GDB for OR1k

Author: Marko Mlinar
mar ko.mlinar @opencores.org

Rev. 0.3 Preliminary

June 6, 2001

OpenCores GDB for OR1k 6.6.01
Revision History

Rev. | Dae Author Description

0.1 27/4/01 | Marko Mlinar | Initial document

0.2 22/5/01 | MM Added more descriptions to software operations

0.3 6/6/01 MM Added specia command descriptions

WWW.OPENCOres.org

Rev 0.3 Preliminary i

OpenCores GDB for OR1k 6.6.01

Contents

00011 1 KSR I
100 [0 Tox £ o] 1SS 1
I =0 Y PR 1
1.2 SIMPIE GDB SESSION......cciiciiiie sttt st st e et e ne e 1
SUPPOIEA FEAIUIES........cocveeeieie ettt st e e e aeere e e e resneennens 2
2.1 hwat Ch Command..........cooiiiiiicc e 3
22Nt 1 aCe COMMANAS......ccceieiierieseeereeeee e e e e seeneenesseenens 4
221N T1ACE 1 NT O i e e 4
222NETACE T T GBI ittt 4
223htrace QUL T T eI s 4
224NETACE ST OP ciiiiiiiicie ettt st st ereeaenre e 5
A o 1O - ot =T G =T o o | o 5
226htrace Clear IeCOrdS . 6
227Ntrace €Nabl € ... s 6
228Nhtrace di SAD| €. 6
P22 B o L O = (o = o L= 6
P20 L0 B | = Uod = = . o o 7
221LNTTACE Pri N i 7

2.3 ACCESSING SPN REGISIEIS.....ooeciieeereeeee e 7
2310 NT O SPI e e 7

P] o | ST PP PP PR PSR 8

2.4 Extended SIMUIGLOr SUPPOIT........civiieiicieiiesieee et sreene e ens 8
(010700 KSR 9
D20 i (oo 9
PN = o (0o oo S 10
SOFtWAIE OPEIEION ...ttt ettt se b e 11
4.1 Reset and Initidization of Remote Targetcccoveeeeveceeve e 11
4.2 CommMUNICatioN With TaIQEL........cccuiiiiieiiiicie e 12
4.3 Hardware Supported Breakpoints and WatChpoints...........ccoovvvveerieneseneneseeseeeenes 12
4.4 ENdiNg COMMUINICELION......cuciviiriieeiisieisiesese sttt e see s e 12
EXPIrESSION BINF ...ttt 13

WWW.0PENCOres.org Rev 0.3 Preliminary I

OpenCores GDB for OR1k 6.6.01

1

| ntroduction

This document describes specia support for OR1k in GNU gdb and communication
protocols between GDB (GNU Debugger) and JTAG Test-Access-Port

1.1 Framework

HOST TARGET BOARD/CHIP
OR1k OR1k
machine RISC
description

P Debug e ! pev. IIF
I/F
| Px JTAG
Centronics
Cable

Figure 1: Connection Framework

1.2 Smple GDB Session

Following command sequence dsart debugging the proc.or32 program, using the
architecture smulator. Smulator stops a function main, then next few instructions are
shown. See gdb user manua for more examples and additional information

file test.or32
target sim

| oad test.or32
br eakpoi nt main
run

list

WWW.0PENCores.org Rev 0.3 Preliminary lof 13

OpenCores

GDB for OR1k

6.6.01

2

Supported Features

This section covers debugging features supported by gdb, and describes specid commands
in detal. This section assumes C/C++ source language. Other language should use

equivalent operators.
ORIk feature Description Command(s) in Comment
GDB
processor stop immediately | ~C Fully supported.
stops OR1k
full register set Fully sup ported.
and memory
access
[.brk software br eakpoi nt Fully supported.
breakpoint At the same time software conditional
breakpoints are supported by GDB.
matches, hardware br eakpoi nt, | Hardware breakpoint isfully supported
watchpoints, breakpoint hbr eak, with hbr eak command.
breakpoints wat ch, Thereis limited support for hardware
rwat ch, assisted watchpoints using watch, rwatch,
awat ch, awatch commands.
hwat ch ORIk hwat ch command alow full
control over hardware watchpoints.
Also HW breakpoints are set to positions
where SW cannot be placed (e.g. flash).
trace trace trace, Software trace is supported witht r ace
htrace command, whileht r ace fully supports
Debug interface trace.
catchpoints specia events, Fully supported.
that cause
breakpoint
Spr registers Sprregister | spr, Display/set specified spr register.
read/write | info spr
OR1k Special sim Connection to OR1k architecture
architecture smulator simulator, which alows many special
smulator instructions diagnostic and profiling functions.

Tablel: List of supported features. Commandsin bold represent added instructions.

WWW.OPENCOIES.Org

Rev 0.3 Preliminary

20f 13

OpenCores GDB for OR1k 6.6.01

2.1 hwat ch Command

Warning: breakpoints, watchpointsand catchpoints have slightly different definition in OR1k architecture
document and in gdb.

This command sets hardware assisted watchpoint, if there is enough matchpoint resources.
See OR1k Architecture document for more info about these.

Command syntax:
hwat ch expr

Where expr isexpression, using logical operators | | and && Each condition must consst
of one congtant (if not it is evaluated when setting watchpoint) and one specia value,
separated by binary operator (==, !'=, <, >, <=, >= and hitwise and - &). See appendix
A (wat ch) on more detalls about grammar. Each conditional requires one matchpoint
resource.

Specid vaue Description
SLEA Load effective address
$SEA Store effective address
$AEA like($LEA == a || $SEA == a)
$I FEA Instruction fetch effective address
SLDATA Load data
$SDATA Store data
$SADATA like ($LDATA == a || $SDATA == a)
Table 2: Special Valuesfor Watchpoints
Examples:

hwat ch ($LEA == ny_var) &&($LDATA < 50) | | ($SEA ==

ny_var) &&($SDATA >= 50)

(program breaks, either when we load value, lesser than 50 from my_var, or we store value
greater than 50 to it)

hwat ch ($SEA < foo_array || $SEA >= foo_array_end) & ($l FEA
>= procl &% $I FEA < proc2)
(program breaks, if we write outside foo_array in function procl)

hwat ch ($AEA & 0xOFF0000)
(break occurs, when we want to access specified memory region)

WWW.0PENCores.org Rev 0.3 Preliminary 3of 13

OpenCores GDB for OR1k 6.6.01

2.2 ht race Commands

Group of command used to setup hardware trace.

221htrace info
Displaysinfo about current trace configuration.

Command syntax:
htrace info

Examples:
htrace info
htrace i

222htrace trigger

Sets darting criteria for trace, if there is enough matchpoint resources. See OR1k
Architecture document for more info about these.

Command syntax:
htrace trigger [any|breakpoint| <expr>]

Where expr isexpression, using logical operators | | and && Each condition must consist
of one congtant (if not it is evaluated when setting watchpoint) and one specia value (Table
2: Specia Values for Watchpoints), separated by binary operator (==, ! =, <, >, <=, >=
and bitwise and - &). See appendix A (mat ch) on more details about grammar. Each
conditional requires one matchpoint resource.

Examples.

htrace trigger breakpoint

(trace starts when breakpoint occurs)

htrace t $SDATA == 0xObeef

(trace starts when we are storing OxObeef to memory)
htrace t any

(trace active at start)

223htrace qualifier

Sets data acquire criteria for trace, if there is enough matchpoint resources. See OR1k
Architecture document for more info about these. Each time qualifier condition is met and
trace has been started data specified by ht r ace recor d issaved.

Command syntax:
htrace qualifier [any]|breakpoint|<expr>]

WWW.0PENCores.org Rev 0.3 Preliminary 40of 13

OpenCores GDB for OR1k 6.6.01

Where expr isexpresson, using logical operators | | and && Each condition must consst
of one constant (if not it is evaluated when setting watchpoint) and one specia vaue (Table
2: Specia Values for Watchpoints), separated by binary operator (==, ! =, <, >, <=, >=
and bitwise and - &). See appendix A (mat ch) on more details about grammar. Each
conditiona requires one matchpoint resource.

Examples:

htrace qualifier breakpoint

(trace records data when breakpoint occurs)

htrace q $SDATA == 0xObeef

(trace records data when we are storing OxObeef to memory)
htrace g any

(trace records data, when active)

224 htrace stop

Sets stoping criteria for trace, if there is enough matchpoint resources. See OR1k
Architecture document for more info about these.

Command syntax:
htrace stop [none| breakpoi nt| <expr >]

Where expr isexpresson, using logical operators | | and && Each condition must consst
of one constant (if not it is evaluated when setting watchpoint) and one specia vaue (Table
2: Specia Values for Watchpoints), separated by binary operator (==, ! =, <, >, <=, >=
and bitwise and - &). See appendix A (mat ch) on more details about grammar. Each
conditional requires one matchpoint resource.

Examples.

htrace stop none

(trace does not stop)

htrace s $SDATA == 0xObeef

(trace starts when we are storing OxObeef to memory)

225htrace record

Sets record data to be stored into trace buffer, when qualifier occurs. Command failes if
there is not enough matchpoint resources. See OR1k Architecture document for more info
about these.

Command syntax:
htrace record {[PC LSEA| LDATA| SDATA| READSPR| WRI TESPR| | NSTR] } *
[when [breakpoi nt | <expr>]]

First data to be recorded is goecified, and after when additiona condition is set. expr is
expression, built using logica operators| | and &&. Each condition must congist of one

WWW.0PENCores.org Rev 0.3 Preliminary 50f 13

OpenCores GDB for OR1k 6.6.01

congtant (if not it is evaluated when setting watchpoint) and one special value (Table 2:
Specid Vauesfor Watchpoints), separated by binary operator (==, ! =, <, >, <=, >=
and bitwise and - &). See appendix A (mat ch) on more details about grammar. Each
conditiona requires one matchpoint resource.

Examples:

htrace record PC SDATA when $SEA == 100
(saves PC and SDATA when store to location 100 occurs)
htrace r when $SEA == 100

(removes previoudly allocated record)

226htrace clear records
Deallocates all matchpoint resources, allocated by ht race record command.

Command syntax:
htrace cl ear records

Example:
htrace clear records

2.27htrace enabl e

Enables trace. This command has to be specified in order to start trace.

Command syntax:
htrace enabl e

Example:
htrace enabl e

228 htrace di sabl e

Temporarily disablestrace, execute ht r ace enabl e command to reenableit.

Command syntax:
ht race di sabl e

Example:
htrace di sabl e
2.29htrace node

Changes trace mode. If cont i nuous parameter is specified, hardware trace buffer will be
rewritten, otherwise breaskpoint will occur.

WWW.0PENCores.org Rev 0.3 Preliminary 60f 13

OpenCores GDB for OR1k 6.6.01

Command syntax:
ht race node [suspend| conti nuous]

Example:
ht race node suspend

2.210htrace rew nd

Clears currently recorded trace data. If filenameis specified, new trace file is made and any
newly collected datawill be written there

Command syntax:
htrace rewind [new fil e _nane]

Examples:

htrace rew nd

(clears trace buffer)

htrace rew nd

(does not clear current trace buffer, but starts anew trace)

2211htrace print
Prints selection of currently collected records from hardware trace buffer.

Command syntax:
htrace print [from [l ength]]

Example:

htrace print 0 20

(prints first 20 records)

htrace p 10

(prints records starting at record 10, using previous length)
htrace p

(prints next records, using last length)
htrace p -10 10

(prints last ten records)

htrace p 0x1000 -10

(prints ten records before record 0x1000)

2.3 Accessing spr Registers

Group of command for handling spr registers.

23.1info spr
Display contents of specified spr register.

WWW.0PENCores.org Rev 0.3 Preliminary 70of 13

OpenCores GDB for OR1k 6.6.01

Command syntax:
info spr [register_nanme | group_nane [register_nane] |]

Examples:

info spr

(di splay spr groups)

info spr SYS

(display registersin group 0)

i nfo spr SYS UPR

info sor UPR

inffospr SYS1

(al three prints value of UPR register)
infospr 100

info spr SPR10_0

(both display first register in group 10)

2.3.2spr
Modify contents of specified spr register.

Command syntax:
spr [register_name | group_nhane [register_nane] |] val ue

Examples.

spr SYS PC 0x1234
spr PC 0x1234
(both sets PC to 0x1234)

2.4 Extended Simulator Support
To allow extrasimulator capabilities si mcommand isavailable.

Command syntax:
sim <si mul ator command | i ne>

Examples.
simr
(display contents of all registers)

WWW.0PENCores.org Rev 0.3 Preliminary 8of 13

OpenCores GDB for OR1k 6.6.01

3

Protocols

Two simple proprietary protocols for communications between remote target and gdb are
shown. Both require paralel port, and very low amount of additional hardware. Beside
these two, faster protocol isin preparation, which isto adlow much higher transfers, usng
EPP parallel port mode (bi-directiona mode).

2.1 JP1 Protocol

JP1 protocol issmple JTAG compatible protocol. It does not need any extra hardware,
except voltage adjustment circuitry.

HOST TARGET BOARD/CHIP

OR1k OR1k
machine RISC
description
P Debug |t | pev. IIF
I/F
L Px JTAG
Centronics 4
Cable 1

Figure 2: JP1 Protocol

Each JTAG cyclerequires 2 parallel port writes and one read (if necessary) from host. First
one lowers the clock and sets the data (RSTn, TMS and TDI). Second write does not
modify the data, but raises the clock. See JTAG specification for more info. Then one bit is
read from CENTRONICS BUSY sgnd, usng IOCTL.

Port Description | Width | Direction Assigned centronics pin
(relative to host)

TCLK | Clock 1 Output DO

TRSTn | Reset 1 Output D1

WWW.0PENCores.org Rev 0.3 Preliminary 90of 13

OpenCores GDB for OR1k 6.6.01

TMS | Mode Select 1 Output D2
TDI Data [nput 1 Output D3
TDO | DataOutput 1 [nput BUSY

2.2 JP3 Protocol

Unlike JP1, JP3 requires small amout of extralogic (e.g. PLD) on the board, but is six
times faster.

HOST TARGET BOARD/CHIP

OR1k OR1k
machine RISC
description
P Debug e} pev. IF
I/F
| Px JTAG
Centronics 8 4
Cable 1
3 PLD

Figure 3: JP3 protocol

This protocol does not directly change signals of JTAG port, but instead sends three pairs
(TMS, TDI) and receives three TDO signals. CLK signal has different meaning: both clock
positive and clock negative edge represents data vaid. If bitstream length is not of modulo
3, then zeros are gppended to TMS, data is x. This way JTAG stays in RUN_TEST/IDLE
state.

Shortly, PLD circuit should trandate JP3 protocol to JP1 for each data.

Port Description | Width | Direction Assigned centronics pin(s)
(relative to host)
TCLK | Clock 1 Output DO
TRSTn | Reset 1 Output D1
T™MS Mode 3 Output D2, D4, D6
Select
TDI Data Input 3 Output D3, D5, D7
TDO Data Output 3 [nput BUSY, PAPER_ERR,
SELECT

WWW.0PENCores.org Rev 0.3 Preliminary 100f 13

OpenCores GDB for OR1k 6.6.01

A

Softwar e Operation

This section deal s with the software operation.

Communication example: Setting SW Breakpoint

It all starts when setting breakpoint in gdb prompt:

(gdb) breakpoi nt 0x1234

GDB then internaly searches for target specific macros, like (INSERT_BREAKPOINT,
TARGET_XCHG_MEMORY, BREAKPOINT_FROM_PC, ...) to replace indruction a
address 0x1234 with | . br k. Previous instruction is backed into host buffer. When OR1k
encounters | . br k ingtruction it halts. GDB meanwhile continuoudly polls processor status.
Note that processor can be stopped using access to OR1Kk registers.

GDB (remote) target uses JP1/3 protocol via parald port driver (e.g. /dev/Ip0) and JTAG
I/F to access OR1k registers, as specified in Debug Interface Document and OR1k
architecture document. For each 32b memory or register access we have to send 65 hits
(data, R/W hit and address), 8 bit CRC and some control bits (for JTAG purposes). See the
RISC Development document for details. Using JP3 protocol we don't need to send extra
dummy bits (one transfer requires exactly 24 parale port writes, and for reading extra 11
reads).

4.1 Reset and I nitialization of Remote Tar get

In order to debug the target, program has to be transferred to a stable environment. Since
after the chip reset the processor is surely in stable and well defined state, it is naturally to
stall processor right after the reset. Implementation specific processor info is then read, and
program datais transferred. Right after that remote debugging can start.

More accurately - following steps are taken:

Set processor reset

set processor stall

unset processor reset

read implementation specific registers and configure gdb (e.g. UPR)

set debug specific registersto idle state

transfer data (when user executes| oad command)

unstall processor

NogakwhE

WWW.0PENCores.org Rev 0.3 Preliminary 110of 13

OpenCores GDB for OR1k 6.6.01

4.2 Communication with Target

It is not smart to do complex operations while processor runs, snce we can enter
unpredicted state. During such complex operation (program loading, setting breakpoints,
etc.) processor is stalled. Smaller operations like register or memory read can be made
during normal processor operation.

4.3 Hardwar e Supported Breakpoints and Watchpoints

Since debug unit has limited number of matchpoint resources, they should be used wisdly.
gdb default operation is first to st HW breakpoints and then SW ones. Hardware
breakpoint can be set explicitly on e.g. some ROM location, using hbr eak command.
DVRx and DCRXx pairs are programmed to set proper matchpoints. Norma breakpoints use
only one matchpoint, while watchpoints at least two (e.g. data access watchpoint is set on
memory address range, thus yielding conditional: addr >= 0x1000 && addr <= 0x1003).
For each watchpoint chaining is set in DMRL register to properly connect matchpoint
conditionals. We adways tend to use lower indexes first and sometimes mathcpoints must
be reordered to find optimal fit.

4.4 Ending Communication

It is not necessary for gdb to do anything when ending remote sesson. However,
sometimes processor is connected to viable equipment. If continuing program or
unpredicted state is entered, damage can occur, thus processor stall is attempted?.

! gdb user must be aware that he is using asynchronous operation.
% Note that it is not always possible for gdb to properly end communication, e.g. cableto the target is
disconnected.

WWW.0PENCores.org Rev 0.3 Preliminary 120of 13

OpenCores GDB for OR1k 6.6.01

Appendix A
Expression BNF

Since expressions have limited hardware support (we have limited hardware resources), not
every expression can be specified. gdb automatically trandates normal expression to fit
hardware resources, so user don not have to worry about it at al - it will report an error, if
expression is too complex to fit into OR1k development scheme, so user can rephrase
expression. gdb can trandate all expressionsto hardware ones, if that is possible.

Basically our expression grammatics is very smilar to gramatics with logical operators| |
and &&, without priorities (eg. (a || b) &k c¢c wouldbea || b && c). For
example smple calculators accept expressions without priority - e.g. you cannot caculate
(8/5)+(7*6).

BNF of OR1k matchpoint grammaticsis:

<watch> ::= <match> | <match> || <watch>

<match> ::= <cond> | <match 0> || <maich> | <mach> || <match 0> | <maich &> &&|
<match> | <match> & & <meatch a>

<match_o0> ::= <cond> | <cond> || <match_o>

<match_a> ::= <cond> | <cond> & & <match_a>

<cond> ::= <ct> <cc> <congt> || <congt> <cc> <ct

<ct>::=$LEA | $SEA | SAEA | SIFEA | SLDATA | $SDATA | SADATA

<> =< |>|== (1= | <= >=|&

<const> any numeric constant specified, read from register or memory, or obtained from
symbol table

WWW.0PENCores.org Rev 0.3 Preliminary 130f 13

