-
ments? (true/false, defaults to 'false’)

false

203

useGmtMillisForDatetimes

Convert between session timezone and GMT before creating Date
and Timestamp instances (value of "false" islegacy behavior,
"true" leads to more JDBC-compliant behavior.

false

3112

useHostsl nPrivileges

Add '@hostname' to users in Database-
MetaData.getColumn/TablePrivileges() (true/false), defaultsto
‘true’.

true

302

usel nformationSchema

When connected to MySQL-5.0.7 or newer, should the driver use
the INFORMATION_SCHEMA to derive information used by
DatabaseM etaData?

false

5.0.0

useJDBCCompliantTimezoneShift

Should the driver use JIDBC-compliant rules when converting
TIME/TIMESTAMP/DATETIME values timezone information
for those JIDBC arguments which take ajava.util.Calendar argu-
ment? (Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

false

5.0.0

useOldAliasM etadataBehavior

Should the driver use the legacy behavior for "AS" clauseson
columns and tables, and only return aliases (if any) for ResultSet-
MetaData.getColumnName() or ResultSet-
MetaData.getTableName() rather than the original column/table
name?

true

504

useOldUTF8Behavior

Use the UTF-8 behavior the driver did when communicating with
4.0 and older servers

false

3.16

useOnlyServerErrorM essages

Don't prepend 'standard' SQL State error messages to error mes-
sages returned by the server.

true

3.0.15

useSSPSCompatibleTimezoneShift

If migrating from an environment that was using server-side pre-
pared statements, and the configuration property "useJDBCCompli-
antTimeZoneShift" set to "true”, use compatible behavior when

not using server-side prepared statements when sending

TIMESTAMP vauesto the MySQL server.

false

5.0.5

14

MySQL Connector/J

useServerPrepStmts Use server-side prepared statements if the server supportsthem? |fase 3.10

useSql StateCodes Use SQL Standard state codes instead of 'legacy’ X/Open/SQL true 313
state codes (true/false), default is 'true'

useStreamL engthsl nPrepStmts Honor stream length parameter in PreparedStatement/Result- true 302
Set.setX X X Stream() method calls (true/false, defaults to 'true’)?

useTimezone Convert time/date types between client and server timezones false 302
(trueffalse, defaults to 'false’)?

useUnbufferedl nput Don't use BufferedlnputStream for reading data from the server true 3011

yearlsDateType Should the IDBC driver treat the MySQL type"YEAR" asa true 319
javasgl.Date, or asa SHORT?

zeroDateTimeBehavior What should happen when the driver encounters DATETIME val- |exception |3.1.4
ues that are composed entirely of zeroes (used by MySQL to rep-
resent invalid dates)? Valid values are 'exception’, 'round' and 'con-
vertToNull'.

Connector/J a so supports access to MySQL via named pipes on Windows NT/2000/X P using the NamedPipeSocketFactory as a plu-
gin-socket factory viathe socketFactory property. If you don't use a namedPipePath property, the default of "\.\pipe\MySQL " will be
used. If you use the NamedPi peSocket Fact or y, the hosthame and port number values in the JDBC url will be ignored. Y ou can
enable this feature using:

socket Fact or y=com nysql . j dbc. NamedPi peSocket Fact ory

Named pipes only work when connecting to a MySQL server on the same physical machine as the one the JDBC driver is being used
on. In simple performance tests, it appears that named pipe access is between 30%-50% faster than the standard TCP/IP access.

Y ou can create your own socket factories by following the example codeincom nysql . j dbc. NanedPi peSocket Fact ory, or
com nysgl . j dbc. St andar dSocket Fact ory.

1.4.2. JDBC API Implementation Notes

MySQL Connector/J passes dl of the testsin the publicly-available version of Sun's IDBC compliance test suite. However, in many
places the JDBC specification is vague about how certain functionality should be implemented, or the specification allows leeway in
implementation.

This section gives details on ainterface-by-interface level about how certain implementation decisions may affect how you use MySQL

Connector/J.

« Blob
Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property 'emulatel ocators=true' to your
JDBC URL. Using this method, the driver will delay loading the actual Blob data until you retrieve the other data and then use re-
trieval methods (get | nput St rean(), get Byt es(), and so forth) on the blob data stream.

For thisto work, you must use a column alias with the value of the column to the actual name of the Blob, for example:

SELECT id, 'data' as blob_data from bl obtable

For thisto work, you must also follow follow these rules:

e The SELECT must also reference only one table, the table must have a primary key.

* The SELECT must alias the original blob column name, specified as a string, to an alternate name.

e The SELECT must cover all columns that make up the primary key.

The Blob implementation does not allow in-place modification (they are copies, as reported by the Dat abase-

Met aDat a. | ocat or sUpdat eCopi es() method). Because of this, you should use the corresponding Pr epar edSt at e-

nment . set Bl ob() or Resul t Set . updat eBl ob() (inthe case of updatable result sets) methods to save changes back to the
database.

15

MySQL Connector/J

MySQL Enterprise

MySQL Enterprise subscribers will find more information about type conversion in the Knowledge Base article,
Type Conversions Supported by MySQL Connector/J. To subscribe to MySQL Enterprise see ht-
tp:/lwww.mysqgl.com/products/enterprise/advisors.html.

CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version 5.0 or newer viathe
Cal | abl eSt at enent interface. Currently, the get Par anet er Met aDat a() method of Cal | abl eSt at enent isnot sup-
ported.

Clob

The Clob implementation does not allow in-place modification (they are copies, as reported by the Dat abase-

Met aDat a. | ocat or sUpdat eCopi es() method). Because of this, you should use the Pr epar edSt at e-

nment . set Cl ob() method to save changes back to the database. The JDBC API doesnot have aResul t Set . updat eCl ob()
method.

Connection

Unlike older versions of MM.MySQL thei sCl osed() method does not ping the server to determineif it isalive. In accordance
with the JIDBC specification, it only returnstrueif cl osed() hasbeen called on the connection. If you need to determine if the
connection is still valid, you should issue a simple query, such as SELECT 1. Thedriver will throw an exception if the connection
isno longer valid.

DatabaseM etaData

Foreign Key information (get | nport edKeys() /get Export edKeys() and get Cr ossRef erence()) isonly available
from InnoDB tables. However, the driver uses SHOWV CREATE TABLE to retrieve this information, so when other storage engines
support foreign keys, the driver will transparently support them as well.

Prepar edStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement feature. Because of this, the
driver does not implement get Par anet er Met aDat a() or get Met aDat a() asit would require the driver to have a complete
SQL parser in theclient.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded result sets are used when the
server supports them.

Take care when using a server-side prepared statement with lar ge parametersthat are set viaset Bi naryStrean{), set As-
ciiStrean(),setUni codeStrean(),setBlob(),orsetC ob().If youwant to re-execute the statement with any large
parameter changed to a non-large parameter, it is necessary to call cl ear Par anet er s() and set all parameters again. The reas-
on for thisis as follows:

» During both server-side prepared statements and client-side emulation, large datais exchanged only when Pr epar edSt at e-
nment . execut e() iscaled.

* Oncethat has been done, the stream used to read the data on the client side is closed (as per the JIDBC spec), and can't be read
from again.

» If aparameter changes from large to non-large, the driver must reset the server-side state of the prepared statement to allow the
parameter that is being changed to take the place of the prior large value. This removes all of the large data that has already been
sent to the server, thus requiring the data to be re-sent, viathe set Bi nar ySt rean() ,set Asci i Strean{), set U
ni codeSt rean(),set Bl ob() orset C ob() methods.

Consequently, if you want to change the type of a parameter to a non-large one, you must call cl ear Par anet er s() and set all
parameters of the prepared statement again before it can be re-executed.

ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most efficient way to operate, and
due to the design of the MySQL network protocol is easier to implement. If you are working with ResultSets that have alarge num-
ber of rows or large values, and can not allocate heap space in your VM for the memory required, you can tell the driver to stream
the results back one row at atime.

16

https://kb.mysql.com/view.php?id=4929
http://www.mysql.com/products/enterprise/advisors.html
http://www.mysql.com/products/enterprise/advisors.html

MySQL Connector/J

To enable this functionality, you need to create a Statement instance in the following manner:

stnt = conn. createStatenent (java. sql.Resul t Set. TYPE_FORWARD_ONLY,

java. sql . Resul t Set . CONCUR_READ _ON\LY) ;

st . set FetchSi ze(I nteger. M N_VALUE) ;

The combination of aforward-only, read-only result set, with afetch sizeof | nt eger . M N_VALUE serves asasigna to the driver
to stream result sets row-by-row. After this any result sets created with the statement will be retrieved row-by-row.

There are some caveats with this approach. Y ou will have to read all of the rowsin the result set (or close it) before you can issue
any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be My | SAMtable-level locks or row-level locksin some
other storage engine such as | nnoDB) is when the statement completes.

If the statement is within scope of atransaction, then locks are rel eased when the transaction completes (which implies that the state-
ment needs to complete first). Aswith most other databases, statements are not complete until all the results pending on the state-

ment are read or the active result set for the statement is closed.

Therefore, if using streaming results, you should process them as quickly as possible if you want to maintain concurrent access to

the tables referenced by the statement producing the result set.

¢ ResultSetMetaData

Thei sAut ol ncr enment () method only works when using MySQL servers 4.0 and newer.

* Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier than 5.0.3, theset Fet chS-
i ze() method has no effect, other than to toggle result set streaming as described above.

Connector/J5.0.0 and later include support for both St at enent . cancel () and St at enent . set Quer yTi neout () . Both
require MySQL 5.0.0 or newer server, and require a separate connection to issuethe KI LL QUERY statement. In the case of
set Quer yTi meout (), theimplementation creates an additional thread to handle the timeout functionality.

Note

Failures to cancel the statement for set Quer yTi neout () may manifest themselvesas Runt i neExcept i on rather
than failing silently, asthere is currently no way to unblock the thread that is executing the query being cancelled due to

timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so "setCursorName()" has no effect.

1.4.3. Java, JDBC and MySQL Types

MySQL Connector/Jis flexible in the way it handles conversions between MySQL data types and Java data types.

In general, any MySQL data type can be converted to ajava.lang.String, and any numerical type can be converted to any of the Java nu-
merical types, although round-off, overflow, or loss of precision may occur.

Starting with Connector/J 3.1.0, the JDBC driver will issue warnings or throw DataT runcation exceptions as is required by the JDBC
specification unless the connection was configured not to do so by using the property jdbcCompliantTruncation and settingitto f al se.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types

Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM and SET

java.lang. String, java.io.lnputStream
java.io. Reader, java.sql.Blob, java.sqgl.C ob

FLOAT, REAL, DOUBLE PRECI SI ON, NUMERI C,
DECI MAL, TI NYI NT, SMALLINT, MEDI UM NT, |N-
TEGER, BI G NT

java.lang. String, java.lang. Short,
java.l ang. | nteger, java.lang.Long,
java.l ang. Doubl e, java. math. Bi gDeci mal

17

MySQL Connector/J

DATE, TIME, DATETI ME, TI MESTAVP

java.lang. String,
j ava. sql . Ti nest anp

java. sql . Date,

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has less precision or capa-

city than the MySQL data type you are converting to/from.

TheResul t Set . get Obj ect () method uses the type conversions between MySQL and Java types, following the JDBC specifica
tion where appropriate. The value returned by Resul t Set Met aDat a. Get Col urmCl assNane() isalso shown below. For more
information onthej ava. sql . Types classes see Java 2 Platform Types.

MySQL Typesto Java Typesfor ResultSet.getObject().

MySQL Type Name

Return value of Get Col umm-
Cl assNane

Returned as Java Class

BIT(1) (new in MySQL-5.0) BIT j ava. | ang. Bool ean

BIT(> 1) (newin MySQL-5.0) |BIT byt e[]

TINYINT TINYINT j ava. | ang. Bool ean if the configuration property t i ny-
IntlisBit issettotrue (thedefault) and the storage sizeis 1,
orj ava. |l ang. | nt eger if not.

BOOL, BOOLEAN TINYINT See TINYINT, above asthese are aliases for TINYINT(1), cur-

rently.

SMALLINT[(M)]

SMALLINT [UNSIGNED]

java. |l ang. I nt eger (regardlessif UNSIGNED or not)

[UNSIGNED]

MEDIUMINT[(M)] MEDIUMINT [UNSIGNED] java.l ang. I nteger, if UNSIGNED | ava. | ang. Long

[UNSIGNED]

INT,INTEGER[(M)] INTEGER [UNSIGNED] java.lang. I nteger,if UNSIGNED j ava. | ang. Long

[UNSIGNED]

BIGINT[(M)] [UNSIGNED] [BIGINT [UNSIGNED] j ava. | ang. Long, if UNSIGNED
j ava. mat h. Bi gl nt eger

FLOAT[(M,D)] FLOAT j ava. | ang. Fl oat

DOUBLE[(M,B)] DOUBLE j ava. | ang. Doubl e

DECIMAL[(M[,D])] DECIMAL j ava. mat h. Bi gDeci mal

DATE DATE java.sql.Date

DATETIME DATETIME j ava. sql . Ti nest anp

TIMESTAMP[(M)] TIMESTAMP java.sql . Ti mestanp

TIME TIME java.sql . Time

YEAR[(2/4)] YEAR If year | sDat eType configuration property is set to false, then
the returned object typeisj ava. sql . Short . If set to true (the
default) then an object of type| ava. sql . Dat e (with the date
set to January 1st, at midnight).

CHAR(M) CHAR java. |l ang. St ri ng (unlessthe character set for the columnis
BINARY, then byt e[] isreturned.

VARCHAR(M) [BINARY] VARCHAR java.l ang. Stri ng (unlessthe character set for the columnis
BINARY, then byt e[] isreturned.

BINARY (M) BINARY byte[]

VARBINARY (M) VARBINARY byt e[]

TINYBLOB TINYBLOB byt e[]

TINYTEXT VARCHAR java.lang. String

BLOB BLOB byt e[]

TEXT VARCHAR java.lang. String

18

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

MySQL Connector/J

MEDIUMBLOB MEDIUMBLOB byt e[]
MEDIUMTEXT VARCHAR java.lang. String
LONGBLOB LONGBLOB byt e[]
LONGTEXT VARCHAR java.lang. String
ENUM ((valuel','value?'...) CHAR java.lang. String
SET(‘'valuel','vaue?2',...) CHAR java.lang. String

1.4.4. Using Character Sets and Unicode

All strings sent from the JIDBC driver to the server are converted automatically from native Java Unicode form to the client character
encoding, including al queriessent via St at enent . execut e(), St at enment . execut eUpdat e(), St at e-

nment . execut eQuery() aswell asall Prepar edSt at enent and Cal | abl eSt at enent parameters with the exclusion of
parameters set using set Byt es(),set Bi naryStrean(),set Ascii Strean(),set Uni codeStrean() andset Bl ob() .

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which could either be automatically de-
tected from the server configuration, or could be configured by the user through the useUni code and char act er Encodi ng prop-
erties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and server, and any number of char-
acter encodings for data returned by the server to the client in Resul t Set s.

The character encoding between client and server is automatically detected upon connection. The encoding used by the driver is spe-
cified onthe server viathechar act er _set system variable for server versionsolder than 4.1.0 and char act er _set _server
for server versions 4.1.0 and newer. For more information, see Server Character Set and Collation.

To override the automatically-detected encoding on the client side, usethe char act er Encodi ng property in the URL used to con-
nect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following table lists Java-style names for
MySQL character sets:

MySQL to Java Encoding Name Trangations.

MySQL Character Set Name Java-Style Character Encoding Name
ascii US-ASCII

bigs Bigs

gbk GBK

gis SJIS (or Cp932 or MS932 for MySQL Server < 4.1.11)
cp932 Cp932 or MS932 (MySQL Server > 4.1.11)
gh2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latinl 1S08859_1

latin2 1S08859_2

greek 1S08859_7

hebrew 1SO8859_8

cp866 Cp866

tis620 TIS620

cpl250 Cpl1250

cpl251 Cpl251

cpl257 Cpl257

macroman MacRoman

macce MacCentral Europe

19

http://dev.mysql.com/doc/refman/5.0/en/charset-server.html

MySQL Connector/J

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query 'set names with Connector/J, as the driver will not detect that the character set has changed, and
will continue to use the character set detected during the initial connection setup.

To alow multiple character sets to be sent from the client, the UTF-8 encoding should be used, either by configuring ut f 8 asthe de-
fault server character set, or by configuring the JDBC driver to use UTF-8 through the char act er Encodi ng property.

1.4.5. Connecting Securely Using SSL

SSL in MySQL Connector/J encrypts al data (other than the initial handshake) between the JDBC driver and the server. The perform-
ance penalty for enabling SSL is an increase in query processing time between 35% and 50%, depending on the size of the query, and
the amount of datait returns.

For SSL Support to work, you must have the following:

¢ A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not currently work with a JDK that
you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following JSSE bug: ht-
tp://devel oper.java.sun.com/devel oper/bugParade/bugs/4273544.html

A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL-4.0.4 or later, see Using Se-
cure Connections, for more information.

e A client certificate (covered later in this section)

Y ou will first need to import the MySQL server CA Certificate into a Javatruststore. A sample MySQL server CA Certificateislocated
in the SSL subdirectory of the MySQL source distribution. Thisiswhat SSL will use to determine if you are communicating with a se-
cure MySQL server.

Touse Javaskeyt ool to create atruststore in the current directory , and import the server's CA certificate (cacer t . pen), you can
do the following (assuming that keyt ool isinyour path. Thekeyt ool should be located in the bi n subdirectory of your JDK or
JRE):

shel | > keytool -import -alias mysql Server CACert \
-file cacert.pem -keystore truststore

Keytool will respond with the following information:

Enter keystore password: — ******kkx
Omner: EMAI LADDRESS=wal r us@xanpl e. com CN=Val rus,
O=M/SQL AB, L=Orenburg, ST=Sone-State, C=RU
| ssuer: EMAI LADDRESS=wal r us@xanpl e. com CN=Wl rus,
O=MySQL AB, L=Orenburg, ST=Sone-State, C=RU
Serial number: 0
Valid from
Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:
MD5: 61:91: AO: F2: 03: 07: 61: 7A: 81: 38: 66: DA: 19: C4: 8D: AB
SHAL1: 25:77:41:05: D5: AD: 99: 8C: 14: 8C: CA: 68: 9C: 2F: B8: 89: C3: 34: 4D: 6C
Trust this certificate? [no]: vyes
Certificate was added to keystore

Y ou will then need to generate a client certificate, so that the MySQL server knows that it istalking to a secure client:

shel | > keyt ool -genkey -keyalg rsa \
-alias nysqlCientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keyst or e in the current directory.

Y ou should respond with information that is appropriate for your situation:

20

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html
http://dev.mysql.com/doc/refman/5.0/en/secure-connections.html

MySQL Connector/J

Enter keystore password: — *******kx
What is your first and I ast nane?
[Unknown] : Matt hews
What is the nane of your organizational unit?
[Unknown] : Sof t war e Devel opnent
What is the nane of your organization?
[Unknown]: MW/SQ. AB
What is the name of your City or Locality?
[Unknown] : Fl ossnoor
What is the nanme of your State or Province?
[Unknown]: IL
What is the two-letter country code for this unit?
[Unknown] : US
I's <CN=Matt hews, OU=Software Devel opnent, O=MySQL AB,
L=Fl ossnoor, ST=IL, C=US> correct?

[no]: y

Enter key password for <nysqlClientCertificate>
(RETURN i f same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the following system properties when
you start your VM, replacing path_to_keystore file with the full path to the keystore file you created, path_to_truststore_file with the
path to the truststore file you created, and using the appropriate password values for each property. Y ou can do this either on the com-
mand line:

- D avax. net.ssl . keyStore=path_to_keystore_file

- Dy avax. net . ssl . keySt or ePasswor d=passwor d

-D avax. net.ssl.trustStore=path_to_truststore_file
- D avax. net. ssl . trust St orePasswor d=passwor d

Or you can set the values directly within the application:

System set Property("javax. net.ssl.keyStore", "path_to_keystore file");
System set Property("j avax. net. ssl . keyStorePassword", "password");
System set Property("]avax. net.ssl.trustStore","path_to_truststore_file");
System set Property("] avax. net.ssl.trust StorePassword", "password");

You will also need to set useSSL tot r ue in your connection parameters for MySQL Connector/J, either by adding useSSL=t r ue to
your URL, or by setting the property useSSL tot r ue inthej ava. uti| . Properti es instanceyou passtoDr i ver Man-
ager . get Connection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the following key events:

*** CientHello, v3.1

RandonCooki e: GMI: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}

G pher Suites: { O, 5 0, 4, 0 9 0, 10, O, 18, 0, 19, 0, 3, 0, 17 }

Conpression Methods: { 0}

* % %

[wite] MD5 and SHAl hashes: len = 59

0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A0C ...7..=....... J.
0010: 36 F4 00 A8 37 67 D7 40 10 BA E1 BE 84 99 02 D9 6...79.@.......
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........

0030: OA 00 12 00 13 00 03 00 11 01 OO

main, WRITE: SSL v3.1 Handshake, |ength = 59

mai n, READ: SSL v3.1 Handshake, length = 74

*** ServerHello, v3.1

RandonCooki e: GMI: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »
202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

Ci pher Suite: { 0, 5

Conpr essi on Method: 0

* kK

%6 Created: [Session-1, SSL_RSA W TH RCA_128_ SHA]
** SSL_RSA W TH_RCA_128_SHA
[read] MD5 and SHAl hashes: len = 74

0: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.9.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA03 :.0.d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR .\ . .
0030: B3 44 3F B6 9E 1E OB 96 4F AA 4C FF 5C OF E2 18 .D?..... O L.\
0040: 11 B1 DB 9E B1 BB 8F 00 O5 00 L.........
mai n, READ: SSL v3.1 Handshake, length = 1712

21

MySQL Connector/J

JSSE provides debugging (to STDOUT) when you set the following system property: - Dj avax. net . debug=al | Thiswill tell you
what keystores and truststores are being used, as well as what is going on during the SSL handshake and certificate exchange. It will be
helpful when trying to determine what is not working when trying to get an SSL connection to happen.

1.4.6. Using Master/Slave Replication with ReplicationConnection

Starting with Connector/J 3.1.7, we've made available a variant of the driver that will automatically send queries to a read/write master,
or afailover or round-robin loadbalanced set of slaves based on the state of Connect i on. get ReadOnl y() .

An application signals that it wants a transaction to be read-only by calling Connect i on. set ReadOnl y(t rue) , thisreplication-
aware connection will use one of the slave connections, which are load-balanced per-vm using a round-robin scheme (a given connec-
tion is sticky to aslave unlessthat dave is removed from service). If you have awrite transaction, or if you have aread that istime-
sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-only, by calling Connec-

tion.set ReadOnl y(fal se) andthedriver will ensure that further calls are sent to the master MySQL server. The driver takes
care of propagating the current state of autocommit, isolation level, and catalog between all of the connections that it uses to accomplish
this load balancing functionality.

To enable this functionality, usethe” com nysql . j dbc. Repl i cati onDri ver " class when configuring your application server's
connection pool or when creating an instance of a JDBC driver for your standal one application. Because it accepts the same URL
format as the standard MySQL JDBC driver, Repl i cati onDri ver doesnot currently work withj ava. sql . Dri ver Manager -
based connection creation unlessit is the only MySQL JDBC driver registered with the Dr i ver Manager .

Hereis a short, simple example of how ReplicationDriver might be used in a standal one application.

i mport java.sql.Connection;
i mport java.sql.ResultSet;
import java.util.Properties;

i mport com nysql . jdbc. ReplicationDriver;
public class ReplicationDriverDenmp {

public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();

Properties props = new Properties();

/1 W want this for failover on the slaves
props. put ("aut oReconnect", "true");

/1l W want to |oad bal ance between the sl aves
props. put ("roundRobi nLoadBal ance", "true");

props. put ("user", "foo0");
props. put ("password", "bar");

/

| Looks like a nornmal MySQL JDBC url, with a

/| comm-separated list of hosts, the first

/ being the 'nmaster', the rest being any nunber

; of slaves that the driver will |oad bal ance agai nst

—~—————

Connection conn =
driver.connect ("jdbc: mysql :// master, sl avel, sl ave2, sl ave3/test"”,

props);

Performread/wite work on the master
by setting the read-only flag to "fal se"

—_~———
—_~———

conn. set ReadOnl y(f al se);

conn. set Aut oCommi t (f al se);

conn. creat eSt at ement () . execut eUpdat e(" UPDATE sone_table");
conn.commit();

Now, do a query froma slave, the driver automatically picks one
fromthe |ist

—_~———
—_~———

conn. set ReadOnl y(true);

ResultSet rs =
conn. createSt at ement (). execut eQuery("SELECT a,b FROM al t _tabl e");

22

MySQL Connector/J

1.4.7. Mapping MySQL Error Numbers to SQL States

The table below provides a mapping of the MySQL Error Numbersto SQL St at es

Table 1. Mapping of MySQL Error Numbers to SQLStates

MySQL Error Number MySQL Error Name L egacy (X/Open) SQL State SQL Standard SQL State
1022 ER_DUP_KEY S1000 23000
1037 ER_OUTOFMEMORY S1001 HY 001
1038 ER_OUT_OF_SORTMEMORY |S1001 HY001
1040 ER_CON_COUNT_ERROR 08004 08004
1042 ER_BAD_HOST_ERROR 08004 08S01
1043 ER_HANDSHAKE_ERROR 08004 08S01
1044 ER_DBACCESS DENIED_ER [S1000 42000
ROR
1045 ER_ACCESS _DENIED_ERRO |28000 28000
R
1047 ER_UNKNOWN_COM_ERRO |08S01 HY 000
R
1050 ER TABLE_EXISTS ERROR |S1000 42301
1051 ER_BAD_TABLE_ERROR 42502 42502
1052 ER_NON_UNIQ ERROR S1000 23000
1053 ER_SERVER_SHUTDOWN S1000 08301
1054 ER BAD_FIELD ERROR S0022 42522
1055 ER_ WRONG_FIELD _WITH_ [S1009 42000
GROUP
1056 ER_ WRONG_GROUP_FIELD |S1009 42000
1057 ER_ WRONG_SUM_SELECT |S1009 42000
1058 ER_ WRONG_VALUE_COUN (21501 21501
T
1059 ER_TOO_LONG_IDENT S1009 42000
1060 ER_DUP_FIELDNAME S1009 42521
1061 ER_DUP_KEYNAME S1009 42000
1062 ER_DUP_ENTRY S1009 23000
1063 ER WRONG_FIELD _SPEC [S1009 42000
1064 ER_PARSE_ERROR 42000 42000
1065 ER_EMPTY_QUERY 42000 42000
1066 ER_NONUNIQ TABLE S1009 42000
1067 ER_INVALID_DEFAULT S1009 42000
1068 ER_MULTIPLE_PRI_KEY S1009 42000
1069 ER_TOO_MANY_KEYS S1009 42000
1070 ER_TOO_MANY_KEY_PART [S1009 42000
S
1071 ER_TOO LONG_KEY S1009 42000
1072 ER_KEY_COLUMN_DOES N [S1009 42000
OT_EXITS
1073 ER BLOB_USED AS KEY [S1009 42000

23

MySQL Connector/J

MySQL Error Number

MySQL Error Name

L egacy (X/Open) SQL State

SQL Standard SQL State

1074

ER TOO BIG_FIELDLENGT
H

S1009

42000

1075 ER_WRONG AUTO KEY |S1009 42000

1080 ER_FORCING_CLOSE S1000 08S01

1081 ER_IPSOCK_ERROR 08S01 08S01

1082 ER_NO_SUCH_INDEX S1009 42512

1083 ER_WRONG_FIELD_TERM| |S1009 42000
NATORS

1084 ER_BLOBS AND_NO_TERM |S1009 42000
INATED

1090 ER_CANT_REMOVE ALL_FI [S1000 42000
ELDS

1091 ER_CANT_DROP_FIELD_OR |S1000 42000
_KEY

1101 ER BLOB_CANT_HAVE DE |S1000 42000
FAULT

1102 ER_WRONG_DB_NAME S1000 42000

1103 ER_WRONG_TABLE_NAME |S1000 42000

1104 ER TOO BIG_SELECT S1000 42000

1106 ER_UNKNOWN_PROCEDUR |S1000 42000
E

1107 ER_WRONG_PARAMCOUNT [S1000 42000
_TO_PROCEDURE

1109 ER_UNKNOWN_TABLE S1000 42502

1110 ER_FIELD_SPECIFIED_TWIC [S1000 42000
E

1112 ER_UNSUPPORTED_EXTEN |S1000 42000
SION

1113 ER TABLE_MUST_HAVE C [S1000 42000
OLUMNS

1115 ER_UNKNOWN_CHARACTE [S1000 42000
R SET

1118 ER_TOO BIG_ROWSIZE S1000 42000

1120 ER_WRONG_OUTER JOIN |S1000 42000

1121 ER_NULL_COLUMN_IN_IND [S1000 42000
EX

1129 ER_HOST IS BLOCKED 08004 HY 000

1130 ER_HOST_NOT_PRIVILEGE |08004 HY 000
D

1131 ER_PASSWORD_ANONYMO [S1000 42000
US USER

1132 ER_PASSWORD_NOT_ALLO [S1000 42000
WED

1133 ER_PASSWORD _NO_MATC |S1000 42000
H

1136 ER_WRONG_VALUE_COUN |[S1000 21S01
T _ON_ROW

1138 ER_INVALID_USE_OF NUL [S1000 42000
L

1139 ER_REGEXP_ERROR S1000 42000

24

MySQL Connector/J

MySQL Error Number

MySQL Error Name

Legacy (X/Open) SQL State

SQL Standard SQL State

1140

ER_MIX_OF GROUP_FUNC_
AND_FIELDS

S1000

42000

1141 ER_NONEXISTING_GRANT |S1000 42000

1142 ER_TABLEACCESS DENIED [S1000 42000
_ERROR

1143 ER_COLUMNACCESS DENI |S1000 42000
ED_ERROR

1144 ER_ILLEGAL_GRANT_FOR_ |S1000 42000
TABLE

1145 ER_GRANT_WRONG_HOST_[S1000 42000
OR_USER

1146 ER_NO_SUCH_TABLE S1000 42502

1147 ER_NONEXISTING_TABLE_ |S1000 42000
GRANT

1148 ER_NOT_ALLOWED_COMM |S1000 42000
AND

1149 ER_SYNTAX_ERROR S1000 42000

1152 ER_ABORTING_CONNECTI |S1000 08S01
ON

1153 ER_NET_PACKET_TOO_LAR|S1000 08501
GE

1154 ER_NET_READ_ERROR FR |S1000 08501
OM_PIPE

1155 ER_NET_FCNTL_ERROR |S1000 08501

1156 ER_NET_PACKETS_OUT_OF |S1000 08501
_ORDER

1157 ER_NET_UNCOMPRESS ER [S1000 08S01
ROR

1158 ER_NET_READ_ERROR S1000 08S01

1159 ER_NET_READ_INTERRUPT [S1000 08S01
ED

1160 ER_NET_ERROR_ON_WRITE |S1000 08501

1161 ER_NET_WRITE_INTERRUP |S1000 08501
TED

1162 ER TOO_LONG_STRING |S1000 42000

1163 ER TABLE_CANT_HANDLE [S1000 42000
_BLOB

1164 ER TABLE_CANT_HANDLE [S1000 42000
_AUTO_INCREMENT

1166 ER_WRONG_COLUMN_NA |S1000 42000
ME

1167 ER_WRONG_KEY_COLUMN [S1000 42000

1169 ER_DUP_UNIQUE S1000 23000

1170 ER BLOB_KEY_WITHOUT_ |S1000 42000
LENGTH

1171 ER_PRIMARY_CANT_HAVE [S1000 42000
_NULL

1172 ER_ TOO_MANY_ROWS S1000 42000

1173 ER_REQUIRES PRIMARY K [S1000 42000
EY

1177 ER_CHECK_NO_SUCH_TAB |S1000 42000

25

MySQL Connector/J

MySQL Error Number

MySQL Error Name

Legacy (X/Open) SQL State

SQL Standard SQL State

LE

1178 ER_CHECK_NOT_IMPLEME |S1000 42000
NTED

1179 ER_CANT_DO_THIS DURIN [S1000 25000
G_AN_TRANSACTION

1184 ER_NEW_ABORTING_CONN [S1000 08501
ECTION

1189 ER_MASTER NET_READ |S1000 08501

1190 ER_MASTER NET_WRITE |S1000 08501

1203 ER_TOO_MANY_USER_CON [S1000 42000
NECTIONS

1205 ER_LOCK_WAIT_TIMEOUT 41000 41000

1207 ER_READ_ONLY_TRANSAC [S1000 25000
TION

1211 ER_NO_PERMISSION_TO_C |S1000 42000
REATE_USER

1213 ER_LOCK_DEADLOCK 41000 40001

1216 ER_NO_REFERENCED_ROW |S1000 23000

1217 ER_ROW_IS REFERENCED |S1000 23000

1218 ER_CONNECT_TO_MASTER |S1000 08501

1222 ER_WRONG_NUMBER_OF _ |S1000 21000
COLUMNS IN_SELECT

1226 ER_USER_LIMIT_REACHED |S1000 42000

1230 ER_NO_DEFAULT S1000 42000

1231 ER_WRONG_VALUE_FOR_V [S1000 42000
AR

1232 ER_WRONG_TYPE_FOR VA [S1000 42000
R

1234 ER_CANT_USE_OPTION_HE |S1000 42000
RE

1235 ER_NOT_SUPPORTED_YET |S1000 42000

1239 ER_WRONG_FK_DEF S1000 42000

1241 ER_OPERAND_COLUMNS |S1000 21000

1242 ER_SUBQUERY_NO_1 ROW [S1000 21000

1247 ER_ILLEGAL_REFERENCE |S1000 42522

1248 ER_DERIVED_MUST _HAVE |S1000 42000
_ALIAS

1249 ER_SELECT REDUCED S1000 01000

1250 ER_ TABLENAME_NOT_ALL [S1000 42000
OWED_HERE

1251 ER_NOT_SUPPORTED AUT |S1000 08004
H_MODE

1252 ER_SPATIAL_CANT HAVE_ |S1000 42000
NULL

1253 ER_COLLATION_CHARSET_[S1000 42000
MISMATCH

1261 ER_WARN_TOO_FEW_RECO |S1000 01000
RDS

1262 ER_WARN_TOO_MANY_RE |S1000 01000

CORDS

26

MySQL Connector/J

MySQL Error Number MySQL Error Name Legacy (X/Open) SQL State SQL Standard SQL State

1263 ER_WARN_NULL_TO_NOTN [S1000 01000
ULL

1264 ER_WARN_DATA_OUT_OF _{S1000 01000
RANGE

1265 ER_WARN_DATA_TRUNCA |[S1000 01000
TED

1280 ER_ WRONG_NAME_FOR_IN [S1000 42000
DEX

1281 ER_ WRONG_NAME_FOR_C |S1000 42000
ATALOG

1286 ER_UNKNOWN_STORAGE_ [S1000 42000
ENGINE

1.5. Connector/J Notes and Tips
1.5.1. Basic JDBC Concepts

This section provides some general JDBC background.

1.5.1.1. Connecting to MySQL Using the Dri ver Manager Interface
When you are using JDBC outside of an application server, the Dr i ver Manager class manages the establishment of Connections.

TheDr i ver Manager needsto be told which JDBC driversit should try to make Connections with. The easiest way to do thisisto
use Cl ass. f or Nane() ontheclassthat implementsthej ava. sqgl . Dri ver interface. With MySQL Connector/J, the name of this
classiscom nysql . j dbc. Dri ver . With this method, you could use an external configuration file to supply the driver class name
and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the mai n() method of your application:

i mport java.sql.Connection;
i mport java.sql.DriverManager;
i mport java.sql.SQ.Exception;

/1l Notice, do not inmport comnysql.jdbc.*
/'l or you will have problens!

public class LoadDriver {
public static void main(String[] args) {
try {
/'l The newi nstance() call is a work around for sone
/'l broken Java inpl ementati ons

Cl ass. f or Name("com nysql . jdbc. Driver").new nstance();
} catch (Exception ex) {
) // handl e the error

After the driver has been registered with the Dr i ver Manager , you can obtain aConnect i on instance that is connected to a particu-
lar database by calling Dr i ver Manager . get Connecti on():

Example 1. Obtaining a connection from the Dri ver Manager

This example shows how you can obtain a Connect i on instance from the Dr i ver Manager . There are afew different signatures for
theget Connect i on() method. You should see the APl documentation that comes with your JDK for more specific information on
how to use them.

i mport java.sql.Connection;
i mport java.sql.DriverManager;
i mport java.sql.SQ.Exception;

try {
Connection conn =

27

MySQL Connector/J

Dri ver Manager . get Connecti on("j dbc: mysql ://1 ocal host/test?" +
"user =nont y&asswor d=gr eat sql db") ;

/1 Do sonething with the Connection

} catch (SQLException ex) {
// handl e any errors
System out. println("SQ.Exception: " + ex.getMessage());
Systemout.println("SQ.State: " + ex.getSQ.State());
Systemout. println("VendorError: " + ex.getErrorCode());

OnceaConnect i on isestablished, it can be used to create St at enent and Pr epar edSt at ement objects, aswell asretrieve
metadata about the database. Thisis explained in the following sections.

1.5.1.2. Using Statements to Execute SQL

St at enent objects allow you to execute basic SQL queries and retrieve the results through the Resul t Set classwhich is described
later.

To create a St at enent instance, you call thecr eat eSt at enent () method on the Connect i on object you have retrieved via
oneof theDDr i ver Manager . get Connecti on() or Dat aSour ce. get Connecti on() methods described earlier.

Onceyou have a St at enent instance, you can execute a SELECT query by calling the execut eQuer y(St ri ng) method with the
SQL you want to use.

To update data in the database, usethe execut eUpdat e(St ri ng SQL) method. This method returns the number of rows affected
by the update statement.

If you don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/I NSERT, then you can use the ex-
ecute(String SQ.) method. This method will return trueif the SQL query was a SELECT, or falseif it was an UPDATE,

| NSERT, or DELETE statement. If the statement was a SELECT query, you can retrieve the results by calling the get Resul t Set ()
method. If the statement was an UPDATE, | NSERT, or DELETE statement, you can retrieve the affected rows count by calling get Up-
dat eCount () onthe St at enent instance.

Example 2. Using java.sqgl.Statement to execute a SELECT query

/'l assunme that conn is an already created JDBC connection
Statenment stmt = null;
ResultSet rs = null;

try {
stmt = conn.createStatenent();

rs = stnt.executeQuery("SELECT foo FROM bar");

/1 or alternatively, if you don't know ahead of tine that
// the query will be a SELECT...
if (stnt.execute("SELECT foo FROM bar")) {
rs = stnt.getResultSet();
}

/1 Now do sonething with the ResultSet
} finally {

/1 it Is a good idea to rel ease

/1l resources in a finally{} block

Il in reverse-order of their creation

/1 if they are no-longer needed

if (rs!=null) {
tr

rs.close();
} catch (SQ.Exception sqlEx) { // ignore }

rs = null;

if (stmt !'=null) {

try {
stnt.close();
} catch (SQLException sqlEx) { // ignore }

stnmt = null;

28

MySQL Connector/J

1.5.1.3. Using Cal | abl eSt at enent s to Execute Stored Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, thej ava. sql . Cal | abl eSt at enent inter-
faceis fully implemented with the exception of the get Par anet er Met aDat a() method.

See Stored Procedures and Functions, for more information on MySQL stored procedures.
Connector/J exposes stored procedure functionality through JDBC's Cal | abl eSt at enent interface.
Note

Current versions of MySQL server do not return enough information for the JDBC driver to provide result set metadata for
callable statements. This meansthat when using Cal | abl eSt at ement , Resul t Set Met aDat a may return NULL.

The following example shows a stored procedure that returns the value of i nOut Par amincremented by 1, and the string passed in via
i nput Par amasaResul t Set :

Example 3. Stored Procedures

CREATE PROCEDURE denpSp(| N i nput Par am VARCHAR(255), \
I NOUT i nQut Par am | NT)
BEG N
DECLARE z | NT;
SET z = i nQut Param + 1;
SET i nQut Param = z;
SELECT i nput Par am

SELECT CONCAT(' zyxw , i nputParan;
END

To usethe denoSp procedure with Connector/J, follow these steps:

1. Preparethecalable statement by using Connecti on. prepareCal | () .

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter placehol ders are not optional:

Example 4. Using Connecti on. prepareCal | ()

import java.sql.Callabl eStatenent;

Prepare a call to the stored procedure 'denoSp'
t

with two paraneters

tice the use of JDBC escape syntax ({call ...})

—~————
—~————

Cal | abl eStatemrent cStnt = conn. prepareCall ("{call demoSp(?, ?)}");

cStnt.setString(1l, "abcdefg");

Note
Connect i on. prepareCal | () isanexpensive method, due to the metadata retrieval that the driver performsto sup-
port output parameters. For performance reasons, you should try to minimize unnecessary callsto Connec-
tion. prepareCall () byreusingCal | abl eSt at enent instancesin your code.
2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or | NOUT when you created the stored procedure), JDBC
requires that they be specified before statement execution using the variousr egi st er Qut put Par anet er () methodsin the

29

http://dev.mysql.com/doc/refman/5.0/en/stored-procedures.html

MySQL Connector/J

Cal | abl eSt at enent interface:

Example 5. Registering output parameters
i mport java.sql. Types;

Connector/J supports both named and i ndexed
out put paraneters. You can register output

paranmeters using either method, as well

as retrieve output parameters using either

net hod, regardl ess of what nethod was

used to register them

The foll owi ng exanpl es show how to use
the various nethods of registering

out put paraneters (you should of course
use only one registration per paraneter).

—_——— e e e — e — — — ——
—_—— e e e e — — e — -

/
| Registers the second paraneter as output, and

/ uses the type 'INTEGER for values returned from
| get Obj ect ()

/

—_~——

cStnt.regi sterQutParaneter(2, Types.|NTEGER);

/
/ Registers the naned paraneter 'inCQutParanm, and
| uses the type 'INTEGER for values returned from
| get Cbj ect ()

/

—_~———

cStnt.registerQutParaneter("inQutParant', Types.|NTEGER);

3. Settheinput parameters (if any exist)

Input and in/out parameters are set asfor Pr epar edSt at ement objects. However, Cal | abl eSt at enent also supports set-
ting parameters by name:

Example 6. Setting Cal | abl eSt at enent input parameters

Il
H Set a paraneter by index
cStnt.setString(1l, "abcdefg");

/

/| Alternatively, set a paraneter using
/ the paraneter nane
/

—_~———

cStmt.setString("inputParameter”, "abcdefg");
/1
/Il Set the "in/out' paraneter using an index
/1

cStnt.setInt(2, 1);

by name

—_~———

/
/ Alternatively, set the 'in/out' paraneter
/
/

cStnt.setlnt("inQutParant, 1);

4. ExecutetheCal | abl eSt at enent , and retrieve any result sets or output parameters.

30

MySQL Connector/J

Although Cal | abl eSt at enment supports calling any of the St at enent execute methods (execut eUpdat e() , ex-
ecut eQuery() orexecut e()), themost flexible method to call isexecut e() , asyou do not need to know ahead of time if
the stored procedure returns result sets:

Example 7. Retrieving results and output parameter values

bool ean hadResults = cStnt.execute();
/1
/] Process all returned result sets
/1
whil e (hadResults) {
ResultSet rs = cStnt.getResultSet();

/| process result set

hadResults = rs. get MoreResults();

trieve output paraneters

Re
Connector/J supports both index-based and
name- based retri eval

—~—————
—~————

int outputValue = cStnt.getlnt(2); // index-based

out put Value = cStnt.getlnt("inQutParam'); // nane-based

1.5.1.4. Retrieving AUTO_| NCREMENT Column Values

Before version 3.0 of the JIDBC AP, there was no standard way of retrieving key values from databases that supported auto increment
or identity columns. With older JIDBC driversfor MySQL, you could aways use a MySQL -specific method on the St at enent inter-
face, or issuethe query SELECT LAST | NSERT | D() after issuing an | NSERT to atable that had an AUTO_| NCREMVENT key. Us-
ing the MySQL -specific method call isn't portable, and issuing a SELECT to get the AUTO_| NCREMENT key's value requires another
round-trip to the database, which isn't as efficient as possible. The following code snippets demonstrate the three different waysto re-
trieve AUTO_| NCREMENT values. First, we demonstrate the use of the new JDBC-3.0 method get Gener at edKeys() whichisnow
the preferred method to use if you need to retrieve AUTO | NCREVENT keys and have access to JDBC-3.0. The second example shows
how you can retrieve the same value using a standard SELECT LAST_| NSERT_I D() query. The final example shows how updatable
result sets can retrieve the AUTO_| NCREMENT value when using thei nser t Row() method.

Example 8. Retrieving AUTO | NCREMENT column values using St at enent . get Gener at edKeys()

Statement stnt = null;
ResultSet rs = null;

/

/] Create a Statenent instance that we can use for
/1 "normal' result sets assumi ng you have a

/'l Connection 'conn' to a MySQL dat abase al ready
/] avail abl e

stmt = conn.createStatenent(java. sql . Resul t Set. TYPE_FORWARD_ONLY,
java. sql . Resul t Set . CONCUR_UPDATABLE) ;

/1
/'l 1ssue the DDL queries for the table for this exanple
/1

st . execut eUpdat e(" DROP TABLE | F EXI STS autolncTutorial");
st nt . execut eUpdat e(

" CREATE TABLE autolncTutorial ("

+ "priKey INT NOT NULL AUTO | NCREMENT, "

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

31

MySQL Connector/J

Example 9. Retrieving AUTO_| NCREMENT column values using SELECT

key in the 'priKey' field

—_~———

/
/ Insert one row that will generate an AUTO | NCREMENT
/
/

st . execut eUpdat e(
"I NSERT I NTO autolncTutorial (dataField) "
+ "values ("Can | Get the Auto Increment Field?)",
St at enent . RETURN_GENERATED_KEYS) ;

/1

/'l Exanpl e of using Statenent.get Generat edKeys()
// to retrieve the value of an auto-increnent

/'l val ue

/1

int autol ncKkeyFromApi = -1;

rs = stnt.getGeneratedKeys();

if (rs.next()) {
aut ol ncKeyFromApi = rs.getlnt(1);
} else {

I/ throw an exception from here

rs.close();
rs = null;

Systemout. println("Key returned from get Gener at edkeys(): "
+ aut ol ncKeyFr omApi) ;
nal ly {

if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore

}

if (stnt !'=null) {
try {
stnt.close();
} catch (SQLException ex) {
/'l ignore

Statenment stnt = null;
ResultSet rs = null;

try {

Il
/] Create a Statenent instance that we can use for
/1 'normal' result sets.

stnt = conn. createStatenent ();

~_~——

/
/| Issue the DDL queries for the table for this exanple
/

st . execut eUpdat e(" DROP TABLE | F EXI STS autolncTutorial");
st . execut eUpdat e(

" CREATE TABLE autolncTutorial ("

+ "priKey |NT NOT NULL AUTO_| NCREMVENT

+ "dataFi el d VARCHAR(64), PRI MARY KEY (priKey))");

key in the 'priKey' field

—_~———

/
/ Insert one row that will generate an AUTO | NCREMENT
/
/

st mt . execut eUpdat e(
"I NSERT I NTO autolncTutorial (dataField) "
+ "values ('Can | Get the Auto Increment Field?)");

32

LAST | NSERT_| ()

MySQL Connector/J

/1

/] Use the MySQL LAST_| NSERT_| D()

Il function to do the sane thing as get Generat edKeys()
Il

int autol ncKeyFronfFunc = -1;
rs = stnt.executeQuery(" SELECT LAST_INSERT_ID()");

if (rs.next()) {

aut ol ncKeyFronfFunc = rs.getlnt(1);
} else {

/1 throw an exception from here

rs.close();
S/stemout.println(Key returned from" +

SELECT LAST_INSERT_ID()': " +
aut ol ncKeyFr onFunc) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (S(lExceptlon ex) {
/'l ignore
}

if (stnmt !'=null) {
tr

stnt.close();
} catch (SQ_Exceptlon ex) {
/1 ignore

Example 10. Retrieving AUTO_| NCREMENT column values in Updat abl e Resul t Set's

Statenment stnt = null;
ResultSet rs = null;

try {

Create a Statenment instance that we can use for
‘normal ' result sets as well as an updat abl e’
one, assumng you have a Connection 'conn' to
a MySQL dat abase al ready avail abl e

stmt = conn.createStatenent(java. sql . Resul t Set. TYPE_FORWARD_ONLY,
j ava. sql . Resul t Set . CONCUR_UPDATABLE) ;

/1
/'l 1ssue the DDL queries for the table for this exanple
/1

stmt . execut eUpdat e(" DROP TABLE | F EXI STS autolncTutorial");
st . execut eUpdat e(

" CREATE TABLE autolncTutorial ("

+ "priKey |NT NOT NULL AUTO_ | NCREMENT, *

+ "dataFi el d VARCHAR(64), PRI MARY KEY (priKey))");

Exanpl e of retrieving an AUTO | NCREMVENT key
froman updatable result set

—_~———
—_~———

rs = stnt.executeQuery("SELECT pri Key, dataField "
+ "FROM autol ncTutorial");

rs. moveTol nsert Row() ;
rs.updateString("dataField", "AUTO | NCREMENT here?");
rs.insertRow);

11
H the driver adds rows at the end

33

MySQL Connector/J

rs.last();

—_~——

/
/ W should now be on the row we just inserted
/

int autol ncKeyFronRS = rs.getlnt("priKey");
rs.close();
rs = null;

Systemout. println(" Key returned for inserted row "
+ aut ol ncKeyFro

} finally {
if (rs I'=null) {

rs.close();
} catch (SQ_Exceptlon ex) {
Il ignore

}

if (stmt !'= null) {
try {
stmt.close();
} catch (SQLException ex) {
/1 ignore

When you run the preceding example code, you should get the following output: Key returned from get Gener at edKeys() : 1 Key
returned from SELECT LAST_|I NSERT_| IX() : 1 Key returned for inserted row: 2 Y ou should be aware, that at times, it can be tricky
to usethe SELECT LAST | NSERT_I D() query, asthat function's valueis scoped to a connection. So, if some other query happens
on the same connection, the value will be overwritten. On the other hand, the get Gener at edKeys() method is scoped by the

St at enent instance, so it can be used even if other queries happen on the same connection, but not on the same St at enent in-
stance.

1.5.2. Using Connector/J with J2EE and Other Java Frameworks
This section describes how to use Connector/Jin several contexts.

1.5.2.1. General J2EE Concepts
This section provides general background on J2EE concepts that pertain to use of Connector/J.

1.5.2.1.1. Understanding Connection Pooling
Connection pooling is a technique of creating and managing a pool of connections that are ready for use by any thread that needs them.
This technique of pooling connectionsis based on the fact that most applications only need a thread to have accessto a JDBC connec-
tion when they are actively processing a transaction, which usually take only milliseconds to complete. When not processing a transac-
tion, the connection would otherwise sit idle. Instead, connection pooling allows the idle connection to be used by some other thread to
do useful work.

In practice, when athread needs to do work against aMySQL or other database with JDBC, it requests a connection from the pool.
When the thread is finished using the connection, it returnsit to the pool, so that it may be used by any other threads that want to use it.

When the connection isloaned out from the pool, it is used exclusively by the thread that requested it. From a programming point of
view, itisthe same asif your thread called Dr i ver Manager . get Connecti on() every timeit needed aJDBC connection,
however with connection pooling, your thread may end up using either a new, or already-existing connection.

Connection pooling can gresatly increase the performance of your Java application, while reducing overall resource usage. The main be-
nefits to connection pooling are:

¢ Reduced connection creation time

MySQL Connector/J

Although thisis not usually an issue with the quick connection setup that MySQL offers compared to other databases, creating new
JDBC connections still incurs networking and JDBC driver overhead that will be avoided if connections are recycled.

« Simplified programming model

When using connection pooling, each individual thread can act as though it has created its own JDBC connection, allowing you to
use straight-forward JDBC programming techniques.

¢ Controlled resource usage

If you don't use connection pooling, and instead create a new connection every time athread needs one, your application's resource
usage can be quite wasteful and lead to unpredictable behavior under load.

Remember that each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client and server
side. Every connection limits how many resources there are available to your application as well as the MySQL server. Many of these
resources will be used whether or not the connection is actually doing any useful work!

Connection pools can be tuned to maximize performance, while keeping resource utilization below the point where your application
will start to fail rather than just run slower.

Luckily, Sun has standardized the concept of connection pooling in JDBC through the JDBC-2.0 Optional interfaces, and all major ap-
plication servers have implementations of these APIs that work fine with MySQL Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it via the Java Naming and Direct-
ory Interface (JNDI). The following code shows how you might use a connection pool from an application deployed in a J2EE applica-
tion server:

Example 11. Using a connection pool with a J2EE application server

i mport java.sql. Connection;
i mport java.sql.SQ.Exception;
import java.sql.Statenent;

i nport javax.naming.lnitial Context;
i mport | avax.sql . Dat aSour ce;

public class MyServletJspOrE b {
publ}c voi d doSonet hi ng() throws Exception {

Create a JNDI Initial context to be able to
| ookup the DataSource

I'n production-level code, this should be cached as
an instance or static variable, as it can
be quite expensive to create a JNDI context.

Note: This code only works when you are using servlets
or EJBs in a J2EE application server. If you are

usi ng connection pooling in standal one Java code, you

wi I| have to create/configure datasources using whatever
mechani snms your particular connection pooling Iibrary
/pr ovi des.

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Initial Context ctx = new Initial Context();

/
Lookup the DataSource, which will be backed by a pool

that the application server provides. DataSource Instances
are al so a good candi date for caching as an instance
/variable, as JNDI | ookups can be expensive as well.

E

Dat aSource ds =
(Dat aSour ce) ct x. | ookup("j ava: conp/ env/j dbc/ M\ySQLDB") ;

The follow ng code is what woul d actually be in your
Servlet, JSP or EJB 'service' nethod...where you need
to work with a JDBC connecti on.

/

EE

Connection conn = null;

35

MySQL Connector/J

Statenment stnt = null;

try {
conn = ds. get Connection();

/
Now, use normal JDBC progranming to work with

MySQ., making sure to close each resource when you're
finished with it, which allows the connection pool
/resources to be recovered as quickly as possible

* % ok k% ok

stmt = conn.createStatenment();
stnt. execute("SOVE SQL QUERY");

stmt.close();
stnt = null;

conn. cl ose();

conn = null;
} finally {

/*

* close any jdbc instances here that weren't

* explicitly closed during normal code path, so
* that we don't 'leak' resources...

*/

if (stmt !'=null) {
try {
stmt.close();
} catch (sql exception sqlex) {

/] ignore -- as we can't do anything about it here
stnt = null;
if (conn!=null) {
try {

conn. cl ose();

} catch (sql excebtion sql ex) {
/1 ignore -- as we can't do anything about it here
conn = null;

As shown in the example above, after obtaining the INDI Initial Context, and looking up the DataSource, the rest of the code should
look familiar to anyone who has done JDBC programming in the past.

The most important thing to remember when using connection pooling is to make sure that no matter what happensin your code
(exceptions, flow-of-control, and so forth), connections, and anything created by them (such as statements or result sets) are closed, so
that they may be re-used, otherwise they will be stranded, which in the best case means that the MySQL server resources they represent
(such as buffers, locks, or sockets) may be tied up for some time, or worst case, may be tied up forever.

What's the Best Size for my Connection Pool?

Aswith all other configuration rules-of-thumb, the answer is: it depends. Although the optimal size depends on anticipated load and av-
erage database transaction time, the optimum connection pool size is smaller than you might expect. If you take Sun's Java Petstore
blueprint application for example, a connection pool of 15-20 connections can serve arelatively moderate load (600 concurrent users)
using MySQL and Tomcat with response times that are acceptable.

To correctly size a connection pool for your application, you should create load test scripts with tools such as Apache IMeter or The
Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of connections to be unbounded, run
aload test, and measure the largest amount of concurrently used connections. Y ou can then work backward from there to determine
what values of minimum and maximum pooled connections give the best performance for your particular application.

1.5.2.2. Using Connector/J with Tomcat
The following instructions are based on the instructions for Tomcat-5.x, available at ht-

tp://jakarta.apache.org/tomcat/tomcat-5.0-doc/j ndi-datasource-examples-howto.html which is current at the time this document was
written.

36

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html

MySQL Connector/J

First, install the .jar file that comes with Connector/Jin $CATALI NA_HOVE/ comrmon/ | i b sothat itisavailableto al applicationsin-
stalled in the container.

Next, Configure the INDI DataSource by adding a declaration resource to $CATALI NA_HOVE/ conf/ ser ver . xnl in the context
that defines your web application:

<Context>

<Resour ce name="j dbc/ MySQLDB"
aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >

<I'-- The name you used above, nust match _exactly_ here!

The connection pool will be bound into JNDI with the name
"java:/ conp/ env/j dbc/ MySQLDB"

>

<Resour cePar anms nanme="j dbc/ MySQ.DB" >
<par amet er >
<name>f act or y</ nanme>
<val ue>or g. apache. commons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

<I-- Don't set this any higher than max_connections on your
M/SQ server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<par anmet er >
<name>maxAct i ve</ name>
<val ue>10</ val ue>

</ par anet er >

<l-- You don't want to many idle connections hangi ng around
if you can avoid it, only enough to soak up a spike in
the load -->

<par amet er >
<nare>max| dl e</ name>
<val ue>5</val ue>

</ par anet er >

<!-- Don't use autoReconnect=true, it's going away eventually
and it's a crutch for ol der connection pools that coul dn't
test connections. You need to decide whether your application
is supposed to deal with SQ.Exceptions (hint, it should), and
how much of a performance penalty you're willing to pay
to ensure 'freshness' of the connection -->

<par amet er >
<nane>val i dati onQuer y</ name>
<val ue>SELECT 1</val ue>

</ par anet er >

<I-- The nost conservative approach is to test connections
before they're given to your application. For npbst applications
this is okay, the query used above is very snmall and takes
no real server resources to process, other than the time used
to traverse the network.

If you have a high-load application you'll need to rely on
sonmet hing else. -->

<par amet er >
<name>t est OnBor r ow</ nanme>
<val ue>true</ val ue>

</ par anet er >

<I-- Oherwise, or in addition to testOnBorrow, you can test
whil e connections are sitting idle -->

<par anmet er >
<nane>t est Wi | el dl e</ nanme>
<val ue>true</ val ue>

</ par anet er >

<I'-- You have to set this value, otherw se even though
you' ve asked connections to be tested while idle,
the idle evicter thread will never run -->

<par amet er >
<name>t i meBet weenEvi cti onRunsM | | i s</ name>
<val ue>10000</ val ue>

</ par anet er >

37

MySQL Connector/J

<!-- Don't allow connections to hang out idle too |ong,
never |onger than what wait_tinmeout is set to on the
server...A few minutes or even fraction of a mnute
is someti mes okay here, it depends on your application
and how nuch spikey load it wll see -->

<par anmet er >
<name>m nEvi ct abl el dl eTi reM | | i s</ name>
<val ue>60000</ val ue>

</ par anet er >

<!-- Username and password used when connecting to MySQL -->

<par anmet er >
<nanme>user name</ name>
<val ue>soneuser </ val ue>
</ par anet er >

<par amet er >
<name>passwor d</ name>
<val ue>sonepass</ val ue>
</ par anet er >

<l-- dass nanme for the Connector/J driver -->

<par amet er >
<name>dri ver O assNanme</ name>
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ par anet er >

<!-- The JDBC connection url for connecting to M/SQ., notice
that if you want to pass any other MySQL-specific paraneters
you shoul d pass themhere in the URL, setting them using the
paranmeter tags above will have no effect, you will also
need to use &anp; to separate paraneter values as the
anmpersand is a reserved character in XM -->

<par amet er >
<nanme>ur | </ name>
<val ue>j dbc: mysql : / /1 ocal host : 3306/ t est </ val ue>
</ par anet er >

</ Resour cePar ans>
</ Cont ext >

In general, you should follow the installation instructions that come with your version of Tomcat, as the way you configure datasources
in Tomcat changes from time-to-time, and unfortunately if you use the wrong syntax in your XML file, you will most likely end up with
an exception similar to the following:

Error: java.sql.SQ.Exception: Cannot |oad JDBC driver class '"null ' SQ
state: null

1.5.2.3. Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server, copy the .jar file that comes
with Connector/Jto thel i b directory for your server configuration (which isusualy called def aul t). Then, in the same configura-
tion directory, in the subdirectory named deploy, create a datasource configuration file that ends with "-ds.xml", which tells JBoss to de-
ploy thisfile as a JDBC Datasource. The file should have the following contents:

<dat asour ces>
<l ocal -t x- dat asour ce>
<!-- This connection pool will be bound into JNDI with the name
"java:/ M/SQLDB" -->

<j ndi - name>MySQLDB</ j ndi - nanme>

<connection-url >j dbc: mysql : / /1 ocal host : 3306/ dbnanme</ connecti on-url >
<driver-class>com nysql .jdbc. Driver</driver-cl ass>

<user - nane>user </ user - name>

<passwor d>pass</ passwor d>

<m n- pool - si ze>5</ m n- pool -si ze>

<!-- Don't set this any higher than max_connections on your
M/SQ server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<max- pool - si ze>20</ max- pool - si ze>

<l-- Don't allow connections to hang out idle too |ong,
never |onger than what wait_timeout is set to on the
server...A few mnutes is usually okay here,
it depends on your application
and how nuch spikey load it will see -->

38

MySQL Connector/J

<i dl e-ti meout - m nut es>5</i dl e-ti meout - m nut es>

<I-- If you're using Connector/J 3.1.8 or newer, you can use
our inplenentation of these to increase the robustness
of the connection pool. -->

<exception-sorter-class-name>

com nysql . j dbc.integration.jboss. ExtendedMysql Excepti onSorter
</ exception-sorter-class-nanme>
<val i d- connecti on- checker - cl ass- name>

com nysql . j dbc.integration.]jboss. Mysqgl Val i dConnecti onChecker
</val i d- connecti on- checker - cl ass- name>

</l ocal -t x- dat asour ce>
</ dat asour ces>

1.5.2.4. Using Connector/J with Spring

The Spring Framework is a Java-based application framework designed for assisting in application design by providing away to config-
ure components. The technique used by Spring is awell known design pattern called Dependency Injection (see Inversion of Control
Containers and the Dependency Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0.
For those wondering, thereisa .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented programming (AOP). Thisis one
of the main benefits and the foundation for Spring's resource and transaction management. Spring also provides utilities for integrating
resource management with JDBC and Hibernate.

For the examplesin this section the MySQL world sample database will be used. The first task isto setup a MySQL data source through
Spring. Components within Spring use the "bean" terminology. For example, to configure a connection to aMySQL server supporting
the world sample database you might use:

<util:map id="dbProps">
<entry key="db.driver" val ue="com nysql.jdbc.Driver"/>
<entry key="db.jdbcurl" val ue="jdbc: mysql://1ocal host/worl d"/>
<entry key="db. usernanme" val ue="myuser"/>
<entry key="db. password" val ue="nypass"/>
</util:map>

In the above example we are assigning values to properties that will be used in the configuration. For the datasource configuration:

<bean i d="dat aSour ce"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nanme="driverd assName" val ue="${db.driver}"/>
<property name="url" val ue="${db. jdbcurl}"/>
<property nanme="usernanme" val ue="${db. usernane}"/>
b <property name="password" val ue="${db. password}"/>
</ bean>

The placeholders are used to provide values for properties of this bean. This means that you can specify all the properties of the config-
uration in one place instead of entering the values for each property on each bean. We do, however, need one more bean to pull this all
together. The last bean isresponsible for actually replacing the placeholders with the property values.

<bean
cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="properties" ref="dbProps"/>
</ bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access it. The example below will
retrieve three random cities and their corresponding country using the data source we configured with Spring.

/] Create a new application context. this processes the Spring config
Appl i cati onCont ext ctx =
new Cl assPat hXm Appl i cati onCont ext (" exlappContext.xm");
/'l Retrieve the data source fromthe application context
Dat aSource ds = (DataSource) ctx.getBean("dataSource");
/1 Open a database connection using Spring s DataSourceltils
Conn?ct ion ¢ = DataSourceUtils. get Connection(ds);
try
/] retrieve a list of three randomcities
PreparedStatement ps = c. prepareStat ement (

39

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

MySQL Connector/J

"select City.Name as 'City', Country.Name as 'Country' " +
"fromCty inner join Country on Cty.CountryCode = Country.Code " +
"order by rand() limt 3");

ResultSet rs = ps. executeQuery();

whi I e(rs. next()) {
String city = rs. getStrlng("Clt
String country = rs.getString(" Oountry);
Systemout.printf("The city % is in 0/5%1" city, country);

}
} catch (SQ.Exception ex) {
/'l sonething has failed and we print a stack trace to analyse the error
ex. printStackTrace();
/1 ignore failure closing connection
try { c.close(); } catch (SQLException e) { }
} finally {
/'l properly release our connection
Dat aSourcelti | s. rel easeConnection(c, ds);

Thisisvery similar to normal JDBC access to MySQL with the main difference being that we are using DataSourceUtils instead of the
DriverManager to create the connection.

While it may seem like asmall difference, the implications are somewhat far reaching. Spring manages this resource in away similar to
a container managed data source in a J2EE application server. When a connection is opened, it can be subsequently accessed in other
parts of the code if it is synchronized with a transaction. This makesit possible to treat different parts of your application as transaction-
al instead of passing around a database connection.

1.5.2.4.1. Using JdbcTenpl at e

Spring makes extensive use of the Template method design pattern (see Template Method Pattern). Our immediate focus will be on the
JdbcTenpl at e and related classes, specifically NanedPar anet er JdbcTenpl at e. The template classes handle obtaining and re-
leasing a connection for data access when one is needed.

The next example shows how to use NamredPar anet er JdbcTenpl at e inside of aDAO (Data Access Object) classto retrieve a
random city given a country code.

public class Ex2JdbcDao {
/**

* Data source reference which will be provided by Spring.

*/

private DataSource dataSource;

/**

* Qur query to find a randomcity given a country code. Notice

* the ":country" parameter towards the end. This is called a
* named paraneter.
*/

private String queryString = "select Name fromCity " +
"where CountryCode = :country order by rand() limt 1";

[*x*

* Retrieve a randomcity using Spring JDBC access cl asses.
*
public Stl‘l ng get RandonCi t yByCount ryCode(String cntryCode) {
/1 A tenplate that allows using querles wi th named paraneters
NanmedPar anet er JdbcTenpl ate tenplate =
new NanmedPar anet er JdbcTenpl at e(dat aSour ce) ;
/1 Ajava.util.Map is used to provide values for the paraneters
Map paranms = new HashMap();
parans. put ("country", cntryCode);
/1 We query for an Cbject and specify what class we are expecting
return (String)tenplate.queryForCbj ect(queryString, paranms, String.class);
}
/**
* A JavaBean setter-style nmethod to allow Spring to inject the data source.
* @ar am dat aSour ce
*

publ i c voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;
}

The focus in the above code is on the get RandonCi t yBy Count r yCode() method. We pass a country code and use the Naned-
Par anmet er JdbcTenpl at e to query for acity. The country codeis placed in a Map with the key "country”, which is the parameter
isnamed in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

40

http://en.wikipedia.org/wiki/Template_method_pattern

MySQL Connector/J

<bean i d="dao" cl ass="code. Ex2JdbcDao" >
<property name="dat aSource" ref="dataSource"/>
</ bean>

At this point, we can just grab areference to the DAO from Spring and call get RandonTCi t yByCount r yCode() .

Il Create the application context
ApplicationContext ctx =
new Cl assPat hXm Appl i cati onCont ext (" ex2appCont ext.xm ");
// Obtain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx. get Bean("dao");

String countryCode = "USA";

/1 Find a fewrandomcities in the US
for(int i =0; i < 4 ++|)
System out . pri ntf(A randomcity in % is %%", countryCode,
dao. get RandonCi t yByCount r yCode(count ryCode)) ;

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional JDBC classes including Con-
necti on and Prepar edSt at enent .

1.5.2.4.2. Transactional JDBC Access

Y ou might be wondering how we can add transactions into our code if we don't deal directly with the JDBC classes. Spring provides a
transaction management package that not only replaces JDBC transaction management, but also allows declarative transaction manage-
ment (configuration instead of code).

In order to use transactional database access, we will need to change the storage engine of the tablesin the world database. The down-
loaded script explicitly creates MylSAM tables which do not support transactional semantics. The InnoDB storage engine does support
transactions and thisis what we will be using. We can change the storage engine with the following statements.

ALTER TABLE City ENG NE=I nnoDB;
ALTER TABLE Country ENG NE=I nnoDB;
ALTER TABLE CountrylLanguage ENG NE=I nnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What this meansis that we can cre-
ate a Javainterface and only use the operations on this interface without any internal knowledge of what the actual implementation is.
We will let Spring manage the implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String nane, String countryCode,
String district, Integer popul ation);

This interface contains one method that will create a new city record in the database and return the id of the new record. Next you need
to create an implementation of this interface.

public class Ex3Daol npl inplenments Ex3Dao {
protected DataSource dataSource;
protected Sql Update updat eQuery;
protected Sqgl Function idQery;

public Integer createCity(String name, String countryCode,
String district, Integer popul atlon) {
updat eQuery. updat e(new Object[] { name, countryCode,
district, population });
return getlLastld();

protected I nteger getlLastld() {
return i dQuery.run();

Y ou can see that we only operate on abstract query objects here and don't deal directly with the JDBC API. Also, thisisthe complete
implementation. All of our transaction management will be dealt with in the configuration. To get the configuration started, we need to
create the DAO.

<bean i d="dao" cl ass="code. Ex3Daol npl ">
<property name="dat aSource" ref="dataSource"/>

41

MySQL Connector/J

<property name="updateQuery">...</property>
<property name="idQuery">...</property>
</ bean>

Now you need to setup the transaction configuration. The first thing you must do is create transaction manager to manage the data
source and a specification of what transaction properties are required for for the dao methods.

<bean i d="transacti onManager"
class="org.spri ngframework jdbC dat asour ce. Dat aSour ceTr ansact i onManager " >
<property name="dataSource" ref="dataSource"/>
</ bean>

<t x:advi ce i d="t xAdvi ce" transacti on-manager="transacti onManager" >
<t x: attr| but es>

</tx:attributes>
</t x:advi ce>

The preceding code creates a transaction manager that handles transactions for the data source provided to it. Thet xAdvi ce usesthis
transaction manager and the attributes specify to create atransaction for all methods. Finally you need to apply this advice with an AOP
pointcut.

<aop: confi g>
<aop: poi nt cut |d 'daoMet hods"
expressi on=' executlon(* code. Ex3Dao *(. ">
<aop: advi sor advi ce-ref ="t xAdvi ce" poi nt cut - r ef =" daoMet hods" / >
</ aop: confi g>

This basically saysthat all methods called on the Ex3Dao interface will be wrapped in atransaction. To make use of this, you only
have to retrieve the dao from the application context and call amethod on the dao instance.

Ex3Dao dao
Integer id

(Ex3Dao) ctx. getBean("dao");
dao. createC ty(name, count ryCode district, pop);

We can verify from this that there is no transaction management happening in our Java code and it's all configured with Spring. Thisisa
very powerful notion and regarded as one of the most beneficial features of Spring.

1.5.2.4.3. Connection Pooling

In many sitations, such as web applications, there will be alarge number of small database transactions. When thisisthe case, it usualy
makes sense to create a pool of database connections available for web requests as needed. Although MySQL does not spawn an extra
process when a connection is made, there is still a small amount of overhead to create and setup the connection. Pooling of connections
also alleviates problems such as collecting large amounts of socketsinthe TI ME_WAI T state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source configuration in the application context.
There are anumber of configurations that we can use. Thefirst example is based on the Jakarta Commons DBCP library. The example
below replaces the source configuration that was based on Dr i ver Manager Dat aSour ce with DBCP's BasicDataSource.

<bean i d="dat aSour ce" destroy-nmet hod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >

<property nanme="driverd assName" val ue="${db.driver}"/>
<property name="url" val ue="${db. jdbcurl}"/>
<property nanme="usernane" val ue="${db. usernane}"/>
<property name="password" val ue="${db. password}"/>
<property name="iInitial Size" val ue="3"/>

</ bean>

The configuration of the two solutionsis very similar. The difference isthat DBCP will pool connections to the database instead of cre-
ating a new connection every time oneis requested. We have also set aparameter herecalledi ni ti al Si ze. Thistells DBCP that we
want three connectionsin the pool when it is created.

Another way to configure connection pooling isto configure a data source in our J2EE application server. Using JBoss as an example,
you can set up the MySQL connection pool by creating afilecalled mysql - | ocal - ds. xml and placing it in the server/de-
fault/deploy directory in JBoss. Once we have this setup, we can use JNDI to look it up. With Spring, thislookup isvery simple. The
data source configuration looks like this.

<j ee:jndi -1 ookup id="dataSource" jndi-name="java: \y\SQ._DS"/ >

1.5.3. Common Problems and Solutions

42

http://jakarta.apache.org/commons/dbcp/

MySQL Connector/J

There are afew issues that seem to be commonly encountered often by users of MySQL Connector/J. This section deals with their
symptoms, and their resolutions.

Questions

e 15.3.1: When | try to connect to the database with MySQL Connector/J, | get the following exception:

SQLException: Server configuration denies access to data source
SQLSt ate: 08001
VendorError: 0

What's going on? | can connect just fine with the MySQL command-line client.
e 1.5.3.2: My application throws an SQL Exception 'No Suitable Driver'. Why is this happening?

¢ 153.3: I'mtrying to use MySQL Connector/Jin an applet or application and | get an exception similar to:

SQLException: Cannot connect to MySQ server on host: 3306.
I's there a MySQL server running on the nmachi ne/port you
are trying to connect to?

(java. security. AccessControl Excepti on)
SQ.State: 08S01
VendorError: 0

e 15.3.4: | have aservlet/application that works fine for a day, and then stops working overnight
¢ 153.5: I'mtrying to use JDBC-2.0 updatable result sets, and | get an exception saying my result set is not updatable.
¢ 1.5.3.6: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection paramters are correct.

e 15.3.7: | amtrying to connect to my MySQL server within my application, but | get the following error and stack trace:

j ava. net . Socket Excepti on
MESSAGE: Software caused connection abort: recv failed

STACKTRACE:

java. net . Socket Exception: Software caused connection abort: recv failed

at java. net. Socket I nput Stream socket ReadO(Nati ve Met hod)

at] ava. net. Socket | nput St ream r ead(Unknown Sour ce)

at com nysql . j dbc. Mysql | O readFul | y(Mysql | O j ava: 1392)

at com nysql . dbc. Mysql | O r eadPacket (Mysql | O. j ava: 1414)

at com nysql . dbc. Mysqgl | O. doHandshake(Mysql | O. j ava: 625)

at com nysql .] dbc. Connecti on. cr eat eNewl O(Connecti on.j ava: 1926)

at com nysql .] dbc. Connecti on. <i ni t >(Connecti on. j ava: 452)

at com nysql .] dbc. NonRegi st eri ngDri ver. connect (NonRegi steringDriver.java: 411)

e 1.5.3.8: My application is deployed through JBoss and | am using transactions to handle the statements on the MySQL database.
Under heavy loads | am getting a error and stack trace, but these only occur after afixed period of heavy activity.

Questions and Answers

1.5.3.1: When | try to connect to the database with MySQL Connector/J, | get the following exception:

SQLException: Server configuration denies access to data source
SQLSt ate: 08001
VendorError: 0O

What'sgoing on? | can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Domain Sockets. Therefore, when
MySQL Connector/J connects to MySQL, the security manager in MySQL server will use its grant tables to determine whether the con-
nection should be allowed.

Y ou must add the necessary security credentials to the MySQL server for this to happen, using the GRANT statement to your MySQL
Server. See GRANT Syntax, for more information.

| Note

43

http://dev.mysql.com/doc/refman/5.0/en/grant.html

MySQL Connector/J

Testing your connectivity with the mysqgl command-line client will not work unless you add the - - host flag, and use
something other than | ocal host for the host. Themysql command-line client will use Unix domain socketsif you use
the special hostname | ocal host . If you are testing connectivity to| ocal host ,use127. 0. 0. 1 asthe hosthame in-
stead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause your server installation to not have op-
timal security properties.

1.5.3.2: My application throws an SQL Exception '‘No Suitable Driver'. Why isthis happening?

There are three possible causes for this error:

e The Connector/J driver isnot in your CLASSPATH, see Section 1.2, “Connector/J Installation”.
« Theformat of your connection URL isincorrect, or you are referencing the wrong JDBC driver.

* When using DriverManager, thej dbc. dri ver s system property has not been populated with the location of the Connector/J
driver.

15.3.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception similar to:

SQLException: Cannot connect to MySQL server on host: 3306.
Is there a MyYSQL server running on the machi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)

SQ.State: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking” option set, or your MySQL server
has afirewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the .classfiles for the applet. This
means that MySQL must run on the same machine (or you must have some sort of port re-direction) for this to work. This also means
that you will not be able to test applets from your local file system, you must always deploy them to aweb server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix domain sockets. TCP/IP com-
munication with MySQL might be affected if MySQL was started with the "--skip-networking" flag, or if it isfirewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of MySQL server does this for example),
you need to comment it out in the file /etc/mysgl/my.cnf or /etc/my.cnf. Of course your my.cnf file might also exist inthe dat a direct-
ory of your MySQL server, or anywhere else (depending on how MySQL was compiled for your system). Binaries created by MySQL
AB awayslook in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you will need to have the firewall con-
figured to allow TCP/IP connections from the host where your Java code is running to the MySQL server on the port that MySQL is
listening to (by default, 3306).

1.5.3.4: | have a servlet/application that worksfine for a day, and then stops working over night

MySQL closes connections after 8 hours of inactivity. Y ou either need to use a connection pool that handles stale connections or use the
"autoReconnect” parameter (see Section 1.4.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Con-
nector/J’).

Also, you should be catching SQL Exceptionsin your application and dealing with them, rather than propagating them all the way until
your application exits, thisis just good programming practice. MySQL Connector/J will set the SQL State (see

java. sql . SQLExcepti on. get SQLSt at e() inyour APIDOCS) to "08S01" when it encounters network-connectivity issues
during the processing of a query. Y our application code should then attempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 12. Example of transaction with retry logic

MySQL Connector/J

public void doBusi nessOp() throws SQ.Exception {
Connection conn = null;
Statenment stnmt = null;
Resul t Set

Il

/'l How
Il (or
/1
in

rs = null;

many times do you want to retry the transaction
at

| east _getting_ a connection)?

t retryCount = 5;

bool ean transacti onConpl eted = fal se;

do {

try {

conn = get Connection();

assume getting this froma
javax. sql . Dat aSource, or the
J

/1
/1
/'l java.sql.DriverManager

conn. set Aut oCommi t (f al se);

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
r

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
€

Ckay, at this point, the '"retry-ability' of the
transaction really depends on your application |ogic,
whet her or not you're using autoconmt (in this case
not), and whether you're using transacational storage
engi nes

For this exanple, we'll assume that it's _not_ safe
to retry the entire transaction, so we set retry
count to O at this point

If you were using exclusively transaction-safe tables,

or your application could recover froma connection going
bad in the mddle of an operation, then you would not
touch 'retryCount' here, and just let the |oop repeat
until retryCount == 0.

tryCount = O;

stmt = conn.createStatenment();

String query = "SELECT foo FROM bar ORDER BY baz";

r

S

= stnt.executeQuery(query);

¥\hile (rs.next()) {

rs.close();
rs = null;

stnt.close();
stnt = null;

conn.commit();
conn. cl ose();
conn = null;

transacti onConpl eted = true;
} catch (SQLException sql Ex) {

—_~_—————

/
/
/
/
/
/
/

The two SQL states that are 'retry-able' are 08S01
for a conmuni cations error, and 40001 for deadl ock.

Only retry if the error was due to a stal e connection,
conmuni cati ons probl em or deadl ock

String sql State = sql Ex. get SQLState();

if ("08S01".equal s(sql State) || "40001".equal s(sql State)) {
retryCount--;
} else {
retryCount = O;
nal ly {
if (rs !'=null) {
try {
rs.close();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this .
}

if (stmt !'=null) {

try {
stmt.close();
} catch (SQLException sql Ex) {

45

MySQL Connector/J

/1 You'd probably want to log this as well

}
}
if (conn !=null) {
try {
Il
/1 1f we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done
try {
conn.rol | back();
} finally {
conn. cl ose();
}
} catch (SQ.Exception sql Ex) {
/1
/1 1f we got an exception here, sonething
/] pretty serious is going on, so we better
/'l pass it up the stack, rather than just
/1 logging it.
t hrow sql Ex;
}
}

} while (!transactionConpleted & (retryCount > 0));

Note

Use of theaut oReconnect option is not recommended because there is no safe method of reconnecting to the MySQL
server without risking some corruption of the connection state or database state information. Instead, you should use a con-
nection pool which will enable your application to connect to the MySQL server using an available connection from the
pool. Theaut oReconnect facility is deprecated, and may be removed in a future release.

1.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and | get an exception saying my result set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have come from queries on tables
that have at least one primary key, the query must select every primary key and the query can only span one table (that is, no joins).
Thisisoutlined in the JIDBC specification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is unable to guarantee that it can
identify the correct rows within the result set to be updated without having a unique reference to each row. There is no requirement to
have auniquefield on atableif you are using UPDATE or DELETE statements on atable where you can individually specify the criteria
to be matched using a WHERE clause.

1.5.3.6: | cannot connect to the MySQL server using Connector/J, and I'm surethe connection paramtersare correct.

Make sure that the ski p- net wor ki ng option has not been enabled on your server. Connector/J must be able to communicate with
your server over TCP/IP, named sockets are not supported. Also ensure that you are not filtering connections through a Firewall or other
network security system. For more informaiton, seeCan't connect to [local] My/SQL server.

1.5.3.7: | am trying to connect to my MySQL server within my application, but | get the following error and stack trace:

j ava. net . Socket Excepti on
MESSAGE: Software caused connection abort: recv failed

STACKTRACE:

java. net . Socket Exception: Software caused connection abort: recv failed

at java. net. Socket | nput Stream socket ReadO(Nati ve Met hod)

at] ava. net. Socket I nput Stream r ead(Unknown Sour ce)

at com nysql . jdbc. Mysql | O readFul | y(Mysql | O.j ava: 1392)

at com nmysql .] dbc. Mysqgl | O. readPacket (Mysql | O j ava: 1414)

at com nysql . dbc. Mysql | O doHandshake(Mysql | O. j ava: 625)

at com nmysql .] dbc. Connecti on. cr eat eNew O Connecti on.j ava: 1926)

at com nysql .] dbc. Connecti on. <i ni t >(Connecti on. j ava: 452)

at com mysql .| dbc. NonRegi st eri ngDri ver. connect (NonRegi steringDriver.java: 411)

The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or 3.0.x) and you are trying to
connect to aMySQL server with version 4.1x or newer. The older drivers are not compatible with 4.1 or newer of MySQL as they do
not support the newer authentication mechanisms.

46

http://dev.mysql.com/doc/refman/5.0/en/can-not-connect-to-server.html

MySQL Connector/J

Itislikely that the older version of the Connector/J driver exists within your application directory or your CLASSPATH includes the
older Connector/J package.

1.5.3.8: My application isdeployed through JBoss and | am using transactionsto handle the statements on the MySQL data-
base. Under heavy loads| am getting a error and stack trace, but these only occur after afixed period of heavy activity.

ThisisaJBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the time taken for transactions to
complete can increase, and the error is caused because you have exceeded the predefined timeout.

Y ou can increase the timeout value by setting the Tr ansact i onTi nmeout attributetothe Tr ansact i onManager Ser vi ce with-
inthe/ conf/j boss-service. xnl file(pre-4.0.3) or/ depl oy/jta-service. xm for JBoss4.0.3 or later. See Transaction-
Timeoute within the JBoss wiki for more information.

1.6. Connector/J Support
1.6.1. Connector/J Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For Connector/J related issues, you can get help
from experienced users by using the MySQL and Java mailing list. Archives and subscription information is available online at ht-
tp://lists.mysgl.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http:/lists.mysql.com/. See MySQL Mailing
Lists.

Community support from experienced usersis also available through the JDBC Forum. Y ou may aso find help from other usersin the
other MySQL Forums, located at http://forums.mysgl.com. See MySQL Community Support at the MySQL Forums.

1.6.2. How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysgl.com/, which is the address for our bugs database. This database is public, and can
be browsed and searched by anyone. If you log in to the system, you will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to security_at_mysgl.com.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report,
containing afull test case for the bug, makesit very likely that we will fix the bug in the next release.

This section will help you write your report correctly so that you don't waste your time doing things that may not help us much or at al.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysqgl.com/. Any bug that we are able to repeat
has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to one containing too little. People
often omit facts because they think they know the cause of a problem and assume that some details don't matter.

A good principleisthis: If you arein doubt about stating something, stateit. It is faster and less troublesome to write a couple more
linesin your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or MySQL used, and (b) not fully
describing the platform on which Connector/Jisinstalled (including the VM version, and the platform type and version number that
MySQL itself isinstalled on).

Thisis highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very often we get questions like,
“Why doesn't thiswork for me?" Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug de-
scribed in areport has already been fixed in newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything without knowing the operating
system and the version number of the platform.

If at all possible, you should create a repeatable, stanal one testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
‘com mysql . jdbc. util.BaseBugReport'. To create atestcase for Connector/J using this class, create your own class that in-

47

http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://lists.mysql.com/java
http://lists.mysql.com/java
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://dev.mysql.com/doc/refman/5.1/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.1/en/forums.html
http://bugs.mysql.com/
mailto:security_at_mysql.com
http://bugs.mysql.com/

MySQL Connector/J

heritsfromcom nysql . j dbc. uti | . BaseBugReport and override the methodsset Up(),t ear Down() andrunTest ().
Intheset Up() method, create code that creates your tables, and popul ates them with any data needed to demonstrate the bug.

Inther unTest () method, create code that demonstrates the bug using the tables and data you created in the set Up method.

Inthet ear Down() method, drop any tables you created inthe set Up() method.

In any of the above three methods, you should use one of the variants of theget Connect i on() method to create a JDBC connection

to MySQL.:

e get Connection() - Providesa connection to the JDBC URL specifiedinget Ur | () . If aconnection already exists, that con-
nection is returned, otherwise a new connection is created.

* get NewConnection() - Usethisif you need to get a new connection for your bug report (i.e. there's more than one connection
involved).

e getConnection(String url) -Returnsa connection using the given URL.

e getConnection(String url, Properties props) - Returnsaconnection using the given URL and properties.

If you need to use aJDBC URL that is different from ‘jdbc:mysql:///test', override the method get Ur | () aswell.

Usetheassert True(bool ean expression) andassert True(String failureMessage, bool ean expres-
si on) methodsto create conditions that must be met in your testcase demonstrating the behavior you are expecting (vs. the behavior
you are observing, which iswhy you are most likely filing a bug report).

Finally, create amai n() method that creates a new instance of your testcase, and callsthe r un method:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting, upload it with your bug report to
http://bugs.mysql.com/.

1.6.3. Connector/J Change History

The Connector/J Change History (Changelog) is located with the main Changelog for MySQL . See MySQL Connector/J Change His-
tory.

48

http://bugs.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/cj-news.html
http://dev.mysql.com/doc/refman/5.1/en/cj-news.html

	1. MySQL Connector/J
	Table of Contents
	1.1. Connector/J Versions
	1.1.1. Java Versions Supported

	1.2. Connector/J Installation
	1.2.1. Installing Connector/J from a Binary Distribution
	1.2.2. Installing the Driver and Configuring the CLASSPATH
	1.2.3. Upgrading from an Older Version
	1.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1
	1.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

	1.2.4. Installing from the Development Source Tree

	1.3. Connector/J Examples
	1.4. Connector/J (JDBC) Reference
	1.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	1.4.2. JDBC API Implementation Notes
	1.4.3. Java, JDBC and MySQL Types
	1.4.4. Using Character Sets and Unicode
	1.4.5. Connecting Securely Using SSL
	1.4.6. Using Master/Slave Replication with ReplicationConnection
	1.4.7. Mapping MySQL Error Numbers to SQLStates

	1.5. Connector/J Notes and Tips
	1.5.1. Basic JDBC Concepts
	1.5.1.1. Connecting to MySQL Using the DriverManager Interface
	1.5.1.2. Using Statements to Execute SQL
	1.5.1.3. Using CallableStatements to Execute Stored Procedures
	1.5.1.4. Retrieving AUTO_INCREMENT Column Values

	1.5.2. Using Connector/J with J2EE and Other Java Frameworks
	1.5.2.1. General J2EE Concepts
	1.5.2.1.1. Understanding Connection Pooling

	1.5.2.2. Using Connector/J with Tomcat
	1.5.2.3. Using Connector/J with JBoss
	1.5.2.4. Using Connector/J with Spring
	1.5.2.4.1. Using JdbcTemplate
	1.5.2.4.2. Transactional JDBC Access
	1.5.2.4.3. Connection Pooling

	1.5.3. Common Problems and Solutions

	1.6. Connector/J Support
	1.6.1. Connector/J Community Support
	1.6.2. How to Report Connector/J Bugs or Problems
	1.6.3. Connector/J Change History

