

Connecting External Job Management
Systems to the SAP NetWeaver AS

ABAP CCMS Job Scheduling System

SAP
BC-XBP 7.2

External Interface for Background Processing

Vers i on 1 .0

16.10.2015

 Interface

 2

 3

Copyright

© Copyright 2015 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be
changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary
software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.
IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400,
OS/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner,
WebSphere, Netfinity, Tivoli, Informix, i5/OS, POWER, POWER5, OpenPower and PowerPC
are trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered
trademarks of Adobe Systems Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World
Wide Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and
services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their respective companies.
Data contained in this document serves informational purposes only. National product
specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP
AG and its affiliated companies ("SAP Group") for informational purposes only, without
representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

 4

 5

Contents

1 INTRODUCTION 16

2 THIS DOCUMENT - AN OVERVIEW 16

3 THE FUNCTION OF EXTERNAL INTERFACES 17

4 A SHORT INTRODUCTION TO AS ABAP BACKGROUND
PROCESSING 17

4.1 Motivation 17

4.2 Concept 18
4.2.1 Creating Jobs 19
4.2.2 Releasing Jobs 20
4.2.3 Starting Jobs (Ready and Active) 21
4.2.4 Ending a Job (Canceled or Finished) 21
4.2.5 Intercepting Jobs 22
4.2.6 Parent/Child Functionality 23
4.2.7 Confirming Jobs 25
4.2.8 Consuming Raised Events 25
4.2.9 Monitoring Performance 26
4.2.10 Obtaining Application Information 26

4.3 Architecture of the AS ABAP Job Scheduling System 27
4.3.1 Job Administration in the Database 27
4.3.2 The Job scheduler 27
4.3.3 The Job Starter and the Job Runtime Environment 28
4.3.4 The Job Log 28
4.3.5 Job Output 28

5 THE EXTERNAL INTERFACE CONCEPT 29

5.1 Range of Interfaces 29

5.2 Naming Conventions 29

5.3 Technical Basics 30
5.3.1 XMI Monitor: External Access 30
5.3.2 RFC Remote Function Call 30

6 XBP - EXTERNAL JOB SCHEDULING INTERFACE (EXTERNAL
JOB-API) 33

6.1 What Is Required of the Interface 32

6.2 XBP Interface - Description 33

7 XBP REFERENCE MANUAL 38

7.1 Requirements for Using the XBP Interface 38
7.1.1 Logging on to the AS ABAP System with an External Job Management System 38
7.1.2 External Job Management System - Logging Off 40

 6

7.2 Defining Jobs 41
7.2.1 Opening Jobs 41
7.2.2 Assigning an ABAP Program to a Job Step 42
7.2.3 Assigning an External Program to a Job Step 46
7.2.4 Closing Job Definitions 47
7.2.5 Reading Job Definitions from the AS ABAP System 50

7.3 Starting a Job 54
7.3.1 Starting Jobs Immediately 54
7.3.2 Starting Jobs as Soon as Possible 55
7.3.3 Triggering an Event from Outside 56

7.4 Copying Jobs 57

7.5 Controlling Jobs 59
7.5.1 Modifying Job Global Data 59
7.5.2 Aborting a Job 60
7.5.3 Deleting a Job 62

7.6 Modifying Steps in a Job 63
7.6.1 Modifying a Job Step Containing an ABAP Program 63
7.6.2 Modifying a Job Step Containing an External Program 66

7.7 Adding, Changing, and Deleting Job Steps via XMI 68
7.7.1 Adding a Step to a Job via XMI 68
7.7.2 Changing and Deleting a Job Step via XMI 71

7.8 Intercepting and Confirming Jobs 75
7.8.1 Getting Intercepted Jobs 75
7.8.2 Confirming Jobs 77
7.8.3 Modifying the Criteria Table for Interception 79

7.9 Finding, Controlling, and Modifying Job Monitor Data 81
7.9.1 Determining the Status of a Job 81
7.9.2 Determining the Status of a Job List 83
7.9.3 Reading Job Logs 84
7.9.4 Return joblog in text format 84
7.9.5 Return joblog in PDF format 87
7.9.6 Reading the Spool List of a Job 89
7.9.7 Getting Information on a Particular Spool List 91
7.9.8 Reading a Particular Spool List 92
7.9.9 Reading a Particular Spool List in Delimited Tab Format 93
7.9.10 Checking the Status of a Job 94
7.9.11 Selecting Jobs 97
7.9.12 Determining the Number of Jobs with Particular Job Names 99
7.9.13 Obtaining Key Job Parameters from Job Headers and Steps 100
7.9.14 Determining Job Children 101
7.9.15 Determining Parent/Child Relation 103
7.9.16 Reading and Changing Intercept Status and Parent/Child Relation 106
7.9.17 Obtaining Application Information 107
7.9.18 Monitoring Performance 109
7.9.19 Consuming Raised Events from Event History 111
7.9.20 Configuring Profiles and Criteria using the Criteria Manager Interface 115
7.9.21 Reading a Particular Spool List as PDF 121
7.9.22 Reading a Particular Binary Spool List 122

7.10 Searching with Wildcards 123
7.10.1 Searching for ABAP Reports 123
7.10.2 Searching for External Commands 124
7.10.3 Searching for Output Devices 125
7.10.4 Searching for Print Formats 127

 7

7.10.5 Searching for Archive Parameters 128
7.10.6 Searching for Batch Events 129

7.11 General Help Functions 130
7.11.1 Showing All Defined Variants of an ABAP Program 130
7.11.2 Determining Current Resources for Jobs in the AS ABAP System 132
7.11.3 Checking Available Job Resources at a Particular Time on a Server 133
7.11.4 Checking Available Job Resources at a Particular Time in the Whole SAP System. 135
7.11.5 Reading SAP Factory Calendars 136
7.11.6 Reading SAP Holiday Calendars 137

7.12 Variant Functions 138
7.12.1 Creating a Variant 138
7.12.2 Changing a Variant 139
7.12.3 Copying a Variant 140
7.12.4 Reading Variant Data 142
7.12.5 Deleting a Variant 143
7.12.6 Reading Selection Screen of an ABAP Program 144
7.12.7 Reading Free Selections of an ABAP Program 145

7.13 Synchronizing Jobs 146

7.14 Setting Spool List Recipients. 148
7.14.1 Reading SAP Users 148
7.14.2 Reading SAP Office Distribution Lists 149

8 APPENDIX 150

8.1 BAPI Return Structure 150
8.1.1 Message IDs and Their Meaning 151

8.2 Document Type Definition for Defining Profiles and Criteria for Event History 154
8.2.1 Overview 154
8.2.2 Setting a Criteria Hierarchy 155
8.2.3 Creating a Blank Criteria Profile 157

8.3 Language Key Mapping 159

8.4 Structures for Print and Archive Parameters 164
8.4.1 Structure ALLPRIPAR 164
8.4.2 Structure ALLARCPARS 166

9 INDEX 167

 8

 9

Release Information for XBP Version 7.2
XBP 7.2 is simply the unification of the two previous releases XBP 7.0 and XBP 6.10.
This makes sense, because XBP 7.0 is an enhancement of XBP 6.10.

The following tables give you an overview of functions modules that were new in XBP
7.0 or that have been enhanced for XBP 7.0. All these functions are described in detail
in the XBP Reference Manual (chapter 7 of this document).

1. Consuming Raised Events (new):

Function module Feature

BAPI_XBP_BTC_EVTHISTORY_GET Reading events from the log of
raised events (event history).

BAPI_XBP_BTC_EVTHIST_CONFIRM Changing the status of events
from NEW to CONFIRMED.

BAPI_XBP_EVENT_DEFINITIONS_GET Reading definitions of batch events.

2. Configuring Criteria (new)

Function module Feature

BAPI_CM_CRITTYPES_GET Getting a list of available criteria
types.

BAPI_CM_PROFILE_ACTIVATE Activating a criteria profile.

BAPI_CM_PROFILE_CREATE Creating a criteria profile.

BAPI_CM_PROFILE_DELETE Deleting an existing criteria profile.

BAPI_CM_PROFILES_GET Getting a list of profiles.

BAPI_CM_PROFILE_DEACTIVATE Deactivating an active profile.

BAPI_CM_CRITERIA_GET Getting criteria in XML format.

BAPI_CM_CRITERIA_SET Importing criteria from an XML
source.

3. Monitoring Performance (new)

Function module Feature

BAPI_XBP_BTC_STATISTIC_GET Getting statistic records for a list of
jobs.

4. Obtaining Application Information (new)

Function module Feature

BAPI_XBP_APPL_INFO_GET Getting the handles of application
logs for a particular job or job step.

BAPI_XBP_APPL_LOG_CONTENT_GET Getting the content of an
application log.

5. Getting information about and reading a particular spool list (new)

 10

Function module Feature

BAPI_XBP_JOB_READ_SINGLE_SPOOL Reading a particular spool list of a job
that has been run.

BAPI_XBP_GET_SPOOL_ATTRIBUTES Getting information about a particular
spool list.

6. Searching for archive parameters (new)

Function module Feature

BAPI_XBP_GET_ARCHIVE_OBJECTS Returning SAP Objects and
Archive Objects that are defined in
a system.

7. Setting a spool list recipient (new)

Function module Feature

BAPI_XBP_GET_USER_LIST Reading the SAP users in blocks.

BAPI_XBP_GET_DL_LIST Getting the list of distribution lists.

8. Selecting all jobs from the SAP system from a certain time period (new)

Function module Feature

BAPI_XBP_SYNCHRONIZE_JOBS Reading all SAP jobs, which have
been created after a certain point
of time. Helps to synchronize the
job database of the external job
scheduler with the SAP job
database.

9. Simplified variant handling (new)

Function module Feature

BAPI_XBP_VARIANT_CREATE Creating a variant.

BAPI_XBP_VARIANT_CHANGE Changing a variant.

BAPI_XBP_VARIANT_COPY Copying a variant.

BAPI_XBP_VARIANT_DELETE Deleting a variant.

BAPI_XBP_VARINFO Reading the data of all variants of
an ABAP program.

BAPI_XBP_READ_SELSCREEN Reading the selection screen of an
ABAP program.

BAPI_XBP_GET_FREE_SELECTIONS Reading the free selections of an
ABAP program.

10. Enhanced basic functionality (BAPIs):

 11

 12

Function module Feature

BAPI_XBP_JOB_CLOSE This function module for passing a
spool list recipient has a new
RECIPIENT structure of the
RECIPIENT_OBJ input parameter.
It allows the external scheduler to
pass a spool list recipient and its
attributes in plain text.

BAPI_XBP_JOB_DEFINITION_GET

BAPI_XBP_JOB_READ

Both function modules have been
enhanced with output parameters
JOBLG_ATTR and SPOOL_ATTR
that return more information about
the job log and the spool list(s)
created by a job.

This allows the external scheduler
to know the size of the job log or
spool list it has to transfer.

BAPI_XBP_JOB_COUNT This function now offers an
optional parameter
DONôT_LIST_JOBS so that only
the number of jobs for a given
pattern are returned.

BAPI_XBP_JOB_ADD_ABAP_STEP This function module can now be
supplied with an internal table for
specifying free selections and with
an internal table for specifying
ónormalô selections without
referring to an explicit variant.

It is also possible to transfer
extended print parameters, e.g. a
mail address for an email printer.

BAPI_XBP_JOB_SPOOLLIST_READ_20 This function module for reading
spool lists has a new table
parameter which is narrower than
the original one. Also, partial
reading of spool lists is now
supported

BAPI_XBP_JOB_READ_SINGLE_SPOOL
(new)

This function allows to read the
contents of a spool list specified
by number.

BAPI_XBP_NEW_FUNC_CHECK Support of new interception mode
using Criteria Manger.

BAPI_XBP_OUTPUT_DEVICE_SEARCH This function module can now
search for a certain device type as
well as for output devices whose
definitions have been changed
after a certain date.

BAPI_XBP_JOB_JOBLOG_READ With the parameter LINES and
DIRECTION it is possible to read
the first or last n lines of a job log.

BAPI_XBP_GET_SPOOL_AS_PDF (new) Convert given spool list to PDF
and return PDF data.

BAPI_XBP_READ_SPOOL_BIN (new) Return binary spool request as
raw data stream.

 13

BAPI_XBP_JOB_JOBLOG_TO_PDF (new) Return joblog as PDF

BAPI_XBP_GET_SPOOL_AS_DAT (new) Return ABAP spool request in
delimited tab (DAT) / spreadsheet
format

 14

Whatôs new in this document version?

Version 1.4:

Description Chapter See
page

Appending more
select-options to an
existing select-
option

 7.12.2 140

Version 1.3

Description Chapter See
page

Transferring
extended print
parameters

7.2.2 Assigning an ABAP Program to a
Job Step

42

Version 1.2:

Description Chapter See
page

Convert and return
given spool list to
delimited tab format

7.9.9 Reading a Particular Spool List in
Delimited Tab Format

93

Convert and return
joblog as PDF

7.9.5 Return joblog in PDF format 87

Reading selection
texts of a report

7.12.6 Reading Selection Screen of an
ABAP Program

144

Finding out number
of jobs for a given
pattern

7.9.12 Determining the Number of Jobs
with Particular Job Names

99

 15

Symbols

Symbol Meaning

Warning

Example

Tip

Recommendation

Syntax

 16

1 Introduction
This document deals with the connection of an external job management system, often
called an external scheduler, to SAP NetWeaver Application Server ABAP (AS ABAP).
By external job management, we mean software which allows jobs to be scheduled,
run, and monitored from outside SAP NetWeaver AS ABAP.

For this purpose, SAP has defined an open generic interface. This is called XBP, which
stands for eXternal interface for job Background Processing. XBP is one of a range of
open interfaces which SAP intends to make available in the future for system
management tasks. The SAP systemôs internal CCMS (Computing Center
Management System), with this range of interfaces, offers support to software
manufacturers by allowing integration with existing system administration tools.

2 This Document - An Overview
We assume that the reader already has a certain degree of knowledge of AS ABAP.
Also, he or she should be familiar with terms like application server, dispatcher,
scheduler, and work process in relation to SAP AS ABAP systems. Additionally, he or
she should be familiar with the Remote Function Call (RFC).

This overview helps you to find the topics relevant for you:

Chapter Contents

3 General description of the external interface.

4 Short introduction to SAP NetWeaver AS ABAP background
processing.

5 Description of the external interface concept.

6 Actual description of the XBP interface; the motivation behind it, its
technical background and a functional overview.

7 Technical description of the function modules. This is provided to help
with the implementation of external agents.

 17

3 The Function of External Interfaces
The motivation for the development of external interfaces arose from the desire to let
SAP installations - especially large ones - be overseen by other software vendorsô
tools.

External
System Administration Tool

SAP System

Open

Interfaces

Fig. 3.1: Location of external interfaces

External interfaces allow you to integrate the AS ABAP system simply and seamlessly
into both local administrative tools and business-wide system management
infrastructures. This integration should not and cannot completely replace the use of
CCMS. Complex and security-critical system control tasks will always need to be
carried out by CCMS. Furthermore, CCMS basic functionality is expected and required
by AS ABAP applications. To explain by example: even if you use an external
scheduling tool for background jobs, the internal job system in AS ABAP is still required
to carry out the background jobs generated by applications such as AS ABAP archiving
or the Workbench.

The aim of the integration is to allow the customer a homogenous information
infrastructure. The aim of the interface is to facilitate the flow of information between AS
ABAP and external tools.

In summing up, we could say that external tools provide additional flexibility to
complement the existing basic functionality of CCMS.

4 A Short Introduction to AS ABAP
Background Processing

First, we need to explain why background processing has a place in a dialog-oriented
standard application. What is a ójobô within AS ABAP, and how does the system carry it
out?

We intend to demonstrate the concept using an example. Afterwards, we will introduce
the architecture of the background processing system.

4.1 Motivation
SAP NetWeaver AS ABAP is, above all, an interactive system. In other words, the vast
majority of tasks are carried out in dialog with the user. However, there are also good

reasons for the inclusion of a background processing system in AS ABAP.

Besides the tasks carried out in dialog, there are numerous tasks processing large
amounts of data and requiring lots of performance that do not need user interaction.
With the help of the background processing system, such tasks are normally scheduled
for times when no users are working in the system (nights, weekends), in order to avoid
resource conflicts with the dialog users.
At the scheduled time, these tasks are started by the background processing system
and executed without user interaction, even without a connection to any frontend
server.
This mechanism is especially useful for tasks that have to be carried out periodically,
for example each week or each month. In the background processing system, these
tasks ï including the period - have to be specified once only. No further action is
required from the user with respect to regular execution.

 18

4.2 Concept

A task executed by the background processing system is called a óbackground jobô,
óbatch jobô, or simply ójobô. Technically speaking, a job in the SAP background
processing system executes one or more ABAP programs or calls on the OS level,
which are referred to as the job steps. The job steps are executed sequentially in the
order of their definition.

So, roughly speaking, one can say that defining a job consists of defining the job steps
and the job header (start conditions, target server, and other data).

Jobs are identified by their name (Ex.: PAYROLL_RUN). However, since these names

are not unique if the same application job is repeated, jobs also have job numbers,
which ensure that they have a unique identification

In its life cycle, a job always has exactly one of the following statuses:

Status Description

Scheduled The job has steps but no start conditions have been
defined.

Released The job definition is complete and the job is waiting
for the start conditions to be fulfilled.

Ready The job is in its start phase, which normally takes
only a fraction of a second.

This status is of no interest for the end user.
However, it is useful for error analysis by SAP
support.

Active The job is being executed.

Finished The job is finished without errors.

Cancelled The job execution was terminated due to an error.

Additionally, it is possible to intercept jobs. óInterceptionô means that the jobs are not
started at the moment when their start conditions are fulfilled, but deactivated and
restarted later. However, note that intercepted is not really a new status in the SAP
background processing system (see chapter 4.2.5 óIntercepting jobsô).

Figure 4.1 shows the chain of these statuses:

Fig. 4.1: Status chain for jobs.

In the next sections, we follow the life cycle of a job systematically. Figure 4.2 shows
an example of the activities which can cause a job to change status. A job óscheduledô
by a program is óreleasedô by a dialog. It then proceeds through the óreadyô and óactiveô
statuses with help from AS ABAP system programs. If everything has gone according
to plan, the job status moves on to ófinishedô. A program error will lead to a final status
of ócanceledô. XBP also allows the external scheduler to intercept jobs and to

 19

reschedule and restart them later. This feature allows you to prioritize jobs dynamically
as described later in detail.

Fig. 4.2: Status chain for jobs with possible causes of status change.

You can see the current status of a particular job in the AS ABAP using the job
overview (transaction SM37).

4.2.1 Creating Jobs

A job definition consists of a list of steps and administrative information known as job
header. The job header contains the start conditions, job class, and target server.

If a job is created without start conditions, the job receives the status óscheduledô. If a
job is defined completely, the job receives the status óreleasedô.

Within an SAP system, there are two ways of creating a job:

1. In a dialog (Transaction SM36, or Tools Č Administration Č Jobs Č Define Job)
you enter the job name, job class and, if necessary, a target machine. Next, you
enter a list of steps and a start time, if required.

2. New jobs are created from ABAP programs using the JOB_OPEN, JOB_SUBMIT
and JOB_CLOSE function modules, which are part of the Batch API. You have the
same parameters and degree of freedom here as in the dialog.

In each of these cases, the job number is created by the system itself to ensure that the
job has a unique identification. Figure 4.3 shows the specification of a newly created
job, with its name, number, status and steps.

Jobname: PAYROLL_RUN
Jobcount: 14201001
Status : scheduled
Target host : -
Start criteria :
Step1 : GHLTBRUT
Step2 : URLAUBAB
.....
Log :

Fig. 4.3: A created job from the systemôs point of view (greatly simplified)

If no target machine is specified for the job, the system decides by itself on which
application server the job is to be carried out. This is the normal procedure
recommended by SAP, because the system can then carry out its own load balancing.
You should only specify the target machine if that server has particular resources
necessary for the job processing.

 20

4.2.2 Releasing Jobs

A job is released (set to status óreleasedô) as soon as it has been completely created.
This means that the job has to have at least one step and a start condition. The SAP
background system offers several types of start conditions, which can be specified by
the user.

Note that different start conditions cannot be combined by óandô or óorô. Exactly one of
the following start conditions has to be specified for each job:

Start condition Description

Immediate A job is executed as quickly as possible.

Date/ time A job is started when its start date and time are
reached.

Event A job is started when a particular event is triggered in
the system or by a program at operating system level.
For example, a job can be started when data for
processing is imported to a server by file transfer.

Preceding job A job is started once a particular preceding job has
run.

Change of operation
mode

A job starts once the AS ABAP system has switched
into a particular operation mode.

Start on working day A job is started when a particular working day of the
month is reached, for example the last working day of
a month.

Once you have released a job by setting a start condition, the Job scheduler in the AS
ABAP system becomes responsible for the future progress of the job.

For some of the above start criteria, you can also specify that the job should recur.
Thus you can ensure that a new job with the same name, but a different job number for
each repetition, is released, for example, each time a particular event occurs, or every
day from today. A job with such a start condition is called a periodic job.

When selecting start criteria, you can use various calendars, either pre-defined or user-
defined. This allows you a still greater degree of freedom, by allowing you to specify
deviations in the frequency of periodic jobs (e.g. carry out periodically, but not on Public
Holidays).

Jobname: PAYROLL_RUN
Jobcount: 14201001
Status : released
Target Host : -
Start criteria : last workday of month
Step1 : GHLTBRUT
Step2 : URLAUBAB
.....
Log :

Fig. 4.4: A released job from the point of view of the system (greatly simplified).

Figure 4.4 shows that as well as the status changing, the start criteria have been laid
down in the job description.

 21

4.2.3 Starting Jobs (Ready and Active)
Within the system, the Job scheduler surveys the start conditions of the released jobs.
For each job, the scheduler monitors whether its start condition is fulfilled.

Note that the term ójob schedulerô is somewhat simplified. In fact, there are
different kinds of job scheduler (time-based and event-based). And, in a system
with several servers the number of job schedulers varies. However, the task is
the same for all. They monitor the start conditions of the released jobs and start
the released jobs once their start conditions are fulfilled. Therefore, in this
documentation ójob schedulerô is used without differentiation.

In the SAP system, there is a special type of work process, the background work
process. This work process is reserved for executing jobs. Of course, the job scheduler
can only start a job if there is a free background work process.

Technically, a job start functions as follows:

When the start condition of the job is fulfilled, the job scheduler checks if there is a free
background work process available. If a free background work process is available, the
job scheduler sets the job to the status óreadyô and sends a job start message, which is
assigned to a free background work process by the system. The background work
process finally sets the job to the status óactiveô and starts executing it. The component
of the background work process responsible for this is called the ójob starterô.

Jobname: PAYROLL_RUN
Jobcount: 14201001
Status : active
Target host : -
Start criteria : last workday of month
Step1 : GHLTBRUT
Step2 : URLAUBAB
.....
Log : JOBLGX142010X1234

Fig. 4.5: An active job from the point of view of the system (greatly simplified).

If a free background work process is not available at the time when the start condition
is fulfilled, the job scheduler monitors the job until a free work process becomes
available. Then the job scheduler sends the job start message as described above.

The status óreadyô is a technical status and of no interest for the user. Normally, a job
has this status only for a fraction of a second and the user does not even see this
status.

As figure 4.5 shows, the job definition has now gained a link to a job log.

4.2.4 Ending a Job (Canceled or Finished)
A job logs its steps in a job log, which is visible to the user. If everything runs according
to plan and no errors occur, the jobôs status changes to ófinishedô. This can be seen
both in the job log and the dialog in transaction SM37.

If an ABAP error or any other interruption occurs at runtime, an error message is
recorded in the job log, and the job is terminated.

Jobname: PAYROLL_RUN
Jobcount: 14201001
Status : finished
Target host : -
Start criteria : last workday of month
Step1 : GHLTBRUT
Step2 : URLAUBAB
.....
Log : JOBLGX142010X1234

Fig. 4.6: A finished job from the point of view of the system (greatly simplified).

 22

Figure 4.6 shows the final view of the job. The job status is ófinishedô. Further
information can be seen in the log.

4.2.5 Intercepting Jobs
Intercepting jobs means that at the moment when the start conditions of the jobs are
fulfilled, the jobs are set back to the status óscheduledô and receive a special attribute.
By calling an XBP function, the external scheduler can receive a list of all intercepted
jobs. Although óinterceptedô is not really a new status (as described above, an
intercepted job has the status óscheduledô and a specific attribute), it is presented to
XBP 2.0 as a new status. If logged on with version 2.0 or higher, the function
BAPI_XBP_STATUS_GET will return an I for an intercepted job, whereas it will return
P, if logged on with version 1.0.

Of course, it is not intended to subject jobs to interception in general. The user can
define criteria in the new table TBCICPT1 (client, job name, job creator including
wildcards), and only the jobs that match these intercept criteria are intercepted. For
instance, a table entry (100, babu*, *) means that all jobs created in client 100 by users
beginning with babu are intercepted. These table entries can be added, changed and
deleted with an XBP function.

Note, that the decision as to whether or not a job has to be intercepted, is made by the
SAP system at the moment, when the start condition is fulfilled. This means that at that
moment the job data are matched against the table contents. A job is intercepted if it
matches the intercept criteria at that moment.

The Administrator might want to intercept all jobs of certain users or with certain
job names on weekends when long-running and time critical batch jobs are
executed. In this case interception provides dynamic job prioritization.

However, the intercept feature may not be used by all customers. Therefore, this
functionality can be globally switched off completely. This has the advantage that
internal calls of subroutines in the runtime system are avoided.

Functionalities that can be switched on are switched off initially. As of XBP 2.0, you can
switch the new functions globally on and off with the ABAP program INITXBP2 or using
BAPI_XBP_NEW_FUNC_CHECK function module.

Remember to run INITXBP2 before using the job interception function.

More information about the technical implementation of the status óinterceptedô

All XBP 2.0 or XBP 3.0 functions that return status information of a job will return an óIô(
= Intercepted) for intercepted jobs. But that does not mean that there will be the value
óIô in the TBTCO status column of the TBTCO database table. The field STATUS in the
TBTCO table does not contain an óIô, but a óPô. Only the additional attribute óinterceptedô
in the table TBTCCNTXT makes it clear that we are dealing with an intercepted job.

Attribute óintercepted-confirmedô

In order to know if there are any intercepted jobs, the external scheduler calls a
function at short intervals (BAPI_XBP_GET_INTERCEPTED_JOBS). To prevent this
function from returning the same intercepted jobs again and again, the scheduler can
confirm a list of intercepted jobs. Confirmation means that the scheduler informs the AS
ABAP system that it already knows these intercepted jobs, and that a subsequent call
of BAPI_XBP_GET_INTERCEPTED_JOBS does not have to return these jobs again.

The confirmation of a list of intercepted jobs is done by calling of
BAPI_XBP_SPECIAL_CONFIRM_JOB, which sets these jobs to status óintercepted-
confirmedô. However, in some situations (such as after a breakdown) it might be useful
to get a list of all intercepted jobs (including the confirmed ones). For this purpose, the
function BAPI_XBP_GET_INTERCEPTED_JOBS has a special indicator. You can find
detailed information in the technical description of these function modules later in this
document.

 23

Treatment of periodic intercepted jobs

If a job that matches the interception criteria is periodic, the AS ABAP rescheduling
mechanism applies.

This means that if a periodic job is set to status óinterceptedô, the AS ABAP system
creates the successor immediately after intercepting the predecessor. The successor,
of course, has the status óreleasedô. If the start condition of the successor is fulfilled, it
will be set to óinterceptedô, and its successor is created, and so on.

Function modules for the status óinterceptedô:

BAPI_XBP_MODIFY_CRITERIA_TABLE: A function module for adding and modifying
the table with the intercept criteria

BAPI_XBP_GET_INTERCEPTED_JOBS: A function module for returning jobs with
status óinterceptedô

BAPI_XBP_SPECIAL_CONFIRM_JOB: A function module for setting special types of
confirmation for a list of jobs, such as for intercepted jobs

BAPI_XBP_NEW_FUNC_CHECK: A function module for reading and changing the
status of the intercept function and the parent/child functionality

BAPI_XBP_JOB_START_IMMEDIATELY/BAPI_XBP_JOB_START_ASAP: Additional
functions for starting intercepted and released jobs

BAPI_XBP_JOBLIST_STATUS_GET: This function module also returns the status
ñinterceptedò

4.2.6 Parent/Child Functionality
In general, a business process that is carried out by a job, or rather, by a collection of
jobs, does not only consist of static jobs, which are known in advance and shown right
away in SM37. It also comprises jobs that are created at runtime by the static jobs, for
example, to dynamically distribute workload. A job that is released by another job is
called a child job, and the releasing job is called a parent job.

For a job scheduling system, it is important to know about the existence and the current
status of the child jobs of a certain parent job, because in the internal logic of many
applications, a parent job is considered as ófinishedô only if the parent job itself and its
child jobs are finished.

By using XBP functions modules, the external scheduler can find out whether or not a
job has child jobs. The SAP background processing system stores the parent/child data
of jobs automatically and offers functions to access these data. XBP offers functions to
access the parent/child data of jobs.

Function modules for parent/child jobs.

¶ BAPI_XBP_JOB_CHILDREN_GET: A function module returning a list of all child
jobs of a certain job.

¶ BAPI_XBP_NEW_FUNC_CHECK: A function module for reading, setting, and
clearing the satus of the parent/child functionality.

¶ BAPI_XBP_JOB_PARENT_CHILD_INFO: A function module returning information
as to whether the job is a child or a parent and some other useful information.

¶ BAPI_XBP_JOB_STATUS_GET: A function that returns also the parent/child
information for a single job

¶ BAPI_XBP_SPECIAL_CONFIRM_JOB: As is the case with intercepted jobs, it is
also possible to confirm child jobs. This has the effect that confirmed jobs are not
returned anymore by subsequent calls of BAPI_XBP_JOB_CHILDREN_GET.

¶ BAPI_XBP_JOBLIST_STATUS_GET: A function module receiving a list of jobs, for
example the list of all child jobs of a certain job, and completing the list by the
addition of status information for each job and a flag that indicates, if a job has child
jobs.

 24

However, the parent/child feature may not be used by all customers. If a customer does
not use this feature, there is not need to write the parent/child information into the
database. So, this feature can be globally switched off with the program INITXBP2.

 Remember to run INITXBP2 before using the parent/child functionality.

Attribute óchild job-confirmedô:

To find out if a job has child jobs, the external scheduler calls a function at short
intervals (BAPI_XBP_JOB_CHILDREN_GET). To prevent this function from returning
the same child jobs again and again, the scheduler can confirm a list of child jobs.
Confirmation means that the scheduler informs the SAP system that it already knows
these child jobs, and that a subsequent call of BAPI_XBP_JOB_CHILDREN_GET does
not have to return these jobs again.

The confirmation of a list of child jobs is done by calling
BAPI_XBP_SPECIAL_CONFIRM_JOB, which sets these jobs to status óchild-
confirmedô (for more details see the chapter below). However, in some situations (such
as after a breakdown) it might be useful to get a list of all child jobs (including the
confirmed ones). For this purpose, the function BAPI_XBP_JOB_CHILDREN_GET has
a special indicator. You can find detailed information in the technical description of
these function modules later in this document.

 25

4.2.7 Confirming Jobs
The concept of confirming jobs is even wider than already described in the context of
interception and parent/child jobs. There are three XBP functions for job selection:

BAPI_XBP_JOB_SELECT for general job selection

BAPI_XBP_JOB_CHILDREN_GET for child job selection

BAPI_XBP_GET_INTERCEPTED_JOBS for the selection of intercepted jobs

These functions are normally called at intervals by the external job scheduler and
return a list of jobs. If you do not want the system to return the same jobs over and over
again, you can confirm them. Confirmation means that the scheduler informs the SAP
system that it already knows these jobs, and that a subsequent call of the selection
function module does not have to return these jobs again.

There are two types of confirmation:

General: With general confirmation, the job scheduler confirms that it knows a job in
general. Jobs are confirmed generally with BAPI_XBP_CONFIRM_JOB. When you
use any of the three selection functions, the generally confirmed jobs are not
returned if the corresponding indicator (parameter name: SELECTION) is set
appropriately.

Special: With special confirmation, the job scheduler confirms that it knows that a job
has certain characteristics, for example if a job is an intercepted job or a child job.

Child jobs and intercepted jobs are confirmed with
BAPI_XBP_SPECIAL_CONFIRM_JOB. When you use
BAPI_XBP_JOB_CHILDREN_GET or BAPI_XBP_GET_INTERCEPTED_JOBS
the specially confirmed jobs are not returned again, if the corresponding indicator is
set appropriately.

However, in some situations (such as after a breakdown) it might be useful to
get a list of all intercepted or child jobs (including the confirmed ones). This
function has a special indicator for this purpose.

4.2.8 Consuming Raised Events
The external scheduler can use events raised in the AS ABAP system as a start
condition for jobs.

All the events that match certain criteria and were received and processed in the AS
ABAP system are stored in a log called event history (EH). Event history lists all the
received events whether or not they are defined in the system or are processed by the
event scheduler.

EH enables the external scheduler to consume, or read raised events. Additionally, the
external scheduler can confirm, or mark the events it has read.

¶ Reading raised events

By calling the BAPI_XBP_BTC_EVTHISTORY_GET function, the external
scheduler can obtain a list of the events that were raised in the SAP system.

¶ Confirming raised events

EH keeps track of the status of events, showing whether the external scheduler
has marked the event as read, that is, whether it has confirmed them. By
confirming events, the external scheduler can avoid reading the same events in EH
more than once.

All events are logged in the event history with status NEW. When the external
scheduler has read the events in EH, it can change their status to CONFIRMED by
calling the BAPI_XBP_BTC_EVTHIST_CONFIRM function.

Confirming an event is optional. An event in status NEW can remain in this status
even after information about it has been polled.

4.2.8.1 Configuring Criteria for Raised Events

By default, the event history logs all events except those with the name
SAP_END_OF_JOB. To make the event history log events different from the default
setting, or to prevent event history from growing too big, the external scheduler can
configure EH to log only events that match custom criteria.

 26

The criteria for the events which should be logged in the event history are controlled by
the criteria manager. By using the eXtensible Markup Language (XML), you can define
criteria for events as a combination of standard ABAP select options. You can set
separate conditions for event names and event arguments. You can combine these
conditions and criteria as logical expressions with the logical operators OR and AND.

¶ Criteria hierarchy

The criteria hierarchy is the set of all the criteria and conditions which event names
and/or event argument of the raised events need to fulfill to be logged in the event
history. In XML format, you create and combine criteria in a criteria hierarchy. The
criteria in the hierarchy may be grouped in nodes that are governed by a logical
AND or OR relation:

By using the functions BAPI_CM_CRITERIA_GET and BAPI_CM_CRITERIA_SET
the external scheduler can retrieve a criteria hierarchy in XML format from the
criteria manager or set a criteria hierarchy which is marked up in XML.

¶ Criteria profile

A criteria hierarchy is stored in a criteria profile which can be active or inactive. For
the criteria in a profile to take effect, the profile has to be active. You can have
many profiles, but only one can be active.

By using the functions BAPI_CM_PROFILE_ACTIVATE and
BAPI_CM_PROFILE_DEACTIVATE, the external scheduler can set a profile active
or inactive, respectively. XBP 3.0 also provides function modules for creating,
deleting, and retrieving criteria profiles.

4.2.9 Monitoring Performance
The SAP system stores batch statistic information about the past workload produced by
particular jobs or job steps. By using the function BAPI_XBP_BTC_STATISTIC_GET,
the external scheduler can obtain statistic workload information about a list of jobs.

This batch statistic information is available in the system and can be retrieved by the
external scheduler only within 96 hours after the job has run.

To be able to retrieve batch statistic information, the external scheduler needs the
following authorizations:

Authorization object = S_TOOLS_EX

Field Value

AUTH S_TOOLS_EX_A

4.2.10 Obtaining Application Information
As a means of passing information, an ABAP application that runs in the background
can create an application log and set an application return code in the batch job data.

With the new internal function BP_ADD_APPL_LOG_HANDLE, the application running
as a batch job can assign one or more unique application log handles to its batch job
data. When the log handle has been assigned, the external scheduler can use the XBP
3.0 function BAPI_XBP_APPL_INFO_GET to retrieve the log handle. Based on the
returned log handle, the external scheduler can call
BAPI_XBP_APPL_LOG_CONTENT_GET to read the application log and the
application return code.

Authorizations

To be able to obtain application information, the external scheduler needs the following
authorizations:

Authorization object = S_APPL_LOG

 27

Field Value

ALG_OBJECT *

ALG_SUBOBJ *

ACTVT 03

Chapter 7 contains details of these function modules.

4.3 Architecture of the AS ABAP Job Scheduling
System

The essential components of the AS ABAP background processing are the database
tables which contain the job administration data and steps, the job scheduler, the job
starter, the job log, and the spool subsystem.

Within this document we can only present a rough sketch of how these elements work
together. The aim is, however, to provide a simple model of how the system works.

4.3.1 Job Administration in the Database
All essential job administration information and the job steps themselves are stored in
the database. This ensures the consistency and security of the relevant information.

The most important of the database tables is the job data table. This contains entries
necessary for job administration: job name, job number, target host, desired start time,
job log name and much more. The step list for a job is not contained in this table.

The step list table contains a number of ABAP and operating system level programs
(óexternal programsô) for each job. Figures 4.3 - 4.6 show data from both tables in one
view.

An event table lists all events defined in AS ABAP, along with the jobs that they trigger
when the particular event occurs in the system.

4.3.2 The Job scheduler
In actual fact, the job scheduler consists of two schedulers - one for event based and
one for time based jobs. According to the start criteria for a particular job, one or the
other of these schedulers assumes responsibility for passing it on. For the sake of this
overview, we will make no further distinction between the two schedulers.

The job scheduler for time controlled jobs is started regularly on all the application
servers in the SAP systems, which carry out background processing and have
background work processes for that purpose. You can set the interval at which it is
started in the profile parameter rdisp/btctime for each application server. The event
driven job scheduler is started on the application server on which an event is triggered.

When the scheduler begins its task, it selects jobs from the database (job
administration data) which have reached their start date or whose triggering event has
taken place. The scheduler also takes into account whether any background work
processes are free. If it comes across free processes of the right type, it tries to send
as many jobs as possible to these processes, always bearing in mind the priority of the
jobs and maintaining a reserve of background work processes for important class A
jobs. Jobs which cannot be processed are left untouched. Jobs, on the other hand,
which are sent to the background work processes are marked as such in the database
(óreadyô status) and, after a very short delay, are taken up by the chosen work process
and processed completely (without interruption). If the job scheduler starts a periodic
job, it immediately reschedules the successor.

 28

,

AS ABAP
Database

 Dispatcher

Application
Server

 Job Scheduler Job Starter

...

.......

WP0 Dialog-WP Batch-WP WPN

ABAPs
Jobs Steps

1.

2.

Fig. 4.7: System architecture of AS ABAP background processing (simplified).

4.3.3 The Job Starter and the Job Runtime Environment
The job starter is a compact program which is processed in the background work
process and finds a step list in the database. The step list is then processed step by
step. If an external program is involved, a UNIX or Windows NT command is sent to the
operating system. If the step consists of an ABAP program, this is carried out in the
SAP system.

4.3.4 The Job Log
Generally speaking, the job log is not stored in the database. It is a TemSe object, and
usually a file at operating system level. The TemSe objects are temporary and
sequential AS ABAP objects, which can be stored system-wide in the database, but are
normally kept directly in the file system. In any case, the name of the TemSe object -
normally the filename - is stored in the job administration information.

If a job log is requested for a job, the TemSe object is displayed. The user cannot tell
from the dialog whether this is a database object or whether it has been saved in a
different way.

4.3.5 Job Output
Most ABAP or external programs generate output while they are running. Possible
output includes error messages, messages about a programôs progress, or lists
resulting from a report.

This output and messages are not immediately visible, since the programs are not
running in dialog, but in the background. To avoid this output being lost, it is saved so
that it can be looked at later. The output lists of a job are looked after by the spool
output management. All messages are recorded in the job log. The job log contains
information on all job steps.

The step list stores information on the location of the output of each job. The reason for
this is that each step can create its own output.

 29

5 The External Interface Concept
The XBP interface described in this document is part of an interface package for
external system management tools. On the AS ABAP side, the interfaces are
constructed through a pool of function modules. External management systems are
able to call these using RFC (Remote Function Call). You can find example calls in the
documentation on the interface itself. A short introduction to RFC forms part of the
technical basics at the end of this chapter.

In the following section, we are working on the assumption that the external system
management tool is represented to the AS ABAP system by an agent. This agent is the
communication partner of the function modules.

5.1 Range of Interfaces
The range of interfaces, under the name XM (eXternal System Management), consists
at present of the following individual components:

¶ XBP eXternal Interface for Background Processing

¶ XBR eXternal Interface for Backup & Recovery (so far called: BRI or Backint)

¶ XMB eXternal Interface for Monitoring Basics

¶ XMI eXternal Monitor Interface

¶ XOM eXternal Interface for Output Management

For more information about the interfaces, see the SAP Developer Network at
sdn.sap.com Ą Partners and ISVs Ą Integration and Certification .

One thing which all of these RFC interfaces have in common is that their function
modules call exactly the same function pools as the internal AS ABAP operations.
Figure 5.1 shows this using XBP. This does not, of course, apply to the XMI interface,
since there is no internal equivalent.

General Function Pool for
Background Processing

XBP

 R/3

External
Access R/3 Internal

Job Management

 Agent

Fig. 5.1: The external interface principle, exemplified by XBP

5.2 Naming Conventions
It is aimed to have a standardized naming convention for function modules, and this is
widely kept to. Thus function modules for the XM-interface family have the prefix BAPI,
an identification for the actual interface and arising from the target object and the
intended action.

Syntactic structure for a function module name: BAPI_<SS>_<Object>_<Action>

Example of the naming convention: BAPI_XBP_JOB_OPEN

In the example, the actual interface is signified by XBP (eXternal interface for
Background Processing).

 30

5.3 Technical Basics
The most important technical basics for the external interfaces are XMI and RFC:

XMI is an interface which logs the activities of users and agent programs each time a
function module of an external interface is called. In particular, XMI logs the agentôs
first access to the function module pool. At this point, the name of the external
program is recorded and its version number checked.

RFC (Remote Function Call) forms the communications platform for direct calls to the
function modules which implement the interface on the AS ABAP side.

5.3.1 XMI Monitor: External Access
Within AS ABAP, all external CCMS interfaces use the same function modules. These
function modules can also be collected into an interface themselves. The name XMI
(eXternal Monitoring Interface) was established since the interface was intended to log
external access.

XMI - logging and more Common
Layer

Interface-
Specific
Layer

XMB XBP

External
Access

General Functions
Background Processing

Fig. 5.2: XMI as a common layer for external interfaces.

For developers who want to integrate external tools into CCMS, the XMI interface
remains almost invisible, appearing only at the beginning and end of a CCMS session
in the form of two functions:

¶ BAPI_XMI_LOGON: Agent logs on to an external interface

¶ BAPI_XMI_LOGOFF: External program logs off from an external interface

You have the option of using further functions from the external tool

¶ BAPI_XMI_ENTER_LOGMSG: Writes a message to the XMI log

¶ BAPI_XMI_GET_VERSIONS: Queries the current version of the interface

¶ BAPI_XMI_SELECT_LOG: Reads the XMI message log

The information which is logged and collected in the access log can be viewed using
Transaction RZ15.

The following is displayed: Name of the agent which tried to make contact with the SAP
NetWeaver AS ABAP system, and that of its supplier, the user name (if a user logged
on) and any changes or attempted changes which were carried out (for example, reset
alert).

5.3.2 Connectors (RFC Remote Function Call)

If an ABAP function is RFC enabled, it can be called from outside (e.g. from C
programs) using one of the SAP connectors.

Here is an overview of the connectors:
https://service.sap.com/connectors

From this page you can navigate to more detailed information.

https://service.sap.com/connectors

 31

Further information regarding NW RFC SDK:

Note 1025361 - Installation, Support and Availability of the SAP NetWeaver RFC
Library

Note 1056696 - Compiling and Linking RFC Programs with the SAP NW RFC SDK

There are also some tutorials available:
Part I -- RFC Client Programming
https://scn.sap.com/docs/DOC-52886

Part II -- RFC Server Programming
https://scn.sap.com/docs/DOC-52887

Part III -- Advanced Topics
https://scn.sap.com/docs/DOC-52888

Release & Support Strategy for JCo (und NCo)

Note 1077727 SAP JCo 3.0 release and support strategy

Note 856863 - SAP NCo Release and Support Strategy

Please also pay attention to this page by the ñSAP Integration and Certification
Centerò:

http://scn.sap.com/community/icc/blog/2012/08/15/support-for-classic-rfc-library-ends-
march-2016

https://scn.sap.com/docs/DOC-52886
https://scn.sap.com/docs/DOC-52887
https://scn.sap.com/docs/DOC-52888
http://scn.sap.com/community/icc/blog/2012/08/15/support-for-classic-rfc-library-ends-march-2016
http://scn.sap.com/community/icc/blog/2012/08/15/support-for-classic-rfc-library-ends-march-2016

 32

6 XBP - External Job Scheduling Interface
(external JOB-API)

As explained in the section above, an external interface is a collection of RFC-enabled
functions. The XBP interface is an external interface to the SAP background processing
system.

The XBP interface must not be confused with the ónormalô batch API, which is
a collection of non RFC-enabled functions. The ónormalô batch API is an
internal ABAP-API to the SAP background processing system.

Why does SAP offer the XBP interface?

Many customers do not process their data with just one SAP system. They usually
have a landscape consisting of one or more SAP systems as well as non-SAP
systems. The non-SAP systems usually also have some kind of a background
processing system.

There are interdependencies between the systems of such a landscape.

The non-SAP system A creates data using a background job. The SAP system
B then processes this data in a job. This means that there is a job Y in SAP
system B, which can only start after job X in non-SAP system A has finished.

Such a scenario demonstrates the need for a central job management system. The
SAP background processing system, of course, cannot monitor jobs of non-SAP
systems. In addition, the interdependencies between jobs even in a single system are
sometimes so complex that they cannot be described with the functions of the internal
batch API.

A central job management system (often referred to as óexternal schedulerô) connects
to the SAP system via the XBP interface. The functionality of the XBP interface is not
more complex than the one offered by the internal batch API, but based on this
functionality the external scheduler implements its óadded valueô, for example graphical
editors for job nets and complex start conditions.

In order to manage jobs centrally in a system landscape containing non-SAP systems,
the non-SAP systems also have to provide an interface to which the external scheduler
can connect.

6.1 What Is Required of the Interface
In order to be able to work in the AS ABAP system, an external job scheduling system
must be able to carry out the following activities within the AS ABAP system:

¶ Create jobs

¶ Modify jobs

¶ Delete jobs

¶ Start jobs (start immediately)

¶ Terminate active jobs

¶ Access information about jobs (status, log, and so on)

¶ Access information about resources in the AS ABAP job scheduling system
(number and status of background work processes)

There are XBP functions for carrying out all of these activities.

Any critical changes to AS ABAP jobs (creation, editing, deletion etc) are recorded in
the XMI log in the AS ABAP system. You can display entries in this log using
Transaction RZ15.

 33

External

System Management Tool

System
Management

-
External

Job Scheduling
System

SAP

XBP Function Module

Function BAPI_XBP_JOB...

endfunction

AS ABAP

Synchronous
RFC Call

Fig 6.1: How a synchronous RFC function call to XBP works.

For the XBP 3.0 certification, the following functions are required/optional:

1. Configuring criteria for events and interceptions rules (only functions including
PROFILE_ are required; the remaining functions are optional)

2. Monitoring performance (optional)

3. Obtaining application information (all functions required)

4. Getting information about and reading a particular spool list
(BAPI_XBP_JOB_READ_SINGLE_SPOOL required,
BAPI_XBP_GET_SPOOL_ATTRIBUTES optional)

5. Searching for archive parameters (required)

6. Setting a spool list recipient (optional, but it must be possible to set the spoollist
recipient in BAPI_XBP_JOB_CLOSE by using the new optional parameter
RECIPIENT)

7. Selecting all jobs from the SAP system from a certain time period (optional)

8. Simplified variant handling (BAPI_XBP_VARIANT_CREATE,
BAPI_XBP_VARIANT_CHANGE, and BAPI_XBP_READ_SELSCREEN
required, remaining functions are optional)

6.2 XBP Interface - Description
There follows a short overview of the function modules which make up XBP. Reference
information about the modules is given in chapter 7.

The interface can be divided roughly into the following tasks:

Logging on/logging off

Function Modules Short Description

BAPI_XMI_LOGON Connect to the external management
interface

BAPI_XMI_LOGOFF End the AS ABAP session of the
external job management system

Defining jobs

Function Modules Short Description

BAPI_XBP_JOB_OPEN Create a job

BAPI_XBP_JOB_ADD_ABAP_STEP Add an ABAP step to an existing job

BAPI_XBP_JOB_ADD_EXT_STEP Add an external program to an existing
job

BAPI_XBP_JOB_CLOSE Finish job creation

BAPI_XBP_JOB_DEFINITION_GET Read job definitions from the AS ABAP
system

 34

Working with jobs

Function Modules Short Description

BAPI_XBP_JOB_ABORT Abort job

BAPI_XBP_JOB_DELETE Delete job

BAPI_XBP_JOB_COPY Copy a job with all attributes

BAPI_XBP_JOB_HEADER_MODIFY Modify key job parameters

Modifying jobs

Function Modules Short Description

BAPI_XBP_JOB_ABAP_STEP_MODIFY Modify an ABAP step

BAPI_XBP_JOB_EXT_STEP_MODIFY Modify an external step

Starting jobs and triggering events

Function Modules Short Description

BAPI_XBP_JOB_START_ASAP Start as soon as possible

BAPI_XBP_JOB_START_IMMEDIATELY Start immediately

BAPI_XBP_EVENT_RAISE Trigger an event from outside

Adding, changing, and deleting job steps via XMI

Function Modules Short Description

BAPI_XBP_ADD_JOB_STEP Add and insert a step to a job via XMI

BAPI_XBP_MODIFY_JOB_STEP Change and delete a step of a job via
XMI

Working with raised events

Function Modules Short Description

BAPI_XBP_BTC_EVTHISTORY_GET Get the list of raised events

BAPI_XBP_BTC_EVTHIST_CONFIRM Confirm events

BAPI_XBP_EVENT_DEFINITIONS_GET Read definitions of batch events

BAPI_CM_CRITTYPES_GET Get a list of available criteria types

BAPI_CM_PROFILE_ACTIVATE Activatʝ a criteria profile for the criteria
for raised events

BAPI_CM_PROFILE_CREATE Creatʝ a criteria profile for the criteria
for raised events

BAPI_CM_PROFILE_DELETE Deletʝ an existing criteria profile for the
criteria for raised events

BAPI_CM_PROFILES_GET Get a list of profiles for the criteria for
raised events

BAPI_CM_PROFILE_DEACTIVATE Deactivatʝ an active profile for the
criteria for raised events

BAPI_CM_CRITERIA_GET Get criteria for raised events in XML
format

 35

BAPI_CM_CRITERIA_SET Import criteria for raised events from
XML source

Intercepting and confirming jobs

Function Modules Short Description

BAPI_XBP_GET_INTERCEPTED_JOBS Retrieve jobs with the new status
óInterceptedô

BAPI_XBP_CONFIRM_JOB Confirm jobs in general

BAPI_XBP_SPECIAL_CONFIRM_JOB Set special confirmation types for jobs
(intercept, parent/child)

BAPI_XBP_MODIFY_CRITERIA_TABLE Modify the criteria table

Monitoring / Controlling the AS ABAP job scheduling system

Function Modules Short Description

BAPI_XBP_JOB_STATUS_CHECK Is the job status still correct? Is the WP
working?

BAPI_XBP_JOB_COUNT How many jobs exist with a particular
name?

BAPI_XBP_JOB_SELECT Select sets of jobs by various criteria

BAPI_XBP_JOB_STATUS_GET Read job status

BAPI_XBP_JOBLIST_STATUS_GET Determine status of a list of jobs

BAPI_XBP_JOB_JOBLOG_READ Read job log

BAPI_XBP_JOB_READ Obtain key job parameters from job
header and job steps

BAPI_XBP_JOB_SPOOLLIST_READ_20 Replaces the function modules

BAPI_XBP_JOB_SPOOLIST_READ

BAPI_XBP_JOB_SPOOLLIST_READ_
RW

BAPI_XBP_JOB_READ_SINGLE_SPOOL Read a particular spool list of a job that
has been run

BAPI_XBP_GET_SPOOL_ATTRIBUTES Get information about a particular
spool list

BAPI_XBP_NEW_FUNC_CHECK Read and change status of
interception and parent/child
functionality

BAPI_XBP_JOB_CHILDREN_GET Get all children of a job

BAPI_XBP_JOB_PARENT_CHILD_INFO Determine parent/child relation

BAPI_XBP_BTC_STATISTIC_GET Get statistic records for a list of jobs

BAPI_XBP_APPL_INFO_GET Get the handles of application logs and
application return codes for a particular
job

BAPI_XBP_APPL_LOG_CONTENT_GET Read application log messages

BAPI_XBP_GET_SPOOL_AS_PDF Return ABAP spool list in PDF format

BAPI_XBP_GET_SPOOL_AS_DAT Return ABAP spool list in delimited tab
(DAT) / spreadsheet format

 36

Function Modules Short Description

BAPI_XBP_JOB_JOBLOG_TO_PDF Return joblog in PDF format

 37

Information about the Background System

Function Modules Short Description

BAPI_XBP_ GET_CURR_BP_RESOURCES Read current background server and
work processes

BAPI_XBP_ GET_BP_RESRC_ON_DATE Background work processes at a
particular time

BAPI_XBP_GET_BP_SRVRES_ON_DATE

Is there a background work process
on a server at a particular time?

BAPI_XBP_VARIANT_INFO_GET Does the ABAP program have
variants?

Value help functions

Function Modules Short Description

BAPI_XBP_REPORT_SEARCH Return a list of ABAP reports available
in the current system

BAPI_XBP_EXT_COMM_SEARCH Return a list of external commands
available in the current system

BAPI_XBP_OUTPUT_DEVICE_SEARCH Return a list of output devices
available in the current system

BAPI_XBP_PRINT_FORMAT_SEARCH Return a list of print formats available
for a certain printer

BAPI_XBP_VARIANT_INFO_GET Get the variants of an ABAP program

BAPI_XBP_EVENT_DEFINITIONS_GET Get list of batch events

BAPI_XBP_FACT_CALENDERS_GET Get a list of factory calendars available
in the current system

BAPI_XBP_HOL_CALENDERS_GET Get a list of holiday calendars available
in the current system

BAPI_XBP_GET_ARCHIVE_OBJECTS Return SAP Objects and Archive
Objects that are defined in a system

Working with variants

Function Modules Short Description

BAPI_XBP_VARIANT_CREATE Create a variant

BAPI_XBP_VARIANT_COPY Copy a variant

BAPI_XBP_CHANGE Change a variant

BAPI_XBP_DELETE Delete a variant

BAPI_XBP_VARINFO Read information of all variants of an
ABAP program

BAPI_XBP_READ_SELSCREEN

BAPI_XBP_GET_FREE_SELECTIONS

Read information about the selection
fields of an ABAP program

Read the free selections of an ABAP
program

 38

7 XBP Reference Manual
This is the reference manual for the interface function modules. Please, bear in mind
that the very latest interface parameter types can only be obtained from your system
(Transaction SE37, Function Module - interface).

For using this Reference Manual, note the following points:

¶ Concerning the following function descriptions the notions IMPORT and EXPORT
are described from the view of the respective function module. This means, the
module is called with the import parameters and returns export parameters.

¶ The features that are new or enhanced in XBP 3.0 are marked with óNew in XBP
3.0ô or 'Enhanced with XBP 3.0' in the table of the corresponding function
description. The features that were introduced in XBP 2.0 are marked with
óIntroduced in XBP 2.0ô.

¶ Almost all of the following function descriptions contain the section Message IDs.
From XBP 3.0 on, this list is not necessarily complete any more, and for some
functions no list of message IDs may be given at all.

The reason for this is that in the future the error message, which a function returns
in a certain problem case, should be as precise and meaningful as possible for the
corresponding case. Therefore, from XBP 3.0 on, SAP reserves the right to return
any appropriate error message in an error situation.

What remains unchanged is the format of an error message. It will still be the
BAPIRET2 format and an error message will still be of type E. The texts may
simply change in the future.

7.1 Requirements for Using the XBP Interface
The requirement for using the XBP interface is an existing XMI session. The technical
requirements (RFC, AS ABAP Version) are contained in earlier chapters.

7.1.1 Logging on to the AS ABAP System with an External
Job Management System

Before you call a function module in the XBP interface for the first time, it is important
that:

¶ the external job management system logs onto the SAP AS ABAP system first,

using an AS ABAP user name and password. (C function RfcOpen).

¶ the external job management system is authenticated by the CCMS external
interface administration using the function module BAPI_XMI_LOGON:

Function name BAPI_XMI_LOGON

Short description Connecting to the external Management Interfaces

BAPI object name SystemMngmtSession

BAPI method name Logon

RFC interface

function BAPI_XMI_LOGON

importing

 EXTCOMPANY like BAPIXMLOGR- EXTCOMPANY

 type RFC_CHAR length 16

 EXTPRODUCT like BAPIXMLOGR- EXTPRODUCT

 type RFC_CHAR length 16

 INTERFACE like BAPIXMLOGR - INTERFACE

 optional

 type RFC_CHAR length 3

 39

 VERSION like BAPIXMLOGR - VERSION

 optional

 type RFC_CHAR length 10

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

 SESSIONID like BAPIXMLOGR - SESSIONID

 type RFC_CHAR length 24

Parameter (Input) ¶ EXTCOMPANY is the name of the supplier of the external
management tool.

¶ EXTPRODUCT is the product name of external management tool.

¶ INTERFACE (optional) is the interface for logging on.

¶ VERSION (optional) is the version of the interface in AS ABAP
required by the external tool.

Parameter (Output) ¶ SESSIONID is the ID of the RFC connection.

¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_ALREADY_LOGGED_ON: This product is already logged
onto the interface.

¶ MSG_ALREADY_LOGGED_ON_GEN: The company has already
logged on.

¶ MSG_CANT_LOG: Activity was terminated, because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_INVALID_PARAMETERS: EXTCOMPANY and
EXTPRODUCT are different within a session.

¶ MSG_LOGON_DENIED: Logon was denied because the AS
ABAP user used by the external job management session to log
onto the AS ABAP system is not authorized to work with the
external job management system.

¶ MSG_LOGON_DENIED_GEN: You have no authorization for
general logon.

¶ MSG_PROBLEM_DETECTED: XMI problem which cannot be
further specified.

¶ MSG_UNKNOWN_INTERFACE: The interface required by the
external tool is not supported by the system.

¶ MSG_UNKNOWN_VERSION: The version required by the
external tool is not supported by the system.

The logon will only be successful if you assign the following authorization values to the
user for the AS ABAP authorization object S_XMI_PROD:

¶ Name of the company which supplies the external job management system

¶ Program name of the external job management system

¶ Name of the interface which the user wants to work with

 40

7.1.2 External Job Management System - Logging Off

Function name BAPI_XMI_LOGOFF

Short description If you want to end the external job management systemôs AS ABAP
session, you first need to call the BAPI_XMI_LOGOFF function
module.

BAPI object name SystemMngmtSession

BAPI method name Logoff

RFC interface function BAPI_XMI_LOGOFF

importing

 INTERFACE like BAPIXMLOGR - INTERFACE

 optional

 type RFC_CHAR length 3

exporting

 RETURN like BAPIRET2 structure

 length 548 number of fields 14

Parameter (Input) INTERFACE (optional) from which you should log off.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: There is no connection with the AS
ABAP system.

¶ MSG_PROBLEM_DETECTED: XMI problem which cannot be
further specified.

Remarks Afterwards you must close the RFC connection using the C RFC

function rfcClose .

 41

7.2 Defining Jobs
You must observe the following procedure in defining AS ABAP jobs:

¶ Open job (BAPI_XBP_JOB_OPEN)

¶ Assign (BAPI_XBP_JOB_ADD_ABAP_STEP / BAPI_XBP_JOB_ADD_EXT_STEP)
one or more job steps (ABAP Programs or external Programs) to the job.

¶ Close job and assign start time if required (BAPI_XBP_JOB_CLOSE).

After having defined a job, you can read the definition with the function module
BAPI_XBP_JOB_DEFINITION_GET.

7.2.1 Opening Jobs

Function name BAPI_XBP_JOB_OPEN

Short description If you want to create a new job, you must first óopenô it. When you open
a job, its name is recorded and a job number assigned to it. The job
name and number are used as a unique key for all subsequent
function calls.

Introduced in XBP
2.0

The optional import parameter JOBCLASS has been added
(see description below).

BAPI object name BackgroundJob

BAPI method name Open

RFC interface function BAPI_XBP_JOB_OPEN

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 JOBCLASS like BAPIXMJOB - JOBCLASS

 optional

 type RFC_CHAR length 1

exporting

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 RETURN structure BAPIR ET2 length 548

 number of fields 14

Parameter (Input) ¶ JOBCLASS is an optional import parameter. The caller can
choose a job class (A, B, or C).

Parameter (Output) ¶ JOBCOUNT is the system-generated job number.

¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBNAME_MISSING : You have not entered a job name.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has found an error.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
yet logged on to the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 42

7.2.2 Assigning an ABAP Program to a Job Step

Function name BAPI_XBP_JOB_ADD_ABAP_STEP

Short description An ABAP program which you intend to run within a job can be assigned
to a job step. Enter a valid variant name for the program, if the ABAP
program works with variants.

Introduced in XBP
2.0

Two new optional import parameters ALLPRIPAR and
ALLARCPAR have been added (see description below).

For corrections to all known issues related with print
parameters in XBP, see SAP Note 609462.

Note that the reference structures of the structures have
been changed. The following applies with SAP Note
609462:

ALLPRIPAR LIKE BAPIPRIPAR STRUCTURE
BAPIPRIPAR

ALLARCPAR LIKE BAPIARCPAR STRUCTURE
BAPIARCPAR

The SAP System sets default values in the following
fields of the print parameter structure if initial values are
transferred in the interface:

PRIMM = Output immediately (Default = NO)

PRREL = Delete after output (Default = NO)

PRNEW = New spool request (Default = YES)

PRSAP = SAP cover page (Default = Printer settings)

PRREC = Recipient (Default = Created by)

PRABT = Department (Default = Created by department)

PRUNX = Host spooler cover page (Default = Printer
settings)

If these fields are actually supposed to be transferred
empty (for example, if an empty PRIMM overrides the
'Output immediately' setting in the user master), the XBP
interface expects the '$' character to be transferred in this
case.

Introduced in XBP
3.0

Two new parameters for enhanced variant handling have been
introduced:

¶ Import Parameter FREE_SELINFO

¶ Tables Parameter SELINFO

A new parameter for transferring extended print parameters
has been introduced:

¶ Tables parameter PRIPAREXT.

(See note 1678864 on the availability of this feature)

BAPI object name BackgroundJob

BAPI method name AddABAPStep

RFC interface function BAPI_XBP_JOB_ADD_ABAP_STEP

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 43

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 ABAP_PROGRAM_NAME like BAPIXMREP- REPORTID

 type RFC_CHAR length 40

 ABAP_VARIANT_NAME like BAPIXMREP - VARIANTNAM

 optional default SPACE

 type RFC_CHAR length 14

 SAP_USER_NAME like BAPIXMSTEP - AUTHCKNAM

 optional default SY - UNAME

 type RFC_CHAR length 12

 LANGUAGE like BAPIXMSTEP - LANGUAGE

 optional default SY - LANGU

 type LANG length 1

 PRINT_PARAMETERS structure BAPIXMPRNT 12

 optional default SPACE

 length 48 number of fields 12

 ARCHIVE_PARAMETERS structure BAPIXMARCH

 optional default SPACE

 length 23 number of fields 3

 ALLPRIPAR structure BAPIPRIPAR

 option al default SPACE

 length 176 number of fields 22

 ALLARCPAR structure BAPIARCPAR

 optional default SPACE

 length 328 number of fields 18

 FREE_SELINFO type RSDSRANGE_T_SSEL

exporting

 STEP_NUMBER like BAPIXMJOB - STEPCOUNT

 type RFC_I NT4 length 4

 RETURN structure BAPIRET2 length 548

 number of fields 14

tables

 SELINFO like RSPARAMS

 PRIPAREXT LIKE BAPIXMPRIPAREXT

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ JOBCOUNT is the ID number of a job. Together with the job name,
the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who called the function.

¶ ABAP_PROGRAM_NAME is name of the ABAP program that is to
be executed in this job step. The program must be type 1
(interactively executable).

¶ ABAP_VARIANT_NAME is an optional parameter to determine
variants for the specified ABAP report.

¶ SAP_USER_NAME is an optional parameter to specify an AS
ABAP user with whose authorizations the job is processed.

¶ LANGUAGE is an optional parameter to enter the one-digit SAP

 44

language key for this job step. For more information see the
Language Key Mapping section in the appendix.

¶ PRINT_PARAMETERS (obsolete, use ALLPRIPAR).

¶ ARCHIVE_PARAMETERS (obsolete, use ALLARCPAR).

¶ ALLPRIPAR and ALLARCPAR are optional structures for the
specification of all print and archive parameters and complement
PRINT_PARAMETERS and ARCHIVE_PARAMETERS. If
ALLPRIPAR and ALLARCPAR are initial, PRINT_PARAMETERS
and ARCHIVE_PARAMETERS are evaluated. If ALLPRIPAR and
ALLARCPAR contain a value, this value is used.

ALLARCPAR is a set of archive parameters used for
steps consisting of an ABAP program. The ALLARCPAR
parameter contains the whole set of archive parameters
that can be used by an ABAP program.

ALLPRIPAR is a set of print parameters used for steps
consisting of an ABAP program. The ALLPRIPAR

parameter contains the whole set of print parameters that
can be used by an ABAP program.

Too see a full list of the fields of the structures
ALLPRIPAR and ALLARCPAR, please refer to the
appendix at the end of this document.

¶ FREE_SELINFO

This parameter actually refers to an internal table. 'This means
that the reference type RSDSRANGE_T_SSEL is a table type in
the DDIC.

As a matter of fact, it describes a table with a nested table. For
technical reasons, a parameter, which refers to such kind of
table, cannot be listed in the section of tables parameters of an
RFC-enabled function.

With the parameter FREE_SELINFO the caller can specify
values for the free selections of a report.If this parameter is
supplied, a temporary variant is created in the SAP system.

Parameter (Output) ¶ STEP_NUMBER is the number of job steps.

¶ BAPIRET2 is the return structure used by BAPIs.

Parameter (Tables) SELINFO

With this parameter the caller can specify values for the
selection fields of the report without refering to an explicit
(meaning existing) variant.

If this parameter is supplied, a temporary variant is created in the
SAP system.

PRIPAREXT

With this parameter, the caller can specify extended print
parameters in this name/value table. The following parameters
are possible:

NAME: MAIL Meaning: Mail address for an email printer

NAME: TEXT Meaning: Text only

NAME: NOSHADE Meaning: Suppress colors/shading in printout

NAME: NOFRAME Meaning: no frame characters

NAME: SMS Meaning: with structure information

NAME: MXLSZ Meaning: maximum width 255 columns

 45

NAME: SPOOLPAGE1 Meaning: from page

NAME: SPOOLPAGE2 Meaning: to page

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job number.

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_PROGNAME_MISSING: You did not enter an ABAP
program name.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has found an error.

¶ MSG_EXT_USER_MISSING: The external user name is missing.
This is the name of a user in the external job scheduling system.

¶ MSG_INVALID_PRINT_PARAMS: Printer entry invalid.

¶ MSG_INVALID_ARCHIVE_PARAMS: Archiving parameters
invalid.

¶ MSG_NO_ARCHIVE_INFO: Archiving information not given.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool is not
logged onto the CCMS XMI interface. Therefore, the activity cannot
be carried out.

 46

7.2.3 Assigning an External Program to a Job Step

Function name BAPI_XBP_JOB_ADD_EXT_STEP

Short description You can assign a program to a job step which runs outside the SAP
system, for example a C program. Enter the name of the program and
that of the host on which the external program is to run

BAPI object name BackgroundJob

BAPI method name AddExternalStep

RFC interface function BAPI_XBP_JOB_ADD_EXT_STEP

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 EXT_PROGRAM_NAME like BAPIXMSTEP- PROGRAM

 type RFC_CHAR length 128

 EXT_PROGRAM_PARAMETERS like BAPIXMSTEP-

 PARAMETER

 optional default SPAC E

 type RFC_CHAR length 255

 WAIT_FOR_TERMINATION like BAPIXMAUX - CHAR1

 optional default 'X'

 type RFC_CHAR length 1

 SAP_USER_NAME like BAPIXMSTEP - AUTHCKNAM

 optional default SY - UNAME

 type RFC_CHAR length 12

 TARGET_HOST like BA PIXMSTEP- XPGTGTSYS

 type RFC_CHAR length 32

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

 STEP_NUMBER like BAPIXMJOB_STEPCOUNT

 type RFC_INT4 length 4

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ JOBCOUNT is the ID number of a job. Together with the job
name, the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ EXT_PROGRAM_NAME is the name of the program that is to be
executed by the background processing system.

¶ EXT_PROGRAM_PARAMETERS is an optional parameter that
may be required by the external program at runtime. The
parameters are transferred to the external program at the start
time as character strings.

¶ WAIT_FOR_TERMINATION is an optional parameter, which has
the effect that the background job waits for the external program to
finish before processing the next job step (synchronous job step
processing). This option is activated by default.

¶ TARGET_HOST is the name of the host computer on which the
external program is to be executed.

¶ SAP_USER_NAME is an optional parameter to specify AS ABAP
users with whose authorizations the job is processed.

 47

Parameter (Output) ¶ STEP_NUMBER is the number of job steps.

¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job number

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in AS ABAP
system.

¶ MSG_PROGNAME_MISSING: You did not specify the name of
the external program.

¶ MSG_TARGETHOST_MISSING: You did not specify the target
host.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered a problem.

¶ MSG_EXT_USER_MISSING: External user name is missing. This
is the name of a user in the external job scheduling system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged on to the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.2.4 Closing Job Definitions

Function name BAPI_XBP_JOB_CLOSE

Short description You close a job definition using the BAPI_XBP_JOB_CLOSE function
module.

Enhanced in XBP
3.0

The optional import parameter RECIPIENT passes a new
RECIPIENT structure (see parameter description below).

BAPI object name BackgroundJob

BAPI method name Close

RFC interface function: BAPI_XBP_JOB_CLOSE

importing

 JOBNAME like BAPIXMJOB_JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB_JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR_EXTUSER

 type RFC_CHAR length 16

 TARGET_SERVER like BAPIXM JOB- EXECSERVER

 optional type RFC_CHAR length 20

 RECIPIENT_OBJ structure SWOTOBJID

 optional length 100 number of fields 4

 RECIPIENT structure BAPIXMRECIP

 optional length 249 number of fields 9

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ JOBCOUNT is the ID number of a job. Together with the job
name, the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who called the function.

 48

¶ TARGET_SERVER is an optional parameter with which you can
have the job executed on the AS ABAP instance that you specify.

¶ RECIPIENT_OBJ passes the SWOTOBJID which is a structure
describing the spool list recipient. However, corresponding to the
function module job_close, the format is internal and not simply the
name of the spool list recipient. SWOTOBJID has the following
fields:
OGSYS char 10
OBJTYPE char 10
OBJKEY char 70
DESCRIBE char 10

¶ RECIPIENT passes the BAPIXMRECIP structure that allows the
external scheduler to pass a spool list recipient (internal SAP
Office user, e-mail address, fax number, or distribution list) and
send its attributes in plain text. XBP converts the passed values
into the internal SAP format.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job number.

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in AS ABAP
system.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_EXT_USER_MISSING: Name of external user is missing.
This is the name of a user in the external job scheduling system.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging system returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged on to the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_CHILD_REGISTER_ERROR: An error occurred during child
registration.

7.2.4.1 Fields of the RECIPIENT structure

Name Data type Length Meaning

RECIPIENT CHAR 241 Recipient in plain text. Fax numbers must be
passed in the following format: <ISO country
code><area code><number>, for example DE
06227-747474.

REC_TYPE CHAR 1 Recipient type.

The following recipient types are supported:

B ï SAP Office user name

P ï personal distribution list

C ï shared distribution list

F ï fax number

U ï internet mail

COPY CHAR 1 Send copy

BLIND_COPY CHAR 1 Send blind copy

EXPRESS CHAR 1 Send express

NO_FORWARDING CHAR 1 No forwarding is allowed (for internal recipients

 49

only)

DELIVER CHAR 1 Report send status (for external recipients only).

The following values are possible:

SPACE - use system default

A - always report send status

E - report send status only in case of an error

N - never report send status

NO_PRINT CHAR 1 Printing not allowed

MAILSTATUS CHAR 1 Report status by email (for external recipients
only).

The following values are possible:

SPACE - use system default

A - always send status e-mail

E - send status e-mail only in case of an error

N - never send status e-mail

 50

7.2.5 Reading Job Definitions from the AS ABAP System

Function name BAPI_XBP_JOB_DEFINITION_GET

Short description You use the BAPI_XBP_JOB_DEFINITION_GET function module to
read all the data associated with a job (name, job class, steps, start
conditions etc.).

Enhanced in XBP
3.0

This function module is enhanced to return more information
about :

¶ The job log of a job. Information is returned by the new
export parameter JOBLG_ATTR.

¶ The spool list(s) created by a job. Information is returned
by the new table parameter SPOOL_ATTR.

¶ Spool list recipient of a job in plain text.

The two parameters provide the external scheduler with more
information about the size of the job log or spool list.The function
module BAPI_XBP_JOB_READ is enhanced with the same two
parameters.

If BAPI_XBP_JOB_DEFINITION_GET or BAPI_XBP_JOB_READ
return high values for the fields JOBLG_ATTR-TMSSIZE or
SPOOL_ATTR-TMSSIZE that contain information about the size of
the job log or spool list, it is up to the scheduler to decide which
function module to call ï BAPI_XBP_JOB_JOBLOG_READ or
BAPI_XBP_JOB_SPOOLLIST_READ_20. If either of the output
parameters JOBLG_ATTR or SPOOL_ATTR return empty, then the
external scheduler knows that the desired object does not exist. In
addition, if SPOOL_ATTR-DOCTYP is not óALIô, it is not necessary
to call BAPI_XBP_JOB_SPOOLLIST_READ_20, as this function
only returns ABAP lists.

BAPI object name BackgroundJob

BAPI method name GetDefinition

RFC interface function BAPI_XBP_JOB_DEFINITION_GET

importing

 JOBNAME like BAPIXMJOB_JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB_JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR_EXTUSER

 type RFC_CHAR length 16

exporting

 JOB_HEAD structure BAPIXMJOB

 length 388 number of fields 35

 RETURN structure BAPIRET2

 length 548 number of fields 14

 JOBLG_ATTR structure BAPIXMJOBLOG

 length 38 number of fields 5

 RECIPIENT structure BAPIXMRECIP

 length 249 number of fields 9

tables

 STEP_TBL structure BAPIXMSTEP

 length 980 number of fields 56

 SPOOL_ATTR structure BAPIXMSPOOLID OPTIONAL

 51

 length 364 number of fields 42

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ JOBCOUNT is the ID number of a job. Together with the job
name, the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

Parameter (Output) ¶ JOB_HEAD is job header data (name, job class...).

¶ JOBLG_ATTR returns information about the job log of the job. For
the fields of the parameter, see the Fields of the JOBLG_ATTR
Parameter table below (section 7.2.5.1).

¶ SPOOL_ATTR returns information about the spool list(s) created
by the job. For the fields of the parameter, see the Fields of the
SPOOL_ATTR Parameter table below (section 7.2.5.2).

¶ BAPIRET2 is the return structure used by BAPIs.

¶ RECIPIENT returns the spool list recipient of a job in plain text.

Tables STEP_TBL is a table with job step data.

MessageIDs ¶ MSG_JOBID_MISSING: You have not specified the job ID
number.

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in AS ABAP
system.

¶ MSG_NO_JOBSTEPS: Job does not yet have any steps. This can
occur if a job already exists in the database but no steps have
been assigned to it.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.2.5.1 Fields of the JOBLG_ATTR Structure

Name Data Type Length Meaning

TMSNAME RFC_CHAR 20 TemSe object name
of the job log

TMSCLIENT RFC_CHAR 3 The client, in which
the job log was
created

CHARCO RFC_NUM 4 SAP codepage used
by the job log

LANGU RFC_CHAR 1 Language of the job
log

TMSSIZE RFC_INT4 10 Size of the TemSe
object

 52

7.2.5.2 Fields of the SPOOL_ATTR Structure

Name Data Type Length Meaning

STEPNO RFC_INT4 10 Job step ID number

SPOOLID RFC_INT4 10 Spool request number

CLIENT RFC_CHAR 3 Client for which the
object was generated

NAME RFC_CHAR 6 Spool request: Name

SUFFIX1 RFC_CHAR 4 Spool request: Suffix 1

SUFFIX2 RFC_CHAR 12 Spool request: Suffix 2

OWNER RFC_CHAR 12 User name

FINAL RFC_CHAR 1 Spool request
completed

CRTIME RFC_CHAR 16 The time a spool
request was created

DLTIME RFC_CHAR 16 The expiration date of
the spool request

SPOPAGES RFC_INT2 5 Total number of pages
of the spool request

PRINTTIME RFC_CHAR 1 Spool request to be
printed immediately

DELAFTERPRINT RFC_CHAR 1 Spool request to be
deleted automatically
after printing

DEVICE RFC_CHAR 4 Name of output device

COPIES RFC_NUM 3 Print parameters,
number of copies

PRIORITY RFC_NUM 1 Spool request priority

SPOFORMAT RFC_CHAR 16 Format type

PJTOTAL RFC_INT2 5 Number of output
requests for a spool
request total

PJDONE RFC_INT2 5 The number of
processed output
requests

PJPROBLEM RFC_INT2 5 The number of output
requests with problems

PJERROR RFC_INT2 5 Number of output
requests with errors (no
printout is produced for
these output requests)

WRITER RFC_INT2 5 Flag, if object is being
used (if writer > 0)

SPERROR RFC_CHAR 1 Error status of spool
request

TEMSENAME RFC_CHAR 20 TemSe object name

TEMSEPART RFC_INT2 5 TemSe: the number of

 53

the part of a TemSe
object

TEMSECLIENT RFC_CHAR 3 The client for which the
object was generated

TITLE RFC_CHAR 68 The title of a spool
request

SAPCOVER RFC_CHAR 1 Print SAP cover page

OSCOVER RFC_CHAR 1 Print operating system
cover page

RECEIVER RFC_CHAR 12 Recipient of spool
request

DIVISION RFC_CHAR 12 Department

AUTHORITY RFC_CHAR 12 Value for authorization
check

MODTIME RFC_CHAR 16 The time a spool
request was last
changed

DOCTYP RFC_CHAR 6 Document type

OSNAME RFC_CHAR 50 Spool: Long name of
printers for host spooler

TMSSIZE RFC_INT4 10 Size of spool request in
bytes

TEMSELOCAT RFC_CHAR 1 TemSe: Storage type

LINES RFC_NUM 5 Output lines of a format
type

COLUMNS RFC_NUM 5 Output columns of a
format type

LANGU RFC_CHAR 1 Language key

CODEPAGE RFC_NUM 4 SAP Character Set
Identification

TMSPARTS RFC_INT4 4 The total number of
parts of a TemSe object

7.2.5.3 Field of the Recipient Structure

See section 7.2.4.1.

 54

7.3 Starting a Job
You can start óscheduledô or óinterceptedô jobs using the XBP interface in the AS ABAP
system with the start time types óstart immediatelyô or óas soon as possibleó. To do this,
use the following function modules:

¶ Start job immediately (BAPI_XBP_JOB_START_IMMEDIATELY)

¶ Start job as soon as possible (BAPI_XBP_JOB_START_ASAP)

Besides these function modules, you can use the function BAPI_XBP_EVENT_RAISE
to trigger a background processing event. All jobs with the status óreleasedô waiting for
this event will then be started by the AS ABAP job scheduler.

Also note the new function BAPI_XBP_JOB_HEADER_MODIFY described in chapter
7.5.1 óModifying Job Global Dataô. With this function a start condition can be assigned
to a job with the status óscheduledô. The AS ABAP job scheduler then takes care of
starting the job.

7.3.1 Starting Jobs Immediately

Function name BAPI_XBP_JOB_START_IMMEDIATELY

Short description This function attempts to start a job immediately. If the job cannot be
started immediately because, for example, all background work
processes are busy, the function reports this to its caller. The job is
then started after a delay.

Introduced in XBP
2.0

This function module can now also start jobs with status
óinterceptedô and óreleasedô.

BAPI object name BackgroundJob

BAPI method name StartImmediately

RFC interface function BAPI_XBP_JOB_START_IMMEDIATELY

importing

 JOBNAME like BAPIXMJOB_JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB_JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR_EXTUSER

 type RFC_CHAR length 16

 TARGET_SERVER like BAPIXMJOB - EXECSERVER

 type RFC_CHAR length 20

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ JOBCOUNT is the ID number of a job. Together with the job
name, the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who called the function.

¶ TARGET_SERVER is a parameter with which you can have the
job executed on the AS ABAP instance that you specify.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job number.

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling

 55

system discovered an error.

¶ MSG_NO_IMMEDIATE_START_POSS: Job cannot be started
immediately, since no background work processes are free. Note
that the Job is not released in this case and is therefore not waiting
to run inside the system.

¶ MSG_PRIVILEGE_MISSING: The AS ABAP user with which the
external job management system logged on to the AS ABAP
system, is not authorized to release the job.

¶ MSG_EXT_USER_MISSING: External user name is missing. This
is the name of a user in the external job scheduling system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged on to the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.3.2 Starting Jobs as Soon as Possible
Unlike the BAPI_XBP_JOB_START_IMMEDIATELY function, no error is returned if the
job cannot be started immediately.

Function name BAPI_XBP_JOB_START_ASAP

Short description You use this function to start a job as soon as possible. You can
specify the application server this job should be targeted for.

Introduced in XBP
2.0

As of XBP 2.0 this function module can also start jobs with
status óinterceptedô and óreleasedô.

BAPI object name BackgroundJob

BAPI method name StartAsSoonAsPossible

RFC interface function BAPI_XBP_JOB_START_ASAP

importing

 JOBNAME like BAPIXMJOB_JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB_JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR_EXTUSER

 type RFC_CHAR length 16

 TARGET_SERVER like BAPIXMJOB - EXECSERVER

 type RFC_CHAR length 20

exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ JOBCOUNT is the ID number of a job. Together with the job
name, the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who called the function.

¶ TARGET_SERVER is a parameter with which you can have the
job executed on the AS ABAP instance that you specify.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job ID number

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

 56

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system found an error.

¶ MSG_PRIVILEGE_MISSING: The AS ABAP user with which the
external job management system logged onto the AS ABAP
system is not authorized to release the job.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged on to the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.3.3 Triggering an Event from Outside

Function name BAPI_XBP_EVENT_RAISE

Short description This function module is the XBP-equivalent of BP_EVENT_RAISE.
With this function, you can trigger an event from outside.

Introduced in XBP
2.0

As of XBP 2.0 this function module can also start jobs with
status óinterceptô and óreleasedô.

BAPI object name BackgroundJob

BAPI method name EventRaise

RFC interface function BAPI_XBP_EVENT_RAISE

importing

 EVENTID like BAPIXMLOGR - EVENTID

 type RFC_CHAR length 32

 EVENTPARM like BAPIXMJOB - EVENTPARM optional

 type RFC_CHAR length 64

 EXTERNAL_USER_NAME like BAPIXMJOB- EXTUSER

 type RFC_CHAR length 16

exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

Parameter (Input) ¶ EVENTID is the name of the event.

¶ EVENTPARM are optional parameters of the event.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_EVENT_DOES_NOT_EXIST: Event does not exist in the AS
ABAP system.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged on to the CCMS XMI interface. The activity cannot
therefore be carried out.

 57

¶ MSG_PARAM_MISSING: EventID is missing.

¶ MSG_EVENT_RAISE_FAILED: Event could not be triggered.

7.4 Copying Jobs

Function name BAPI_XBP_JOB_COPY

Short description With this function module you can copy a job or, to be more precise, a
job definition. The job is copied including all definition data, except for
the start conditions.
The copy has the status óscheduledô. A name can be specified for the
target with the parameter target_jobname. If no name is specified, the
target job has the same name as the source job.

With the optional STEP_NUMBER parameter you can specify that not
all steps of the original job should be copied. In this case this
parameter specifies the number of the very first step to start copying
from.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name Copy

RFC interface function BAPI_XBP_JOB_COPY

importing

 SOURCE_JOBCOUNT like BAPIXMJOB- JOBCOUNT

 type RFC_CHAR length 8

 SOURCE_JOBNAME like BAPIXMJOB- JOBNAME

 type RFC_CHAR length 32

 TARGET_JOBNAME like BAPIXMJOB - JOBNAME

 optional default SPACE

 type RFC_CHAR length 32

 EXTERNAL_USER_NAME like BAPIXMLOGR - EXTUSER

 type RFC_CHAR length 16

 STEP_NUMBER like BAPIXMJOB - STEPCOUNT

 optional default 0

 type RFC_INT4 length 4

exporting

 TARGET_JOBCOUNT like BAPIXMJOB- JOBCOUNT

 type RFC_CHAR length 8

 RETURN like BAPIRET2

 length 548 number of fields 14

Parameter (Input)

¶ SOURCE_JOBCOUNT is the ID of the job to be copied.

¶ SOURCE_JOBNAME is the name of the job to be copied.

¶ TARGET_JOBNAME (optional) is the name of the target job. If this
parameter is not specified, the name of the target job is the name
of the source job.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ STEP_NUMBER (optional) specifies the number of the first step to
start copying job data from. Valid values of this parameters are 0,
1, ..., <highest step number>. If 0 and 1 all steps are copied.

Parameter (Output) ¶ TARGET_JOBCOUNT: Job ID number of the newly created job.

¶ BAPIRET2: Return structure for function modules used for BAPIs.

 58

MessageIDs ¶ MSG_JOBNAME_MISSING: Name of the job to be copied is
missing.

¶ MSG_JOBID_MISSING: Job ID number to be copied is missing.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_WRONG_STEP_NUMBER: The value of the parameter
STEP_NUMBER is higher than the number of steps of the jobs.

¶ MSG_CANT_SELECT: Specified source job cannot be selected.

¶ MSG_PRIVILEGE_MISSING : Authorization for copying jobs is
missing.

¶ MSG_PROBLEM_DETECTED : Problems other than those stated
 above.

¶ MSG_JOB_DOES_NOT_EXIST: Specified job does not exist.

 59

7.5 Controlling Jobs
Control functions currently include the modification of job global data, termination of
active jobs, and deletion of obsolete ï not running - jobs.

7.5.1 Modifying Job Global Data
Global job data can be changed with the following function module. For example, a
start condition can be assigned to a job. By defining a start condition, the external
scheduler can give control back to the AS ABAP scheduling mechanism. This is useful
for downtimes of the external scheduler.

Function name BAPI_XBP_JOB_HEADER_MODIFY

Short description This function module is intended for modifying key job parameters,
which are stored in the job header. New values can be set using field
masks.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0

BAPI object name BackgroundJob

BAPI method name

RFC interface function BAPI_XBP_JOB_HEADER_MODIFY

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 JOB_HEADER structure BP20HEAD

 length 385 number of fields 29

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 DONT_RELEASE like BAPIXMINFO - DONOTRELE

 optional type RFC_CHAR length 1

 MASK structure BP20HMSK OPTIONAL

 length 5 number of fields 5

exporting

 RETURN like BAPIRET2

 length 548 number of fields 14

Parameter (Input)

¶ JOBNAME is the name of the job, whose header needs to be
modified.

¶ JOBCOUNT is the ID number of the job whose header needs to be
modified.

¶ JOB_HEADER is the new job header, some fields of which should
replace old ones (see the MASK parameter).

¶ EXTERNAL_USER_NAME: The name of the XBP user.

¶ DONT_RELEASE (optional) specifies whether the job should be
released after the header change.

¶ MASK (optional) is a mask with indicators for each field in header.
If a field is selected, it is expected that JOB_HEADER has a new
value for this field. If a field is left blank, the corresponding field in
the header stays intact.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBNAME_MISSING : Job name missing.

 60

¶ MSG_JOBID_MISSING : Job ID number is missing.

¶ MSG_EXT_USER_MISSING : External user name is missing.

¶ MSG_CANT_LOG : Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON : The external management tool has
not logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_JOB_DOES_NOT_EXIST : Specified job does not exist.

¶ MSG_CANT_READ_JOBDATA : Unable to read job data.

¶ MSG_INVALID_NEW_JOBDATA : Invalid new job data.

¶ MSG_NO_MODIFY_PRIVILEGE_GIVEN : Current user does not
have modify authorization.

¶ MSG_NO_RELEASE_PRIVILEGE_GIVEN : Current user does not
have release authorization.

¶ MSG_CANT_ENQ_JOB : An error occurred while locking job in a
database table.

¶ MSG_CANT_RELEASE_JOB : Cannot release the job.

¶ MSG_JOB_NOSTEPS : There are no steps in the job.

¶ MSG_JOBCOUNT_MISSING : Job ID number is missing.

¶ MSG_INVALID_TARGET : Invalid target server.

¶ MSG_CANT_START_JOB_IMMEDIATELY : Immediate job start
failed.

¶ MSG_INVALID_STARTDATE : Invalid job start date.

¶ MSG_JOB_NOT_MODIFIABLE_ANYMORE : The job is not
modifiable anymore.

7.5.2 Aborting a Job
You can terminate an active job using the function module BAPI_XBP_JOB_ABORT.

Function name BAPI_XBP_JOB_ABORT

Short description Abort a running job.

BAPI object name BackgroundJob

BAPI method name Abort

RFC interface function BAPI_XBP_JOB_ABORT

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ JOBCOUNT and JOBNAME of the job to be aborted.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job ID.

 61

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS ABAP
system.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_JOB_NOT_ACTIVE: The job cannot be terminated since it is
not active.

¶ MSG_NO_ABORT_PRIVILEGE: The AS ABAP user used by the
external job management system to log onto the AS ABAP system
is not authorized to terminate the job.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity cannot
be carried out.

 62

7.5.3 Deleting a Job

Function name BAPI_XBP_JOB_DELETE

Short description Delete a - not running - job.

BAPI object name BackgroundJob

BAPI method
name

Delete

RFC interface function BAPI_XBP_JOB_DELETE

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ JOBCOUNT and JOBNAME of the job to be deleted.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

Parameter
(Output)

BAPIRET2 is the return structure used by BAPIs.

MessageIDs

¶ MSG_JOBID_MISSING: You did not enter a job number.

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS ABAP
system.

¶ MSG_NO_JOB_FOUND: The job existed when the function module
started, but cannot be found anymore for the actual deletion.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_JOB_RUNNING: The job cannot be terminated since it is
currently active.

¶ MSG_NO_DELETE_PRIVILEGE: The AS ABAP user used by the
external job management system to log onto the AS ABAP system is
not authorized to delete the job.

¶ MSG_ CANT_DEL_IN_JOBTABLE: While trying to delete the job
one of the tables that contains job data entries can not be deleted.

¶ MSG_CANT_DEL_JOBLOG: Failed to find or delete the job log of
the specified job. Deleting the job continues.

¶ MSG_PROBLEM_PRED_SUCC: A problem with the handling of the
predecessor or successor of the deleted job occurred.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling system
has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity cannot
be carried out.

¶ MSG_COMMIT_FAILED: Failed to commit changes in database

 63

tables.

7.6 Modifying Steps in a Job
There are two functions which you can use to modify job steps containing ABAP or external

programs, namely:

¶ BAPI_XBP_ABAP_STEP_MODIFY
to modify a job step containing an ABAP program

and

¶ BAPI_XBP_JOB_EXT_STEP_MODIFY
to modify a job step containing an external program.

7.6.1 Modifying a Job Step Containing an ABAP Program

Function name BAPI_XBP_JOB_ABAP_STEP_MODIFY

Short description Modify a job step containing an ABAP program

Introduced in XBP
2.0

New optional structures for the specification of all print and
archive parameters ALLPRIPAR and ALLARCPAR. They
complement the old parameters PRINT_PARAMETERS and
ARCHIVE_PARAMETERS.

In addition, two new masks have been introduced:
PRINT_MASK and ARCH_MASK (see description below).

BAPI object name BackgroundJob

BAPI method name ModifyABAPStep

RFC interface function BAPI_XBP_JOB_ABAP_STEP_MODIFY

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 ABAP_PROGRAM_NAME like BAPIXMREP- REPORTID

 type RFC_CHAR length 40

 ABAP_VARIANT_NAME like BAPIXMREP - VARIANTNAM

 optional default SPACE

 type RFC_CHAR length 14

 SAP_USER_NAME like BAPIXMSTEP - AUTHCKNAM

 optional default SY - UNAME

 type RFC_CHAR length 12

 LANGUAGE like BAPIXMSTEP - LANGUAGE

 optional default SY - LANGU

 type LANG length 1

 PRINT_PARAMETERS structure BAPIXMPRNT 12

 optional

 length 48 number of fields 12

 ARCHIVE_PARAMETERS structure BAPIXMARCH

 optional default SPACE

 length 23 number of fields 3

 STEP_NUMBER like BAPIXMJOB - STEPCOUNT

 type RFC_INT4 length 10

ALLPRIPAR structure BAPIPRIPAR

 64

 optional defa ult SPACE

 length 176 number of fields 22

 ALLARCPAR structure BAPIARCPAR

 optional default SPACE

 length 328 number of fields 18

 PRINT_MASK structure PRIMASK optional

 length 22 number of fields 22

 ARCH_MASK structure ARCMASK optional

 length 18 number of fields 18

 exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ JOBCOUNT is the ID number of a job. Together with the job
name, the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler called the function.

¶ ABAP_PROGRAM_NAME is the name of the ABAP program that
is to be executed in this job step. The program must be type 1
(interactively executable).

¶ ABAP_VARIANT_NAME is an optional parameter to determine
variants for the specified ABAP report.

¶ SAP_USER_NAME is an optional parameter to specify an AS
ABAP user with whose authorizations the job is processed

¶ LANGUAGE is an optional parameter to enter the one-digit SAP
language key for this job step. For more information see the
Language Key Mapping section in the appendix.

¶ PRINT_PARAMETERS (obsolete, use ALLPRIPAR).

¶ ARCHIVE_PARAMETERS (obsolete, use ALLARCPAR).

¶ STEP_NUMBER specifies the number signifying the position of a
job step in the sequence of steps in a background job that you
want to modify. The second job step in a background has number
2.

¶ ALLPRIPAR and ALLARCPAR are optional structures for the
specification of all print and archive parameters and complement
the old parameters PRINT_PARAMETERS and
ARCHIVE_PARAMETERS. If ALLPRIPAR and ALLARCPAR are
initial, PRINT_PARAMETERS and ARCHIVE_PARAMETERS are
evaluated. If ALLPRIPAR and ALLARCPAR contain a value, this
value is used.

ALLARCPAR is a set of archive parameters used for
steps consisting of an ABAP program. The ALLARCPAR
parameter contains the whole set of archive parameters
that can be used by an ABAP program.

ALLPRIPAR is a set of print parameters used for steps
consisting of an ABAP program. The ALLPRIPAR

parameter contains the whole set of print parameters
that can be used by an ABAP program.

¶ PRINT_MASK (optional) refers to ALLPRIPAR and ARCH_MASK
(optional) refers to ALLARCPAR. PRINT_MASK and
ARCH_MASK were introduced for the following reasons:

If, for example, a field of the parameter ALLPRIPAR is
initial, it is impossible to determine, whether the caller

 65

wants to overwrite the existing value of the
corresponding print parameter with the initial value or
whether he wants to leave the existing value untouched.
Therefore, the parameter PRINT_MASK was introduced.
It contains 22 fields of the same name as the fields of
ALLPRIPAR, but all are simply indicator fields of length
1.

For example, PRINT_MASK-PRTXT = óXô means that the
existing value of this print parameter should be
overwritten with the value in ALLPRIPAR-PRTXT. If an
indicator field is blank, the corresponding print parameter
remains untouched. If the parameter ALLPRIPAR is
initial, the function evaluates the old parameters
PRINT_PARAMETERS. If a non-initial parameter
ALLPRIPAR is passed by the caller, the parameter
PRINT_MASK must not be initial either (see
MSG_MASK_ERROR).

The above example applies also to the pair ALLARCPAR and
ARCH_MASK (optional). If ALLARCPAR is initial, the function
evaluates the old parameter ARCHIVE_PARAMETERS.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job number.

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_STEP_COUNT_MISSING: You did not enter the number of
the step to be modified.

¶ MSG_INVALID_STEP_COUNT: Step number invalid, that is, there
is no step with the given number.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_MASK_ERROR: This message refers to ALLPRIPAR and
ALLARCPAR: If ALLPRIPAR or ALLARCPAR is not initial, but the
corresponding mask is initial, this message is returned.

¶ MSG_PROGRAM_MISSING: The ABAP program name is
missing.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_NO_ARCHIVE_INFO: Required fields in archive parameters
are missing.

¶ MSG_INVALID_PRINT_PARAMS: One or more print parameters
are incorrect.

¶ MSG_INVALID_ARCHIVE_PARAMS: One or more archive
parameters are incorrect.

 66

7.6.2 Modifying a Job Step Containing an External Program

Function name BAPI_XBP_JOB_EXT_STEP_MODIFY

Short description To modify a job step containing an external program.

BAPI object name BackgroundJob

BAPI method name ModifyExternalStep

RFC interface function BAPI_XBP_JOB_EXT_STEP_MODIFY

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 EXT_PROGRAM_NAME like BAPIXMSTEP- PROGRAM

 type RFC_CHAR length 128

 EXT_PROGRAM_PARAMETERS like BAPIXMSTEP -

 PARAMETER

 optional default SPACE

 type RFC_CHAR length 255

 WAIT_FOR_TERMINATION like BAPIXMAUX - CHAR1

 optional default 'X'

 type RFC_CHAR length 1

 TARGET_HOST like BAPIXMSTEP - XPGTGTSYS

 type RFC_CHAR length 32

 SAP_USER_NAME like BAPIXMSTEP - AUTHCKNAM

 optional default SY - UNAME

 type RFC_CHAR length 12

 STEP_NUMBER like BAPIXMJOB - STEPCOUNT

 type RFC_INT4 length 4

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ JOBNAME is the name of a job.

¶ JOBCOUNT is the ID number of a job. Together with the job
name, the job number identifies the job uniquely.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ EXT_PROGRAM_NAME is the name of the program that is to be
executed by the background processing system.

¶ EXT_PROGRAM_PARAMETERS is an optional parameter that
may be required by the external program at runtime. The
parameters are transferred to the external program at the start
time as character strings.

¶ WAIT_FOR_TERMINATION is an optional parameter, which has
the effect that the background job waits for the external program to
finish before processing the next job step (synchronous job step
processing). This option is activated by default.

¶ TARGET_HOST is the name of the host computer on which the
external program is to be executed.

¶ SAP_USER_NAME is an optional parameter to specify AS ABAP
users with whose authorizations the job is processed.

¶ STEP_NUMBER specifies the number that displays the position of
a job step in the sequence of steps in a background job that you

 67

want to modify. The second job step in a background has number
2.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not enter a job number.

¶ MSG_JOBNAME_MISSING: You did not enter a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_STEP_COUNT_MISSING: You did not specify the number
of the step to be modified

¶ MSG_INVALID_STEP_COUNT: The step number is invalid, that
is, there is no step with the given number.

¶ MSG_PROGNAME_MISSING: The name of the external program
is missing.

¶ MSG_TARGETHOST_MISSING: The name of the target host is
missing.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 68

7.7 Adding, Changing, and Deleting Job Steps via
XMI

7.7.1 Adding a Step to a Job via XMI

Function name BAPI_XBP_ADD_JOB_STEP

Short description Adds and inserts a step to a job via XMI.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface function BAPI_XBP_ADD_JOB_STEP

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 STEP structure BPJOBSTEP

 optional default SPACE

 length 498 number of fields 17

 STEP_NUM like BAPIXMJOB - STEPCOUNT

 type RFC_INT4 length 4

 EXTERNAL_USER_NAME LIKE BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 ALLPRIPAR structure PRI_ PARAMS

 optional default SPACE

 length 196 number of fields 24

 ALLARCPAR structure ARC_PARAMS

 optional default SPACE

 length 332 number of fields 19

Exporting

 STEP_NUMBER like BAPIXMJOB - STEPCOUNT

 type RFC_INT4 length 4

 RETURN structure BAPIRET2

 length 548 number of field 14

Parameter (Input)

¶ JOBNAME is the name of the job to which a job step is added.

¶ JOBCOUNT is the ID number of the job to which a job step is
added.

¶ STEP is a definition of the step to be added or inserted. This
parameter has a field TYP for distinguishing between types of
steps. Valid values of this field are óAô for ABAP program, óCô for
external commands, and óXô for external programs.

¶ STEP_NUM is the position where a new step should be inserted.
Use 0 (zero), if you want to add a step at the end of existing steps.

¶ EXTERNAL_USER_NAME is the name of the external user that is
used for XMI logging.

¶ ALLPRIPAR (optional) is a set of print parameters, which is only
used if the new step consists of an ABAP program. The
ALLPRIPAR parameter contains the whole set of print parameters
that may be used by an ABAP program.

¶ ALLARCPAR (optional) is a set of archive parameters, which is

 69

only used if the new step consists of an ABAP program. The
ALLARCPAR parameter contains the whole set of archive
parameters that may be used by an ABAP program.

Parameter (Output) ¶ STEP_NUMBER is the number that displays the position of the
inserted or added job step.

¶ RETURN is the return code of the function module. If no error
occurs, the return code is zero.

Detailed function

Description

This function module is for adding and inserting a step to a job. In the
case of adding a step, the step will be added at the end of all job
steps. In the case of inserting a step, it will be placed at the position
STEP_NUM and the rest of steps will be moved down. If the job does
not have any steps yet, the new step will be the first step of this job.

This function module operates on all types of job steps: ABAP
program, external command, and external program. For ABAP
programs one can specify print and archive parameters. If these
optional parameters are skipped, the function module uses default
print and archive parameters, obtained from the function module
GET_PRINT_PARAMETERS.

Example:

Adding or inserting an ABAP program:

step - typ = 'A'.

step - program = '<ABAP program name>'.

step - parameter = '<Variant name>'.

step - language = '<Language>'.

step - authcknam = '<User name>'.

Adding or inserting an external command:

step - typ = 'C'.

step - program = '<Command name>'.

step - opsystem = '<Operating system>'.

step - parameter = '<Command parameters>'.

step - xpgtgtsys = '<XPG target system>'.

step - language = '<Language>'.

step - authcknam = '<User name>'.

step - termcntl = 'C' .

Adding or inserting an external program:

step - typ = 'X'.

step - program = '<External program name>'.

step - xpgtgtsys = '<XPG target system>'.

step - language = '<language>'.

step - authcknam = '<User name>'.

step - termcntl = 'C'.

MessageIDs ¶ MSG_JOBID_MISSING: You did not specify a job number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is

 70

missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_WRONG_STEP_TYPE: The type of step is wrong.

¶ MSG_NO_ARCHIVE_INFO: Required fields in archive parameters
are missing.

¶ MSG_INVALID_PRINT_PARAMS: One or more print parameters
are incorrect.

¶ MSG_INVALID_ARCHIVE_PARAMS: One or more archive
parameters are incorrect.

¶ MSG_CANNOT_GET_PRIARC_PARAMS: Retrieving new print
and archive parameters failed.

¶ MSG_CANNOT_READ_JOB: Reading information about the
specified jobs failed.

¶ MSG_CANNOT_MODIFY_JOB: Error while writing new data
about the specified job into AS ABAP databases.

¶ MSG_ERROR_MODIFYING_WORKTABLE: Error occurred while
modifying worktable.

¶ MSG_WRONG_STEP_NUMBER: There are no steps with the
specified step number.

 71

7.7.2 Changing and Deleting a Job Step via XMI

Function name BAPI_XBP_MODIFY_JOB_STEP

Short description Changes and deletes a step of a job via XMI.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface function BAPI_XBP_MODIFY_JOB_STEP

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 STEP structure BPJOBSTEP

 optional default SPACE

 length 498, number of fields 17

 STEP_NUM like BAPIXMJOB - STEPCOUNT

 type RFC_INT4 length 4

 DELETE like BAPIXMINFO - DELETESTEP

 type RFC_CHAR length 1

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 ALLPRIPAR structure PRI_PARAMS

 optional defau lt SPACE

 length 196 number of fields 24

 ALLARCPAR structure ARC_PARAMS

 optional default SPACE

 length 332 number of fields 19

 PRINT_MASK structure PPR_MASK

 optional default SPACE

 length 22 number of fields 22

 ARCH_MASK structu re APR_MASK

 optional default SPACE

 length 18 number of fields 18

 exporting

 STEP_NUMBER LIKE BAPIXMJOB- STEPCOUNT

 type RFC_INT4 length 4

 RETURN LIKE BAPIRET2 STRUCTURE

 length 548 number of fields 14

Parameter (Input)

¶ JOBNAME is the name of the job whose step is to be changed or
deleted.

¶ JOBCOUNT is the ID number of the job whose step is to be
changed or deleted.

¶ STEP defines the new step. This parameter has a field TYP for
distinguishing between types of steps. Valid values for this field
are óAô for ABAP program, óCô for external commands, and óXô for
external programs. The STEP parameter is not evaluated, if this
function module is used for deleting a step.

¶ STEP_NUM is the number of the step to be changed or deleted.

¶ DELETE is an indicator that specifies if the step should be changed
or deleted. If the indicator value is initial, the step is changed.

 72

¶ EXTERNAL_USER_NAME is the name of the external user that is
used for XMI logging.

¶ ALLPRIPAR (optional) is a set of print parameters used only if the
new step consists of an ABAP program. The ALLPRIPAR

parameter contains the whole set of print parameters that can be
used by an ABAP program. See also PRINT_MASK .

¶ ALLARCPAR (optional) is a set of archive parameters used only, if
the new step consists of an ABAP program. The ALLARCPAR
parameter contains the whole set of archive parameters that can
be used by an ABAP program. See also ARCH_MASK .

¶ PRINT_MASK (optional) is a mask for print parameters. By setting
a value in a mask field, you specify that there is a new field value
in the ALLPRIPAR parameter. By leaving a field blank you can
specify that the corresponding field should be left intact in the
ALLPRIPAR parameter.

¶ PRINT_MASK refers to ALLPRIPAR and ARCH_MASK refers to
ALLARCPAR. PRINT_MASK and ARCH_MASK were introduced
for the following reasons:

If, for example, a field of the parameter ALLPRIPAR is
initial, it is impossible to determine whether the caller
wants to overwrite the existing value of the
corresponding print parameter with the initial value or
whether he wants to leave the existing value untouched.
Therefore, the parameter PRINT_MASK was introduced.
It contains 22 fields of the same name as the fields of
ALLPRIPAR, but all are simply indicator fields of length
1.

For example, PRINT_MASK-PRTXT = óXô means that the
existing value of this print parameter should be
overwritten with the value in ALLPRIPAR-PRTXT. If an
indicator field is blank, the corresponding print parameter
remains untouched.

If a non-initial parameter ALLPRIPAR is passed by the
caller, the parameter PRINT_MASK must not be initial
either.

The same applies to the pair ALLARCPAR and
ARCH_MASK. If the parameter ALLPRIPAR is initial, the
function evaluates the old parameters
PRINT_PARAMETERS.

If ALLARCPAR is initial, the function evaluates the old
parameters ARCHIVE_PARAMETERS.

¶ ARCH_MASK (optional) is a mask for archive parameters. By
setting a value in a mask field, you specify that there is a new field
value in the ALLARCPAR parameter. By leaving a field blank you
can specify that the corresponding field should be left intact in the
ALLARCPAR parameter.

Parameter (Output) ¶ STEP_NUMBER is the number of the changed or deleted step.

¶ RETURN is the return code of the function module. If no error
occurs, the return code is zero.

Detailed function

description

This function module is for changing and deleting a step of a job. In the
case of changing a step, the step does not change its number, but its
content is replaced by a new one. This function module operates on all
types of job steps: ABAP program, external command, and external

 73

program. For ABAP programs one can specify print and archive
parameters. In the case these optional parameters are skipped, the
function module uses default print and archive parameters obtained
from the GET_PRINT_PARAMETERS function module.

In the case of deleting a step, the step is removed and the rest of the
job steps are moved up. If the job has only one step, then deleting
fails.

Example

Changing step N to an ABAP program:

step-typ = 'A'.

step-program = '<ABAP program name>'.

step-parameter = '<Variant name>'.

step-language = '<Language>'.

step-authcknam = '<User name>'.

step_num = <N>.

Changing step N to an external command:

step-typ = 'C'.

step-program = '<Command name>'.

step-opsystem = '<Operating system>'.

step-parameter = '<Command parameters>'.

step-xpgtgtsys = '<XPG target system>'.

step-language = '<Language>'.

step-authcknam = '<User name>'.

step_num = <N>.

step-termcntl = 'C'.

Changing step N to an external program:

step-typ = 'X'.

step-program = '<External program name>'.

step-xpgtgtsys = '<XPG target system>'.

step-language = '<language>'.

step-authcknam = '<User name>'.

step_num = <N>.

step-termcntl = 'C'.

MessageIDs ¶ MSG_JOBID_MISSING: You did not specify a job number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity

 74

cannot be carried out.

¶ MSG_WRONG_STEP_TYPE: The type of step is wrong.

¶ MSG_NO_ARCHIVE_INFO: Required fields in archive parameters
are missing.

¶ MSG_INVALID_PRINT_PARAMS: One or more print parameters
are incorrect.

¶ MSG_INVALID_ARCHIVE_PARAMS: One or more archive
parameters are incorrect.

¶ MSG_CANNOT_GET_PRIARC_PARAMS: Retrieving new print
and archive parameters failed.

¶ MSG_CANNOT_READ_JOB: Reading information about the
specified jobs failed.

¶ MSG_CANNOT_MODIFY_JOB: Error while writing new data
about the specified job into AS ABAP databases.

¶ MSG_ERROR_MODIFYING_WORKTABLE: Error occurred while
modifying worktable.

¶ MSG_ERROR_READING_WORKTABLE: Error occurred while
reading worktable.

¶ MSG_WRONG_STEP_NUMBER: There are no steps with the
specified step number.

¶ MSG_NO_STEP_INFO: Step modification is impossible, because
no step information is provided.

 75

7.8 Intercepting and Confirming Jobs
Interception is a new feature in XBP 2.0. Job interception means that at the moment,
when the start condition of the job is fulfilled the job is set back to the status óscheduledô
and receives a special attribute. By calling a new XBP function the external scheduler
can receive a list of all intercepted jobs and take control over such jobs.

It is not intended to subject jobs to interception in general. The user can define criteria
in the new table TBCICPT1 (client, job name, job-creator including wild cards), and only
the jobs that match these intercept criteria, are intercepted. For instance, a table entry
(100, babu* , *) means that all jobs created in client 100 by users beginning with babu
are intercepted.

Example for the use of interception:

The administrator might want to intercept all jobs of certain users or with certain
job names on weekends when long-running and time critical batch jobs are
executed. In this case interception provides dynamic job prioritization.

In XBP 3.0 itôs also possible to define complex interception criteria using the Criteria
Manager Interface.

You can find detailed information on interception in Intercepting Jobs on page 16.

7.8.1 Getting Intercepted Jobs
In order to find out if there are intercepted jobs, the external scheduler calls a function
at short intervals (BAPI_XBP_GET_INTERCEPTED_JOBS). To prevent this function
from returning the same intercepted jobs again and again, the scheduler can confirm a
list of intercepted jobs. Confirmation means that the scheduler informs the AS ABAP
system that it already knows these intercepted jobs, and that a subsequent call of
BAPI_XBP_GET_INTERCEPTED_JOBS does not have to return these jobs again. The
confirmation of a list of intercepted jobs is done by calling
BAPI_XBP_SPECIAL_CONFIRM_JOB, which is explained in the following section.

Function name BAPI_XBP_GET_INTERCEPTED_JOBS

Short description This function module retrieves jobs which have status INTERCEPTED.
The list of returned jobs may contain all intercepted jobs, or only those
ones, which have not been confirmed with one or more special
confirmations.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_GET_INTERCEPTED_JOBS

Importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 SELECTION type CHAR2

 optional DEFAULT 'AL'

 type RFC_CHAR length 2

 CLIENT like TBTCO_AUTHCKMAN optional

 MORE_INFO like BTCH0000 - CHAR1 optional

Exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

 76

Tables

 JOBINFO like BPICPINFO

 length 54 number of fields 4

 JOBINFO2 like BPICPINF1

 le ngth 120 number of fields 10

Detailed function

description

This function module retrieves jobs that have the status
INTERCEPTED. It is not necessary to retrieve the same jobs again
and again. To reduce the list of returned jobs to the jobs that are not
known to the caller, confirmation is used.

The list of returned jobs may contain all intercepted jobs, or only those
jobs that have not been confirmed with one or more confirmations. To
specify that confirmation should be taken into account, the optional
case-insensitive SELECTION parameter is used.

Parameter (Input)

¶ EXTERNAL_USER_NAME: The name of the XBP user.

¶ SELECTION (optional): This parameter specifies what kind of
confirmation should be taken into account when selecting
intercepted jobs.

 1. óALô (default) ï return all intercepted jobs regardless what
 confirmation they have.

 2. óNGô ï return only those intercepted jobs that do NOT have
 general confirmation.

 3. óNSô ï return only those intercepted jobs that were NOT
 confirmed as intercepted.

 4. óNCô ï return only those intercepted jobs that do NOT have
 any confirmation.

 To make a special confirmation for an intercepted job, use the
 BAPI_XBP_SPECIAL_CONFIRM_JOB function module with
 CONFIRMATION = óiô.

 To make a general confirmation for an intercepted job, use the
 BAPI_XBP_CONFIRM_JOB function module.

¶ CLIENT (optional): The client, on which jobs should be selected. If
no client is specified, jobs from all clients are retrieved.

¶ MORE_INFO (optional): This is an optional flag specifying the
function to retrieve more detailed information on the selected jobs.
When this flag is left blank, then the JOBINFO table is used;
otherwise JOBINFO2

Parameter (Output) ¶ BAPIRET2 is the standard return structure containing return
values of the function.

Tables ¶ JOBINFO is the table that contains intercepted jobs.

¶ JOBINFO2 is the table that contains more detailed information on
intercepted jobs.

MessageIDs ¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_WRONG_CLIENT: Wrong client number

¶ MSG_WRONG_SELECTION_PAR: Inconsistent selection
parameters.

 77

7.8.2 Confirming Jobs
There are three function modules for job selection:

¶ BAPI_XBP_JOB_SELECT for general job selection

¶ BAPI_XBP_JOB_CHILDREN_GET for child job selection

¶ BAPI_XBP_GET_INTERCEPTED_JOBS for the selection of intercepted jobs

These functions are normally called at intervals by the external job scheduler and
return general jobs, child jobs, or intercepted jobs, respectively. If you do not want the
system to return the same jobs over and over again, you can confirm them.
Confirmation means that the scheduler informs the AS ABAP system that it already
knows these jobs, and that a subsequent call of the selection function module does not
have to return these jobs again.

There are two types of confirmation:

¶ General: With the general confirmation the job scheduler confirms, that it knows a
job in general. Jobs are generally confirmed with BAPI_XBP_CONFIRM_JOB.
When you use BAPI_XBP_JOB_SELECT the generally confirmed jobs are not
returned if the corresponding indicator is set.

¶ Special: With the special confirmation the job scheduler confirms, that it knows that
a job has certain characteristics. Child jobs and intercepted jobs are confirmed with
BAPI_XBP_SPECIAL_CONFIRM_JOB. When you use
BAPI_XBP_JOB_CHILDREN_GET or BAPI_XBP_GET_INTERCEPTED_JOBS,
the specially confirmed jobs are not returned again if the corresponding indicator is
set.

However, in some situations (such as after a breakdown) it might be useful to get a
list of all intercepted or child jobs (including the confirmed ones). This function has
a special indicator for this purpose.

7.8.2.1 Confirming Jobs Generally

Function name BAPI_XBP_CONFIRM_JOB

Short description This function module allows the callers to set general confirmation for
a list of jobs.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_CONFIRM_JOB

Importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

Exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Tables

 JOBS structure BAPIXMJOBS (jobname, jobcount)

 length 40 number of fields 2

Detailed function

description

This function module allows the caller (external scheduler) to confirm
jobs that are already known to it. All the jobs that were confirmed this
way will not be returned again when a new call to
BAPI_XBP_JOB_SELECT is performed.

Parameter (Input) ¶ EXTERNAL_USER_NAME: The name of the XBP user.

 78

Parameter (Output) ¶ BAPIRET2 is the standard return structure containing return
values of the function.

Tables ¶ The JOBS table contains the jobs for which general confirmation
should be set. After BAPI_XBP_CONFIRM_JOB is called, the
JOBS table contains only those jobs, for which this operation
failed, perhaps because the job was not intercepted, the job was
deleted, or an internal error occurred.

MessageIDs ¶ MSG_EXT_USER_MISSING: External user name is missing.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_JOB_CONFIRMATION_FAILED: Not all jobs were
confirmed. The JOBS table contains the jobs that have not been
confirmed.

7.8.2.2 Performing a Special Confirmation on a Job

Child jobs and intercepted jobs are confirmed with
BAPI_XBP_SPECIAL_CONFIRM_JOB. When you subsequently use
BAPI_XBP_JOB_CHILDREN_GET or BAPI_XBP_GET_INTERCEPTED_JOBS, the
specially confirmed jobs are not returned again.

However, in some situations (such as after a breakdown) it might be useful to get a list
of all intercepted or child jobs (including the confirmed ones). For this purpose, this
function has the special indicator CONFIRMATION.

Function name BAPI_XBP_SPECIAL_CONFIRM_JOB

Short description This function module allows the caller to set special types of
confirmation for a list of jobs.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_SPECIAL_CONFIRM_JOB

Importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 CONFIRMATION TYPE CHAR1

Exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Tables

 JOBS structure BAPIXMJOBS (jobn ame, jobcount)

 length 40.number of fields 2

Detailed function
description

With this function module the external scheduler confirms jobs, of
which he knows certain special characteristics (parent/child,
intercepted). All jobs confirmed this way will not be returned again
when jobs with this characteristic are requested. To specify the type of
confirmation case-insensitive parameter CONFIRMATION should be
used.

 79

Parameter (Input)

¶ EXTERNAL_USER_NAME: The name of the XBP user.

¶ CONFIRMATION: Currently, the following types of special
confirmation are available:

 1. Confirmation of intercepted jobs: CONFIRMATION = ôiô.

 2. Confirmation of child jobs: CONFIRMATION = ôcô.

¶ The JOBS table contains the jobs for which confirmation should be
set. After BAPI_XBP_SPECIAL_CONFIRM_JOB is called, the
JOBS table contains only those jobs, for which this operation
failed, perhaps because the job was deleted or an internal error
occurred.

Parameter (Output) ¶ BAPIRET2 is the standard return structure containing return
values of the function.

Tables ¶ JOBS is a table with jobs, for which confirmation should be set.

MessageIDs ¶ MSG_EXT_USER_MISSING: External user name is missing.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PROBLEM_DETECTED: Impossible to find out whether
special functionality is turned on.

¶ MSG_INTERCEPTION_INACTIVE: Interception functionality is
turned off.

¶ MSG_PARENTCHILD_INACTIVE: Parent/child functionality is
turned off.

¶ MSG_JOB_CONFIRMATION_FAILED: Not all jobs were
confirmed. The JOBS table contains the jobs that have not been
confirmed.

¶ MSG_WRONG_CONFIRMATION_TYPE: The type of confirmation
is wrong.

7.8.3 Modifying the Criteria Table for Interception
With the following function module the user can add/modify the table with the intercept
criteria. Only jobs matching these criteria will be intercepted.

Function name BAPI_XBP_MODIFY_CRITERIA_TABLE

Short description This function module is for modifying the criteria table (TBCICPT1) by
replacing or updating its content with the content of the
TBCICPT_TABLE table and returning the current content of the criteria
table. With the APPEND indicator you can specify whether the content
of the criteria table is replaced with the new content or the new
information is appended at the end.

If the table with new criteria is initial (empty) all the data from the
TBCICPT1 table is deleted. When returning the content of the criteria
table, the CONTENTS indicator should be set. In this case the function
module returns a copy of the criteria table in TBCICPT_TABLE.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface function BAPI_XBP_MODIFY_CRITERIA_TABLE

 80

importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 APPEND type CHAR1 DEFAULT 'X'

 CONTENTS type CHAR1 default SPACE

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

tables

 TBCICPT_TABLE structure TBCICPT1

 length 47 number of fields 3

Parameter (Input)

¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ APPEND is an indicator that determines whether the new criteria
should be appended ('X') or replace old content (space).

¶ CONTENTS is an indicator that specifies that the current call is a
request for the contents of the criteria table. In this case, the
TBCICPT_TABLE parameter is used for returning a copy of the
criteria table.

Parameter (Output) BAPIRET2 is the standard return structure containing return values of
the function.

Table TBCICPT_TABLE is the table with new criteria information.

MessageIDs ¶ MSG_DELETE_LINE_ERROR: Error deleting a line from the
TBCICPT1 table.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 81

7.9 Finding, Controlling, and Modifying Job Monitor
Data

Using an external job management system, you can also monitor AS ABAP jobs,
display job logs and spool lists and determine the parent/child relations. This can be
done using the function modules below:

7.9.1 Determining the Status of a Job

Function name BAPI_XBP_JOB_STATUS_GET

Short description Determines the status of a job by reading AS ABAP information on the
job.

Introduced in XBP
2.0

The new parameter HAS_CHILD has been added (see
description below).

In addition, the function can return now the status
óInterceptedô.

BAPI object name BackgroundJob

BAPI method name GetStatus

RFC interface function BAPI_XBP_JOB_STATUS_GET

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

 STATUS like BAPIXMJOB - STATUS

 type RFC_CHAR length 1

 HAS_CHILD like BAPIXMINFO - HAS_CHILD

 type RFC_CHAR length 1

Parameter (Input) ¶ JOBNAME is the name of the job whose status is to be determined.

¶ JOBCOUNT is the ID number of the job whose status is to be
determined.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who called the function.

Parameter (Output) ¶ STATUS is the status of a job with the following possible values:
'R' - active
óIô - intercepted
óY' - ready
'P' - scheduled
'S' - released
'A' - cancelled
'F' - finished

¶ BAPIRET2 is the return structure used by BAPIs.

¶ HAS_CHILD returns the information that specifies whether a job is
a child, a parent, both, or neither. This is the parent/child
information. The following values are possible as parent/child-
relation:

 82

óPô ï job is parent/has children
óCô ï job is child
óBô ï (óbothô) job is parent and child
ó ó - (blank) job is neither parent nor child

This information might change during the runtime of a
job, because children are created at runtime. Before
their creation they are not known to the system.

MessageIDs ¶ MSG_JOBID_MISSING: You did not specify a job ID number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PARENT_CHILD_INCONSISTENCY: Inconsistency in the
data found concerning parent/child-relation.

 83

7.9.2 Determining the Status of a Job List

Function name BAPI_XBP_JOBLIST_STATUS_GET

Short description Determines the status of a list of jobs by reading AS ABAP information
on all jobs.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name GetAllStatus

RFC interface function BAPI_XBP_JOBLIST_STATUS_GET

importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

tables

 JOBLIST structure BAPIXMINIFO

 length 42 number of fields 4

 (fields: jobname 32, jobcount 8, status 1,

 has_child 1)

Parameter (Input) ¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ JOBLIST is a table containing the job status consisting of
JOBNAME, JOBCOUNT, STATUS and HAS_CHILD.

 STATUS is the status of a job with the following possible values:
 'R' - active
 óIô - intercepted
 'Y' - ready
 'P' - scheduled
 'S' - released
 'A' - terminated
 'F' - finished
 'N' - Job does not exist

 Possible values for the parent/child-relation HAS_CHILD:
 óPô ï job is parent/has children
 óCô ï job is child
 óBô ï (óbothô) job is parent and child
 ó ó - (blank) job is neither parent nor child

This table is used both for input and output. For input, it requires the
parameters JOBNAME and JOBCOUNT.

MessageIDs ¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

 84

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.9.3 Reading Job Logs
This function has been enhanced after releasing XBP 2.0. The enhanced version
contains a new optional importing parameter PROT_NEW and a new optional table
JOB_PROTOCOL_NEW. With the enhanced version, it is possible to read the
message type of a job log entry. See also note 603919.

The enhanced version has been released with the following support packages:

46B SAPKB46B52

46C SAPKB46C44

46D SAPKB46D33

6.10 SAPKB61032

6.20 SAPKB62021

In XBP 3.0, before reading job logs or spool lists, the external scheduler can obtain
additional information about the job log or the spool list size. It can get this information
by calling BAPI_XBP_JOB_DEFINITION_GET or BAPI_XBP_JOB_READ which are
enhanced with the additional export parameters JOBLG_ATTR and SPOOL_ATTR in
XBP 3.0. For more information about the enhancements, see the description of the
respective function module.

If BAPI_XBP_JOB_DEFINITION_GET or BAPI_XBP_JOB_READ return high values
for the fields JOBLG_ATTR-TMSSIZE or SPOOL_ATTR-TMSSIZE, it is up to the
scheduler to decide which function module to call ï BAPI_XBP_JOB_JOBLOG_READ
or BAPI_XBP_JOB_SPOOLLIST_READ_20. If either of the output parameters
JOBLG_ATTR or SPOOL_ATTR return empty, then the external scheduler knows that
the desired object does not exist. In addition, if SPOOL_ATTR-DOCTYP is not óALIô, it
is not necessary to call BAPI_XBP_JOB_SPOOLLIST_READ_20, as this function only
returns ABAP lists.

Also new with XBP 3.0: With the parameter LINES and DIRECTION it is possible to
read the first or last n lines of a job log. This functionality is generally available as of
SAPKB70018. If you want to use this functionality as of SAPKB70014, you have to
apply note 1167524.

7.9.4 Return joblog in text format

Function name BAPI_XBP_JOB_JOBLOG_READ

Short description Get job log (also called job protocol) for a particular job.

Enhancements See intro text to this section

BAPI object name BackgroundJob

BAPI method name ReadJoblog

RFC interface function BAPI_XBP_JOB_JOBLOG_READ

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 PROT_NEW like BTCH0000 - CHAR1 (optional)

 type RFC_CHAR length 1

 LINES TYPE BTCINT4 (optional)

 DIRECTION TYPE BTCCHAR1 (optional)

 85

exporting

 RETURN structure BAPIRET2 l

 length 552 number of fields 14

tables

 JOB_PROTOCOL structure BAPIXMPROT

 length 572 number of fields 14

 JOB_PROTOCOL_NEW structure TBTC5 (optional)

 length 573 number of fields 15

Parameter (Input) ¶ JOBNAME is the name of the job whose job log should be
retrieved.

¶ JOBCOUNT is the job ID number of the job whose job log should
be retrieved.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ PROT_NEW is an optional flag. If it is not set, the function
behaves as before the enhancement. If the flag is set to X, the
function returns the table JOB_PROTOCOL_NEW that, in addition
to the old table JOB_PROTOCOL, contains also the message
type. The table JOB_PROTOCOL is empty in this case.

¶ LINES is the amount of lines and DIRECTION the reading
direction (B=from beginning; E= from end). With these parameters
it is possible to read the first or last n lines of a job log. This
functionality is generally available as of SAPKB70018. If you want
to use this functionality as of SAPKB70014, you have to apply note
1167524.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

Tables ¶ JOB_PROTOCOL is the table containing the job log.

¶ JOB_PROTOCOL_NEW is a table filled only, if the flag
PROT_NEW is set to X. The table JOB_PROTOCOL_NEW
contains, in addition to the old table JOB_PROTOCOL, also the
message type.

MessageIDs ¶ MSG_JOBID_MISSING: You have not entered a job ID number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NO_PRIVILEGE_GIVEN: The AS ABAP user used by the
external management system to log onto the AS ABAP system, is
not authorized to read the job log.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_NO_JOB_PROTOCOL: A log does not yet exist for the
specified job.

¶ MSG_JOB_PROTOCOL_IS_EMPTY: Job log is empty.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity

 86

cannot be carried out.

Note
o The format of the job log (MsgId) has changed in SAP AS

ABAP Release 4.0.
o The term job protocol was common for what is now known as
job log. Donôt get confused. It is the same thing, but the correct
term is JOBLOG.

 87

7.9.5 Return joblog in PDF format

Function name BAPI_XBP_JOB_JOBLOG_TO_PDF

Short description Get job log (also called job protocol) for a particular job in PDF format.

Enhancements This function is available as of note 1609488

RFC interface function BAPI_XBP_JOB_JOBLOG_ TO_PDF

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 LINES TYPE BTCINT4 (optional)

DIRECTION TYPE BTCCHAR1 (optional)

LANGUAGE TYPE SY- LANGU (optional)

exporting

 RETURN structure BAPIRET2 l

 length 552 number of fields 14

JOBLOG type xstring

SIZE type i

Parameter (Input) ¶ JOBNAME is the name of the job whose job log should be
retrieved.

¶ JOBCOUNT is the job ID number of the job whose job log should
be retrieved.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ LINES is the amount of lines and DIRECTION the reading
direction (B=from beginning; E= from end). With these parameters
it is possible to read the first or last n lines of a job log. This
functionality is generally available as of SAPKB70018. If you want
to use this functionality as of SAPKB70014, you have to apply note
1167524.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

¶ JOBLOG is the PDF data in an xstring

¶ SIZE is the size of the PDF data

MessageIDs ¶ MSG_JOBID_MISSING: You have not entered a job ID number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NO_PRIVILEGE_GIVEN: The AS ABAP user used by the
external management system to log onto the AS ABAP system, is
not authorized to read the job log.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_NO_JOB_PROTOCOL: A log does not yet exist for the
specified job.

¶ MSG_JOB_PROTOCOL_IS_EMPTY: Job log is empty.

 88

¶ MSG_CANNOT_CREATE_PDF: There was an error during he
PDF creation

¶ MSG_LOG_TOO_LARGE: The job log is larger than 99 pages and
cannot be converted to PDF.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 89

7.9.6 Reading the Spool List of a Job
With XBP 1.0 you had the following possibilities to read spool lists:

¶ BAPI_XBP_JOB_SPOOLLIST_READ for reading the spool list of a job that has
been run.

¶ BAPI_XBP_SPOOLLST_READ_RW for reading the spool list of a job in raw
format, which is needed by some job scheduling tools to format lists correctly.

These functions modules can still be used as documented in the documentation to XBP
1.0 and XBP 2.0. However, as of XBP 2.0 there is a function available with which you
can choose if the list should be read in raw format or not:

¶ BAPI_XBP_JOB_SPOOLLIST_READ_20 contains a raw format indicator.

Also note that as of XBP 3.0, before reading job logs or spool lists, the external
scheduler can obtain additional information about the job log or the spool list size. It
can get this information by calling BAPI_XBP_JOB_DEFINITION_GET or
BAPI_XBP_JOB_READ which are enhanced with the additional export parameters
JOBLG_ATTR and SPOOL_ATTR in XBP 3.0. For more information about the
enhancements, see the description of the respective function module.

If BAPI_XBP_JOB_DEFINITION_GET or BAPI_XBP_JOB_READ return high values
for the fields JOBLG_ATTR-TMSSIZE or SPOOL_ATTR-TMSSIZE, it is up to the
scheduler to decide which function module to call ï BAPI_XBP_JOB_JOBLOG_READ
or BAPI_XBP_JOB_SPOOLLIST_READ_20. If either of the output parameters
JOBLG_ATTR or SPOOL_ATTR returns empty, then the external scheduler knows that
the desired object does not exist. In addition, if SPOOL_ATTR-DOCTYP is not óALIô, it
is not necessary to call BAPI_XBP_JOB_SPOOLLIST_READ_20, as this function only
returns ABAP lists.

Note that with XBP 3.0, the SAP system stores all the information about the
spool lists created by a job. In former versions, only information about the last
spool list created by a job step was stored. It is now possible to pass the
number of a particular spool list and the system will return information about
the spool list (see section 7.9.5) or return its content (see section 7.9.6).

Function name BAPI_XBP_JOB_SPOOLLIST_READ_20

Short description Read spool list of a job that has been run.

Some job scheduling tools need the raw format to format lists correctly.
By setting the corresponding indicator, you can read the spool list also
in raw format.

Enhanced in XBP
3.0

In XBP 3.0, the function module provides a new table
parameter SPOOL_LIST_PLAIN with a size of 1024 characters.
In Release 4.6C, the parameter USE_SPOOL_LIST_PLAIN has
to be passed with the call of
BAPI_XBP_JOB_SPOOLLIST_READ_20 only if the new
narrower structure is filled.

With the patches listed in note 1352587, two new importing
parameters FIRST_PAGE and LAST_PAGE are introduced. It is
now possible to transfer the spool lists in packages. Please
note that note 1299738 must be installed in the system.

The total page number can be retrieved with
BAPI_XBP:JOB_DEFINITION_GET, BAPI_XBP_JOB_READ, or
BAPI_XBP_GET_SPOOL_ATTRIBUTES.

BAPI method name ReadSpoollist

RFC interface function BAPI_XBP_JOB_SPOOLLIST_READ _20

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 90

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 STEP_NUMBER like BAPIXMJOB - STEPCOUNT

 type RFC_INT4 length 4

 RAW like BTCH0000 - Char1 (optional)

 PLAIN LIKE BTCH0000 - CHAR1 (optional)

 FIRST_PAGE TYPE RSPOPAGES (optional)

 LAST_PAGE TYPE RSPOPAGES (optional)

exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

tables

 SPOOL_LIST structure BAPIXMSPOW

 length 4096

 SPOOL_LIST_PLAIN structure BAPIXMSPOP

 Optional

 length 1024

Parameter (Input) ¶ JOBNAME is the name of the job whose spool list should be
retrieved.

¶ JOBCOUNT is the job ID number of the job whose spool list
should be retrieved.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ STEP_NUMBER determines from which job step the spool list
should be retrieved.

¶ RAW is the raw format indicator. If this indicator is set, you can
read the spool list in raw format.

¶ PLAIN indicates that the spool list should be returned in table
SPOOL_LIST_PLAIN (recommended)

¶ FIRST_PAGE is the first page of the area to be transferred

¶ LAST_PAGE is the last page of the area to be transferred

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ SPOOL_LIST is the internal table containing the spool list with a
length of 4096 characters.

¶ SPOOL_LIST_PLAIN is the internal table with a length of 1024
characters.

MessageIDs ¶ MSG_JOBID_MISSING: You have not entered a job ID number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_JOB_DOESNT_HAVE_STEPS: Job has no steps.

¶ MSG_INVALID_STEP_COUNT: The job does not contain a step
with the given number.

¶ MSG_STEP_COUNT_MISSING: No step number was specified.

¶ MSG_INVALID_SPOOLID: The spool ID contained in the step is
invalid.

¶ MSG_NO_SPOOLLIST: The spool request belonging to the step
does not contain an ABAP list. The spool request cannot be

 91

displayed.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_PRIVILEGE_MISSING: The user used by the external
management system to log onto the AS ABAP system is not
authorized to read the spool list.

¶ MSG_NO_PRIVILEGE_GIVEN: The user used by the external
management system to log onto the AS ABAP system is not
authorized to read the spool list.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.9.7 Getting Information on a Particular Spool List
With XBP 3.0, the SAP System stores all the information about the spool lists created
by a job. In former versions, only information about the last spool list created by a job
step was stored. It is now possible to pass the number of a particular spool list and the
system will return information about the spool list.

Function name BAPI_XBP_GET_SPOOL_ATTRIBUTES

Short description Get information about a particular spool list.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI method name

RFC interface FUNCTION BAPI_XBP_GET_SPOOL_ATTRIBUTES

 IMPORTING

 SPOOL_REQUEST TYPE RSPOID

 type INT4 length 10

 EXTERNAL_USER_NAME TYPE BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 EXPORTING

 RETURN structure BAPIRET2

 length 548 number of fields 14

 SPOOL_ATTR structure BAPIXMSPOOLID

 length 364 number of fields 42

Parameter (Input) ¶ SPOOL_REQUEST is the number of a spool request in the SAP
System.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

¶ SPOOL_ATTR returns information about the spool list(s) created
by the job. For the fields of the parameter, see the Fields of the
SPOOL_ATTR Parameter table (section 7.2.5.2).

MessageIDs ¶ MSG_PARAM_MISSING: No number of a spool request was
passed.

¶ MSG_INVALID_SPOOLID: The spool ID contained in the step
is invalid.

¶ MSG_NO_SPOOLLIST: The spool request belonging to the step

 92

does not contain an ABAP list. The spool request cannot be
displayed.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_SPOOL_SELECTION_EMPTY: The system could not
retrieve the information about the specified request.

¶ MSG_PRIVILEGE_MISSING: The user used by the external
management system to log onto the AS ABAP system is not
authorized to read the spool list.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.9.8 Reading a Particular Spool List
With XBP 3.0, the SAP System stores all the information about the spool lists created
by a job. In former versions, only information about the last spool list created by a job
step was stored. It is now possible to pass the number of a particular spool list and the
system will return its content.

Function name BAPI_XBP_JOB_READ_SINGLE_SPOOL

Short description Read a particular spool list of a job that has been run.

Some job scheduling tools need the raw format to format lists correctly.
By setting the corresponding indicator, you can read the spool list also
in raw format.

New in XBP 3.0 The entire function module is new in XBP 3.0.

With the patches listed in note 1352587, two new importing
parameters FIRST_PAGE and LAST_PAGE are introduced. It is
now possible to transfer the spool lists in packages. Please note
that note 1299738 must be installed in the system.

The total page number can be retrieved with
BAPI_XBP:JOB_DEFINITION_GET, BAPI_XBP_JOB_READ, or
BAPI_XBP_GET_SPOOL_ATTRIBUTES.

BAPI method name

RFC interface Function BAPI_XBP_JOB_READ_SINGLE_SPOOL

BAPI_XBP_JOB_READ_SINGLE_SPOOL

importing

 SPOOL_REQUEST TYPE RSPOID

 type INT4 length 10

 EXTERNAL_USER_NAME TYPE BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 RAW like BTCH0000 - Char1

 Optional

 type RFC_CHAR length 1

 FIRST_PAGE TYPE RSPOPAGES (optional)

 LAST_PAGE TYPE RSPOPAGES (optional)

exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

tables

 93

 SPOOL_LIST structure BAPIXMSPOW

 optional

 length 4096

 SPOOL_LIST_PLAIN structure BAPIXMSPOP

 optional

 length 1024

Parameter (Input) ¶ SPOOL_REQUEST is the number of a spool request in the SAP
system.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ RAW is the raw format indicator. If this indicator is set, you can
read the spool list in raw format.

¶ FIRST_PAGE is the first page of the area to be transferred

¶ LAST_PAGE is the last page of the area to be transferred

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ SPOOL_LIST is the internal table containing the spool list with a
length of 4096 characters.

¶ SPOOL_LIST_PLAIN is the internal table with a length of 1024
characters.

MessageIDs ¶ MSG_PARAM_MISSING: No number of a spool request was
passed.

¶ MSG_INVALID_SPOOLID: The spool ID contained in the step is
invalid.

¶ MSG_NO_SPOOLLIST: The spool request belonging to the step
does not contain an ABAP list. The spool request cannot be
displayed.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_PRIVILEGE_MISSING: The user used by the external
management system to log on.to the AS ABAP system is not
authorized to read the spool list.

¶ MSG_NO_PRIVILEGE_GIVEN: The user used by the external
management system to log on.to the AS ABAP system is not
authorized to read the spool list.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged on.to the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.9.9 Reading a Particular Spool List in Delimited Tab
Format

Function name BAPI_XBP_GET_SPOOL_AS_DAT

Short description It is now possible to retrieve the contents of an ABAP spool list in
delimited tab (DAT) or spreadsheet format.

New in XBP 3.0 The entire function module is new in XBP 3.0. Note 1515293
needs to be applied .

 94

BAPI method name

RFC interface Function BAPI_XBP_GET_SPOOL_AS_DAT

BAPI_XBP_JOB_READ_SINGLE_SPOOL

importing

 SPOOL_REQUEST TYPE RSPOID

 type INT4 length 10

 EXTERNAL_USER_NAME TYPE BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 type RFC_CHAR length 1

 FIRST_PAGE TYPE RSPOPAGES (optional)

 LAST_PAGE TYPE RSPOPAGES (optional)

Exporting

 SPOOL_LIST type LIST_STRING_TABLE

 RETURN structure BAPIRET2

 length 548 number of fields 14

Parameter (Input) ¶ SPOOL_REQUEST is the number of a spool request in the SAP
system.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ RAW is the raw format indicator. If this indicator is set, you can
read the spool list in raw format.

¶ FIRST_PAGE is the first page of the area to be transferred

¶ LAST_PAGE is the last page of the area to be transferred

Parameter (Output) ¶ SPOOL_LIST is a table parameter of type string

¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_PARAM_MISSING: No number of a spool request was
passed.

¶ MSG_INVALID_SPOOLID: The spool ID contained in the step is
invalid.

¶ MSG_NO_SPOOLLIST: The spool request belonging to the step
does not contain an ABAP list. The spool request cannot be
displayed.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_PRIVILEGE_MISSING: The user used by the external
management system to log on.to the AS ABAP system is not
authorized to read the spool list.

¶ MSG_NO_PRIVILEGE_GIVEN: The user used by the external
management system to log on.to the AS ABAP system is not
authorized to read the spool list.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged on.to the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.9.10 Checking the Status of a Job
Problems with the SAP system (database, network, termination of background work
processes) can cause discrepancies between the actual status of a job and its
recorded status in the database.

 95

A background work process, with an active job, is terminated manually. The job
runtime system cannot set the job status in the database to óterminatedô.

The function module BAPI_XBP_JOB_STATUS_CHECK recognizes these cases and
corrects the job status accordingly.

Function name BAPI_XBP_JOB_STATUS_CHECK

Short description Check whether the internally displayed status is up to date.

BAPI object name BackgroundJob

BAPI method name CheckStatus

RFC interface function BAPI_XBP_JOB_STATUS_CHECK

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

exporting

 ACTUAL_STATUS like BAPIXMJOB - STATUS

 type RFC_CHAR length 1

 RETURN structure BAPIRET2

 length 548 number of fields 14

 STATUS_ACCORDING_TO_DB like BAPIXMJOB- STATUS

 type RFC_CHAR length 1

Parameter (Input) ¶ JOBNAME is the name of the job whose status should be
checked.

¶ JOBCOUNT is the job ID number of the job whose status
should be checked.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

Parameter (Output) ¶ STATUS_ACCORDING_TO_DB contains the status of a job in the
database.

¶ ACTUAL_STATUS is the actual job status with following possible
values:
'R' - active
'Y' - ready
'P' - scheduled
'S' - released
'A' - terminated
'F' - finished
óXó - actual status cannot be determined

¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBID_MISSING: You did not specify a job ID number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_PRIVILEGE_MISSING: The SAP user used by the external

 96

job management system to log onto the AS ABAP system is not
authorized to use this function.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 97

7.9.11 Selecting Jobs

Function name BAPI_XBP_JOB_SELECT

Short description You can use the function module BAPI_XBP_JOB_SELECT to select
a set of jobs in the AS ABAP system that match the selection criteria
given. At very least the username and the job name must be partly
(using wildcards) specified.

From XBP 2.0 on, it is possible to reduce the job list by selecting only
non-confirmed jobs (see BAPI_XBP_CONFIRM_JOB and
BAPI_XBP_SPECIAL_CONFIRM_JOB).

Introduced in XBP
2.0

The new parameter SELECTION has been added (see
description below).

BAPI object name BackgroundJob

BAPI method name Select

RFC interface function BAPI_XBP_JOB_SELECT

importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 JOB_SELECT_PARAM structure BAPIXMJSEL

 length 196 number of fields 18

 SYSTEMID like SY - SYSID optional

 type RFC_CHAR length 8

 SELECTION optional type CHAR2 default 'AL'

exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

tables

 SELECTED_JOBS structure BAPIXMJOBS

 length 40, number of fields 2

 JOB_HEAD STRUCTURE BAPIXMJOB optional
 length 388 number of fields 35

Parameter (Input) ¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ JOB_SELECT_PARAM are the selection parameters. Use this
structure to transfer the job selection criteria to the background
processing system.

¶ SYSTEMID is the system ID.

¶ Parameter SELECTION is optional and case-insensitive, and
specifies what kind of confirmation (general or child) should be
taken into account. The following values are possible:

1. AL (default) returns all child jobs regardless what confirmation
they have.
2. NG returns only those child jobs that do NOT have general
confirmation.
3. NC returns only those child jobs that do NOT have any
confirmation.

To make a special confirmation for a child job, use the
BAPI_XBP_SPECIAL_CONFIRM_JOB function module with
CONFIRMATION=ôCô.
To make a general confirmation for a child job, use the
BAPI_XBP_CONFIRM_JOB function module.

 98

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ SELECTED_JOBS is the list of selected jobs.

¶ JOB_HEAD lists job headers of selected jobs.

MessageIDs ¶ MSG_SELECT_PARAM_MISSING: You have not specified select
options correctly.

¶ MSG_SELECT_JOBNAME_MISSING: You have not specified a
job name.

¶ MSG_SELECT_USERNAME_MISSING: You have not specified a
user name.

¶ MSG_NO_JOB_FOUND: No jobs with the given name were found.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job system has
found an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_WRONG_SELECTION_PAR: Inconsistent selection
parameters.

 99

7.9.12 Determining the Number of Jobs with Particular Job
Names

Function name BAPI_XBP_JOB_COUNT

Short description You can use the function module BAPI_XBP_JOB_COUNT to
determine the number of jobs which are defined in the AS ABAP
system with a particular job name.

BAPI object name BackgroundJob

BAPI method name CountByName

RFC interface function BAPI_XBP_JOB_COUNT

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 DONT_LIST_JOBS type BAPIXMAUX- CHAR1

(optional)

exporting

 NUMBER_OF_JOBS like BAPIXMAUX- INT4

 type RFC_INT4 length 4

 RETURN structure BAPIRET2 length 548

 number of fields 14

tables

 JOB_TABLE structure BAPIXMJOB

 length 388 number of fields 35 (optional)

Parameter (Input) ¶ JOBNAME is the name of a background job.

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who caused the function call.

¶ DONôT_LIST_JOBS: If this parameter is set, only the number of
jobs for a given pattern will be returned (available with note
1639277)

Parameter (Output) ¶ NUMBER_OF_JOBS is the number of jobs found.

¶ JOB_TABLE lists the jobs that meet the selection criteria in
parameter JOBNAME.

¶ BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_JOBNAME_MISSING: You have not specified a job name.

¶ MSG_NO_JOB_FOUND: No jobs with the given name were found.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has found an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 100

7.9.13 Obtaining Key Job Parameters from Job Headers
and Steps

Function name BAPI_XBP_JOB_READ

Short description This function module is intended for obtaining key job parameters from
job header and job steps.

Enhanced in XBP
3.0

This function module is enhanced to return more information
about :

¶ The job log of a job. Information is returned by the new
export parameter JOBLG_ATTR.

¶ The spool list(s) created by a job. Information is returned
by the new table parameter SPOOL_ATTR.

¶ Spool list recipient of a job in plain text.

The two parameters provide the external scheduler with more
information about the size of the job log or spool list.

The function module BAPI_XBP_JOB_DEFINITION_GET is
enhanced with the same two parameters.

If BAPI_XBP_JOB_DEFINITION_GET or BAPI_XBP_JOB_READ
return high values for the fields JOBLG_ATTR-TMSSIZE or
SPOOL_ATTR-TMSSIZE that contain information about the size of the
job log or spool list, it is up to the scheduler to decide which function
module to call ï BAPI_XBP_JOB_JOBLOG_READ or
BAPI_XBP_JOB_SPOOLLIST_READ_20. If either of the output
parameters JOBLG_ATTR or SPOOL_ATTR return empty, then the
external scheduler knows that the desired object does not exist. In
addition, if SPOOL_ATTR-DOCTYP is not óALIô, it is not necessary to
call BAPI_XBP_JOB_SPOOLLIST_READ_20, as this function only
returns ABAP lists.

New with note 1402400: The function can now also return the name
of a batch target server group and not only the cryptic GUID.

BAPI object name BackgroundJob

BAPI method name ReadJob

RFC interface function BAPI_XBP_JOB_READ

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 JOB_HEADER_ONLY like BAPIXMINFO - JOBHEADER

 optional type RFC_CHAR length 1

 STEP_NUMBER like BAPIXMJOB - STEPCOUNT optional

 type RFC_INT4 length 4

 SHOW_GROUPNAME type BTCH0000- CHAR1 optional

 (new with note 1402400)

exporting

 JOBHEAD structure BP20JOB

 length 668 number of fields 58

 RETURN structure BAPIRET2 length 548

 number of fields 14

 JOBLG_ATTR structure BAPIXMJOBLOG

 101

 length 38 number of fields 5

 RECIPIENT structure BAPIXMRECIP

 length 249 number of fields 9

 GROUPNAME type BPSRVGRP

 (new with note 1402400)

tables

 STEPS structure BP20STEP optional

 length 1028 number of fields 63

 SPOOL_ATTR struct ure BAPIXMSPOOLID OPTIONAL

 length 364 number of fields 42

Parameter (Input)

¶ JOBNAME is the name of the job whose data need to be read.

¶ JOBCOUNT is the ID number of the job whose data need to be
read.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ JOB_HEADER_ONLY (optional) is an indicator that allows a
choice between two options: retrieve job header only or retrieve
job header and step descriptions.

¶ STEP_NUMBER is the number of the step whose information
should be retrieved. If STEP_NUMBER is 0 (zero), then
information on all steps is retrieved.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

¶ JOBHEAD is the return structure containing the job header.

¶ JOBLG_ATTR returns information about the job log of the job.
For details on the structure fields, see section 7.2.5.1.

¶ SPOOL_ATTR is a table parameter returning information about
the spool list(s) created by the job.
For details on the structure fields see section 7.2.5.2.

¶ RECIPIENT returns the spool list recipient of a job in plain text.

Tables ¶ STEPS is a table consisting of the requested steps of the job.

MessageIDs ¶ MSG_JOBNAME_MISSING : You have not specified a job name.

¶ MSG_JOBID_MISSING : You have not entered a job ID.

¶ MSG_EXT_USER_MISSING : External user name is missing.

¶ MSG_CANT_LOG : Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON : The external management tool has
not logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_JOB_DOES_NOT_EXIST: Specified job does not exist.

¶ MSG_JOB_NOSTEPS: There are no steps in the job.

¶ MSG_JOB_DOESNT_HAVE_THIS_STEP: Job does not have the
specified step.

7.9.14 Determining Job Children

In general, a business process that is executed by a job, or rather a collection of jobs,
does not only consist of static jobs, which are known in advance, but also of jobs that
are created on the fly by the static jobs, such as to dynamically distribute workload. A

 102

job that is released by another job is called a child job and the releasing job is called a
parent job.

For a job scheduling system it is important to know about the existence and current
status of the child jobs of a certain parent job, because in the internal logic of many
applications a parent job is considered as ófinishedô only if the parent job itself and its
child jobs are finished.

Up to now there is no proper way for an external scheduler to find out whether or not a
job has child jobs. XBP 2.0 offers functionality to find all children created by a job.

Function name BAPI_XBP_JOB_CHILDREN_GET

Short description Get all children created by a job and return them in an internal table.
Only the children are returned, not the grandchildren.

Note that this function returns only the children that have
already been created at the time of the call. If the function is
called while the job is still running, more children might be
created after the call.

A child job will be returned even if it is has been deleted before the
call. Therefore, a complete history of the jobôs children can be
retrieved.

Introduced in XBP
2.0

The entire function module was new to XBP 2.0.

BAPI object name BackgroundJob

BAPI method name GetChildren

RFC interface function BAPI_XBP_JOB_CHILDREN_GET

importing

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 SELECTION type CHAR2 default 'AL'

 type RFC_CHAR length 2

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

exporting

 NR_OF_CHILDREN

 type RFC_INT4 length 4

 RETURN structure BAPIRET2 length 548

 number of fields 14

tables

 JOB_CHILDREN structure BAPIXMJOBS

 length 40, number of fields 2

 (jobcount,jobname)

Detailed description This function module retrieves jobs that have CHILD status. Since you
do not want to retrieve the names of the same jobs over and over
again, you can reduce the list of the returned jobs to the ones which
are not known to the caller. For this, confirmation is used.
The list of returned jobs may contain all child jobs or only those that
have not been confirmed with one or more confirmations.

Parameter (Input) ¶ JOBCOUNT and JOBNAME of the job whose children are to be
determined.

 103

¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ Parameter SELECTION is optional and incase-sensitive, and
specifies what kind of confirmation (general or child) should be
taken into account. The following values are possible:

1. AL (default) returns all child jobs regardless what confirmation
they have.
2. NG returns only those child jobs that do NOT have general
confirmation.
3. NS returns only those child jobs that were NOT confirmed as
child jobs.
4. NC returns only those child jobs that do NOT have any
confirmation.

To make a special confirmation for a child job, use the
BAPI_XBP_SPECIAL_CONFIRM_JOB function module with
CONFIRMATION=ôCô.
To make a general confirmation for a child job, use the
BAPI_XBP_CONFIRM_JOB function module.

Parameter (Output) ¶ NR_OF_CHILDREN of the given job.

¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ JOB_CHILDREN: Internal table containing the jobs consisting of
JOBNAME and JOBCOUNT.

MessageIDs ¶ MSG_JOBID_MISSING: You have not entered a job ID number.

¶ MSG_JOBNAME_MISSING: You have not entered a job name.

¶ MSG_JOB_DOES_NOT_EXIST: Job does not exist in the AS
ABAP system.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_WRONG_SELECTION_PAR: Inconsistent selection
parameters.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.9.15 Determining Parent/Child Relation
You can use the following function to get information about the parent/child relations of
any job.

Function name BAPI_XBP_JOB_PARENT_CHILD_INFO

Short description This function returns the child data of a given job (see
BAPI_XBP_JOB_STATUS_GET) and the following information :

¶ If this job is a child, job ID number and job name of the parent job
are returned. This is the only function that retrieves the parent of a
job.

¶ If this job is a parent, the number of children is returned.

 104

 Note: The child information and the number of children may
 change during the runtime of a job.

Introduced in XBP
2.0

The entire function module was new to XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface function BAPI_XBP_JOB_PARENT_CHILD_INFO

importing

 JOBNAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 JOBCOUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 exporting

 HAS_CHILD like BAPIXMINFO - HAS_CHILD

 type RFC_CHAR length 1

 PARENT_NAME like BAPIXMJOB - JOBNAME

 type RFC_CHAR length 32

 PARENT_COUNT like BAPIXMJOB - JOBCOUNT

 type RFC_CHAR length 8

 NR_OF_CHILDREN type INT4 length 4

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input)

¶ JOBNAME, JOBCOUNT of the job, for which the parent/child
information is to be determined.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

Parameter (Output) ¶ Possible values for the parent/child-relation HAS_CHILD:
óPô ï job is parent/has children
óCô ï job is child
óBô ï (óbothô) job is parent and child
ó ó - (blank) job is neither parent nor child

¶ PARENT_NAME, PARENT_COUNT of the parent job, if there is
one.

¶ NR_OF_CHILDREN of this job at the time of the call.

¶ BAPIRET2 is the return structure used by BAPIs.

 105

MessageIDs ¶ MSG_JOBID_MISSING: You did not specify a job ID number.

¶ MSG_JOBNAME_MISSING: You did not specify a job name.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: Activity was terminated, because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_JOB_DOES_NOT_EXIST: The job does not exist in the AS
ABAP database.

 106

7.9.16 Reading and Changing Intercept Status and
Parent/Child Relation

Function name BAPI_XBP_NEW_FUNC_CHECK

Short description This function module is intended for reading and changing the status of
interception and parent-child functionality.

Introduced in XBP
2.0

The entire function module was new to XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_NEW_FUNC_CHECK

Importing parameters

 INTERCEPTION_ACTION type CHAR1 OPTIONAL

 PARENTCHILD_ACTION type CHAR1 OPTIONAL

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

Exporting parameters

 INTERCEPTION TYPE CHAR1

 PARENTCHILD TYPE CHAR1

 RETURN structure BAPIRET2 length 548

 number of fields 14

Detailed function

description

This function module is for reading and changing the status of
interception and parent-child functionality. It receives a request to
execute an action and returns the statuses as results for this action. A
status is a value that is either INITIAL (if functionality is switched off) or
óXô. An action can be one of the following values:

¶ óRô or órô or blank for reading the current status

¶ óSô or ósô for setting the status ON (as with XBP 2.0)

¶ Additionally '3' for INTERCEPTION_ACTION to set the status ON
for interception rules set in the Criteria Manager of XBP 3.0.

¶ óCô or ócô for removing ON (setting the status OFF)

Actions are passed with the optional parameters
INTERCEPTION_ACTION and PARENTCHILD_ACTION.

Parameter (Input)

¶ INTERCEPTION_ACTION specifies whether the status of the
interception functionality should be read, set, or cleared. See
detailed function description above for choosing the correct action.

¶ PARENTCHILD_ACTION denotes whether the status of
parent/child functionality should be read, set, or cleared. See
detailed function description above for choosing the correct action.

¶ INTERCEPTION_ACTION and PARENTCHILD_ACTION are
independent from each other. Statuses are returned via the
INTERCEPTION and PARENTCHILD parameters.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

Parameter (Output) ¶ INTERCEPTION is the current status of interception functionality.

¶ PARENTCHILD is the current status of parent-child functionality.

¶ BAPIRET2 is the return structure used by BAPIs.

 107

MessageIDs ¶ MSG_EXT_USER_MISSING : External user name is missing
(initial).

¶ MSG_CANT_LOG : Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON : The external management tool has
not logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_WRONG_ACTION appears when the name of at least one
action is invalid.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

7.9.17 Obtaining Application Information

7.9.17.1 Getting the Handle of an Application Log

You can use the following function to get the handle of an application log. By using this
handle it can read the application log and the application return code. The application
should call in advance the new internal function BP_ADD_APPL_LOG_HANDLE to
assign one or more log handles to its batch job data.

Function
name

BAPI_XBP_APPL_INFO_GET

Short
description

This function module gets handles of the application log and return codes for a
specific job. By calling BP_ADD_APPL_LOG_HANDLE, the application should
assign a handle to its job data in the runtime.

The application log handle returned by BAPI_XBP_APPL_INFO_GET can be used
as an input parameter in the function module BAPI_XBP_APPL_CONTENT_GET
described in section 7.9.14.2.

New in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object
name

BackgroundJob

BAPI method
name

GetApplicationInfo

RFC
interface

FUNCTION: BAPI_XBP_APPL_INFO_GET

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 I_JOBNAME like TBTCO- JOBNAME

 type CHAR length 32

 I_JOBCOUNT like TBTCO- JOBCOUNT

 type CHAR length 8

EXPORTING

 E_T_LOGHANDLES TYPE BTC_T_LOGHANDLE

 E_T_RETURN_CODES TYPE BTC_T_APPRC

 E_JOB_STATUS TYPE BTCSTATUS

 type CHAR length 1

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter
(Input)

¶ I_EXTERNAL_USER_NAME is the name of the user in the external scheduler
who called the function.

¶ I_JOBNAME is the name of a background job.

 108

¶ I_JOBCOUNT is the ID number of a job. Together with the job name, the job
number identifies the job uniquely.

Parameter
(Output)

¶ E_T_LOGHANDLES is a table containing the log handles of the job steps.
Each log handle is a GUID that uniquely identifies a log. By using this log
handle, the external scheduler can access the log.

¶ E_T_RETURN_CODES is a table containing the return codes of the job steps.

¶ E_JOBSTATUS is the status of the job.

¶ BAPIRET2 is the return structure used by BAPIs.

7.9.17.2 Getting the Content of the Application Log for a Particular
Log Handle

Function
name

BAPI_XBP_APPL_LOG_CONTENT_GET

Short
description

This function module gets the content of the application log for a particular log
handle. The application log handle returned by BAPI_XBP_APPL_INFO_GET
(described in section 7.9.14.1) can be used as an input parameter.

New in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object
name

BackgroundJob

BAPI method
name

GetApplicationLogContent

RFC
interface

FUNCTION BAPI_XBP_APPL_LOG_CONTENT_GET.

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 I_LOGHANDLE like BALLOGHNDL

 type CHAR length 22

 I_MESSAGES_FROM

 type INT4 length 10 default 1

 I_MESSAGES_TO

 type INT4 length 10 default 1000

EXPORTING

 E_TXT_OBJECT like BAPIBALTEXT

 type CHAR length 64

 E_TXT_SUBOBJECT like BAPIBALTEXT (see above)

 E_TXT_ALTCODE like BAPIBALTEXT (see above)

 E_TXT_ALMODE like BAPIBALTEXT (see above)

 E_TXT_ALSTATE like BAPIBALTEXT (see above)

 E_TXT_PROBCLASS like BAPIBALTEXT (see above)

 E_TXT_DEL_BEFORE like BAPIBALTEXT (see above)

 E_BAL_HEADER structure BAL_S_LOG length 263

 number of fields 17

 E_BAL_STATISTIC structure BAL_S_SCNT length 101

 number of fields 11

 E_T_MESSAGES like BAPI_T_APPLOG_MESSAGE

 (see section 7.9.14.3 below)

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter ¶ I_EXTERNAL_USER_NAME is the name of the user in the external scheduler

 109

(Input) who called the function.

¶ I_LOGHANDLE reads from the table E_T_LOGHANDLES which is exported
by BAPI_XBP_APPL_INFO_GET and contains the log handles of the job
steps.

¶ I_MESSAGES_FROM specifies the number of the line in the log message
from which the external scheduler should start reading the log. The default
value is 1.

¶ I_MESSAGES_TO specifies the number of the line in the log message at
which the external scheduler should stop reading the log. The default value is
1000.

¶ The I_MESSAGES_FROM and I_MESSAGES_TO parameters allow the
external scheduler to read long application logs in chunks to improve
performance.

Parameter
(Output)

¶ The E_TXT_* output parameters return additional information about the
application log. The data they return is from the logôs header.

¶ E_TXT_OBJECT and E_TXT_SUBOBJECT provide a description of the
application and/or sub-application that use the application log.

¶ E_TXT_ALTCODE specifies the transaction or program which created the
application log.

¶ E_TXT_ALMODE specifies the processing mode in which the log was created
(dialog, background, and so on).

¶ E_TXT_ALSTATE specifies the status of the log, that is, whether the log was
finished or not.

¶ E_TXT_PROBCLASS provides the level of importance of the log messages.

¶ E_TXT_DEL_BEFORE is a flag which denotes whether the log can be deleted
before its expiry date.

¶ E_BAL_HEADER returns the application log header.

¶ E_BAL_STATISTIC returns the amount of log messages grouped by severity.
The possible values for the severity are A = ñAbortò, E = ñErrorò, W =
ñWarningò, I = Information, S= ñStatusò.

¶ E_T_MESSAGES returns a table with log messages.

¶ BAPIRET2 is the return structure used by BAPIs.

7.9.17.3 Table with Application Log Messages
(BAPI_T_APPLOG_MESESAGE)

Field name Type Description

BAL_MESSAGE BAL_S_MSG Application log message in DB format

TXT_MSGTY BAPIBALTEXT Message type in text form in logon language

TXT_MSGID BAPIBALTEXT Message id in text form in logon language

TXT_DETLEVEL BAPIBALTEXT Detail level in text form in logon language

TXT_PROBCLASS BAPIBALTEXT Problem class in text form in logon language

TXT_MSG CHAR255 Message text in logon language

7.9.18 Monitoring Performance

Function
name

BAPI_XBP_BTC_STATISTIC_GET

Short
description

By calling this function module, the external scheduler can retrieve statistic
information about the past workload produced by a job on the system.

 110

New in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object
name

BackgroundJob

BAPI method
name

GetStatistics

RFC
interface

FUNCTION BAPI_XBP_BTC_STATISTIC_GET

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 I_ T_JOBLIST like BTC_T_JOBLIST

EXPORTING

 LOGHANDLE like BALLOGHNDL

 type CHAR length 22

 T_STATDATA like BTC_T_STATDATA (see section 7.9.1 5.2)

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter
(Input)

¶ I_EXTERNAL_USER_NAME is the name of the user in the external scheduler
who called the function.

¶ I_T_JOBLIST is a list of the jobs for which you want to retrieve statistic
information. The list should contain the name of the job and the job count of
the job, in the following format: Jobname/Jobcount.

Parameter
(Output)

¶ LOGHANDLE returns the handle to the error log.

¶ T_STATDATA provides the statistic records for a job list.

¶ BAPIRET2 is the return structure used by BAPIs.

Exceptions You find a list of exepctions thrown be BAPI_XBP_BTC_SATISTIC_GET in section
7.9.15.1 below.

7.9.18.1 Exceptions Thrown by BAPI_XBP_BTC_STATISTIC_GET

Return
Code

Text
Message
Class

Message ID

1 No authority BT 457

2
Job does not exist in status finished
or aborted

BT
453

3 Job not found BT 450

4 Job step not found BT 098

5 Error reading job log BT 452

6 RFC communication error BT 456

7 System error BT 454

8 Statistic data not found BT 455

7.9.18.2 Data Elements

 111

The tables below provide detailed information about the input parameter T_STATDATA
from type BTC_T_STATDATA of BAPI_XBP_BTC_STATISTIC_GET.

7.9.18.2.1 Structures

BTC_S_STATDATA

Component Type Data type Length Decimals Description

INSTANCE STUNINST CHAR 39 0 Instance

JOBNAME BTCJOB CHAR 32 0 Job name

JOBCOUNT BTCJOBCNT CHAR 8 0 Job count

RC INT1 INTEGER 3 Return code

T_STATISTIC SWNCGL_T_
STATRECS

- - - Statistic records for a
particular job in the
SWNC Globstat
format

7.9.18.2.2 Table Types

Name Line type Description

BTC_T_JOBLIST TBTCK List of jobs(jobname + jobcount)

BTC_T_STATDATA BTC_S_STATDATA Statistic data table

7.9.19 Consuming Raised Events from Event History
By calling the functions below, the external scheduler can read events from the event
history and optionally confirm the events that were already read.

7.9.19.1 Reading Events From Event History

Function
name

BAPI_XBP_BTC_EVTHISTORY_GET

Short
description

This function module retrieves the events that were logged in the event history. It
can set the status of read events to CONFIRMED

New in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object
name

BackgroundJob

BAPI method
name

GetEventHistory

RFC
interface

FUNCTION bapi_xbp_btc_evthistory_get

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 FROM_TIMESTAMP_UTC like BTCTIMESTAMP OPTIONAL

 type DEC length 15

 TO_TI MESTAMP_UTC like BTCTIMESTAMP OPTIONAL

 type DEC length 15

 EVENTIDS like BTCEVENTID OPTIONAL

 type CHAR length 32

 SELECT_STATE like BTCHISTENTRYSTATE OPTIONAL

 type CHAR length 1 default 'N'

 ACTION like BTCEVTACTION OPTIONAL

 type CHAR length 1 default 'C'

 GUIDS like TT_BTCEVTGUID OPTIONAL

 PARAMS like BTCEVTPARM OPTIONAL

 112

 type CHAR length 64

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

TABLES

 RAISED_EVENTS STRUCTURE BTCEVTHISTORY

Detailed
description

By calling this function, the external scheduler can read events based on

¶ The time when the events were logged. You can specify the start and the end
of the period within which the events were logged.

¶ Event status.

 All events are logged with status NEW. To avoid having to read the same
portion of events more than once, the scheduler can optionally change the
status of NEW events to CONFIRMED. The scheduler can read events that
were newly logged (events in status NEW), events that it has already read
and confirmed (events in status CONFIRMED), or all events regardless of
their status.

¶ Event name (EVENTIDS) and event parameter (PARAMS)

¶ GUIDs (Globally Unique Identifiers)

Parameter
(Input)

¶ EXTERNAL_USER_NAME is the name of the user in the external scheduler
who called the function.

¶ FROM_TIMESTAMP_UTC is a timestamp (UTC) specifying the beginning of
the period within which events were logged. The function returns all events
that were logged after this moment. The default value is 01.01.1970 00:00:00.

¶ TO_TIMESTAMP_UTC is a timestamp (UTC) specifying the end of the period
within which events were logged. The function returns all events that were
logged before this moment. The default value is 31.12.9999.

¶ EVENTIDS specifies the names of the events (EVENTID) which should be
read from the event history. The default value is space (empty), which means
that all events are read. You can use wildcards. If this parameter is used, the
GUIDS parameter will be ignored.

¶ SELECT_STATE specifies the event status of the events which should be
read. The following values are possible:

o N means reading all events that are in status NEW. This includes
events that were newly logged and have not been read yet, or events
that have been read but not marked as confirmed by the external
scheduler.

o C means reading all events which were marked by the external
scheduler as CONFIRMED.

o A means reading all events regardless of their status.

¶ ACTION specifies whether the external scheduler should change the status of
read events. The following values are possible:

o C sets the status of successfully read events from NEW to CONFIRMED.

o N leaves the status of successfully read events as NEW.

¶ GUIDS is an optional list of GUIDs of those events that have already been
read before. This parameter can be used to monitor changes of state of
raised events. The GUIDS parameter will only be used in the event
selection, if the EVENTIDS parameter is empty.

¶ PARAMS is an optional parameter which specifies the event parameters of
the events EVENTIDS. This parameter will be used only, if the EVENTIDS
parameter is used. You can use wildcards.

 113

Parameter
(Output)

¶ RAISED_EVENTS is the exported database table containing raised events
selected from the event history.

¶ BAPIRET2 is the return structure used by BAPIs.

7.9.19.2 Confirming Events in Event History

Function
name

BAPI_XBP_BTC_EVTHIST_CONFIRM

Short
description

This function module changes the status of events from NEW to
CONFIRMED without reading events.

New in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object
name

BackgroundJob

BAPI method
name

ConfirmEvents

RFC
interface

FUNCTION bapi_xbp_btc_evthist_confirm

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

TABLES

 EVTHIST_GUIDS STRUCTURE BTCEVTGUIDS

Detailed
description

Changing the event status or confirming events enables the external
scheduler to avoid reading the same events more than once. Confirming
events is optional.

Parameter
(Input)

¶ EXTERNAL_USER_NAME is the name of the user in the external
scheduler who called the function.

Parameter
(Output)

¶ EVTHIST_GUIDS is the database table containing the exported GUIDs
(Globally Unique Identifier) of the event history entries whose status is to
be set to CONFIRMED.

¶ BAPIRET2 is the return structure used by BAPIs.

7.9.19.3 Reading Event Definitions

Function
name

 BAPI_XBP_EVENT_DEFINITIONS_GET

Short
description

This function reads definitions of batch events. It allows reading a certain
number of events beginning from a given event.

New in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object
name

BackgroundJob

BAPI method GetEvents

 114

name

RFC
interface

FUNCTION BAPI_XBP_EVENT_DEFINITIONS_GET

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 I_EVENTID like BTCEVENTID Optional

 type CHAR length 32 default %

 I_FROM type INT4 Optional

 CHAR length 10 default 0

 I_TO type INT4 Optional

 CHAR length 10 default 0

EXPORTING

 E_T_EVENTS TYPE BTC_T_EVTINFO

 E_MORE TYPE BOOLEAN CHAR1

 RETURN structure BAPIRET2 length 548

 number of fields 14

Detailed
function

description

With this function you can get a full list of batch events available in the current
system. The wildcard is specified in the optional and case-insensitive
parameter I_EVENTID_MASK. Optional parameters I_FROM and I_TO are
used for the reading in packets.

Parameter
(Input)

¶ I_EXTERNAL_USER_NAME is the name of the user in the external
scheduler who called the function.

¶ I_EVENTID_MASK is a wildcard for the event name.

¶ I_FROM specifies the number of the line in the batch event definitions
from which the external scheduler should start reading. The default value
is 0: read all events.

¶ I_TO specifies the number of the line in the batch event definitions at
which the external scheduler should stop reading. The default value is 0:
read all events.

Parameter
(Output)

¶ BAPIRET2 is the return structure used by BAPIs.

¶ E_T_EVENTS is a table that contains all batch events that correspond to
the given wildcard and are within the package range.

¶ E_MORE has the value óXô when more batch events than given in I_TO
are available in the current system.

 115

7.9.20 Configuring Profiles and Criteria using the Criteria
Manager Interface

The function modules described in the following subsections enable the external
scheduler to work with the criteria that can control for example which events are to be
logged in the event history.

7.9.20.1 Retrieving Information on Available Criteria Types

Function name BAPI_CM_CRITTYPES_GET

Short description By calling this function module, the external scheduler can retrieve
information about the available criteria types. Currently, SAP provides
the following criteria types:

¶ for event history - criteria specifying which raised events should
be logged in the event history.

¶ for reorganization of event history ï criteria specifying the
reorganization of raised events.

¶ for interception

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name GetCriteriaTypes

RFC interface FUNCTION BAPI_CM_CRITTYPES_GET

IMPORTING

 I_ EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I_CRITTYPE like BTC_CRITTYPE optional

 type CHAR length 6 DEFAULT %

EXPORTING

 E_T_CRITYTPES BTC_T_CRITTYPE_RAW

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_CRITTYPE specifies the criteria types that are to be selected.
You can use wildcards (*).The default is ó%ô which means 'select
all'. For the default criteria types provided by SAP, the values are:

 EVTHIS ï type ID for event history

 EVHIRO - type ID for the reorganization of raised events

 INTERC identifies a criteria type for job interception

Parameter (Output) ¶ E_T_CRITYTPES is the database table containing the returned
criteria types and fields (see also section 7.9.17.1.1 below).

¶ BAPIRET2 is the return structure used by BAPIs.

7.9.20.1.1 Line type of E_T_CRITYTPES

Field Name Field type Description

TYPE CHAR 6 Type ID

TYPEDESCRIPTION CHAR 40 Type description

CALLBACK_PROG CHAR 40 Callback program name

 116

CALLBACK_FORM CHAR 30 Callback subroutine name

FIELD CHAR 30 Criteria field name

DESCRIPTION CHAR 40 Criteria field description

SEARCH_HELP CHAR 30 Criteria field search help

7.9.20.2 Working with Criteria Profiles

Criteria and conditions are stored in profiles which can be active and inactive. Only one
profile can be active at a time.

The function modules below enable the external scheduler to create, delete, and
activate criteria profiles as well as to retrieve a list of existing criteria profiles.

7.9.20.2.1 Creating a Criteria Profile

Function name BAPI_CM_PROFILE_CREATE

Short description This function creates a criteria profile in the SAP system. The created
profile is not active. It can be activated by calling the function
BAPI_CM_PROFILE_ACTIVATE.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name CreateProfile

RFC interface FUNCTION BAPI_CM_PROFILE_CREATE

IMPORTING

 I_EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I_PROFILE_XML type STRING optional

EXPORTING

 E_PROFILEID like BTCPROFILEID

 type INT2 length 5

 E_PROFILETYPE like BTC_CRITTYPE

 type CHAR length 6

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_PROFILE_XML contains an XML description of a criteria profile.
For more information about the relevant Document type definition,
see Chapter 8 Appendix, section Document Type Definition for
Defining Profiles and Criteria for Event History.

Parameter (Output) ¶ E_PROFILETYPE is the criteria type of the new profile.

¶ E_PROFILEID is the ID of the new profile. The type and the ID of
the profile identify a profile uniquely.

¶ BAPIRET2 is the return structure used by BAPIs.

 117

7.9.20.2.2 Deleting a Criteria Profile

Function name BAPI_CM_PROFILE_DELETE

Short description This function module deletes a criteria profile. To be deleted, the
criteria profile should not be active. The external scheduler can set an
active profile to inactive by calling
BAPI_CM_PROFILE_DEACTIVATE.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name DeleteProfile

RFC interface FUNCTION BAPI_CM_PROFILE_DELETE

IMPORTING

 I_EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I _PROFILEID like BTCPROFILEID

 type INT2 length 5

 I _PROFILETYPE like BTC_CRITTYPE

 type CHAR length 6

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_PROFILETYPE is the criteria type of the profile that has to be
deleted.

 For the default criteria types provided by SAP, the values are:

EVTHIS identifies a criteria type for event history.

EVHIRO identifies a criteria type for the reorganization
of raised events.

INTERC identifies a criteria type for job interception

¶ I_PROFILEID is the ID of the profile that has to be deleted.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

7.9.20.2.3 Activating a Criteria Profile

Function name BAPI_CM_PROFILE_ACTIVATE

Short description This function activates a criteria profile that exists in the SAP system.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name ActivateProfile

RFC interface FUNCTION BAPI_CM_PROFILE_ACTIVATE

IMPORTING

 I_EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I _PROFILEID like BTCPROFILEID

 type INT2 length 5

 I _PROFILETYPE like BTC_CRITTYPE

 type CHAR length 6

 118

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_PROFILETYPE is the type of the profile that has to be activated.

 For the default criteria types provided by SAP, the values are:

 EVTHIS identifies a criteria type for event history.

 EVHIRO identifies a criteria type for the reorganization of raised
 events.

 INTERC identifies a criteria type for job interception

¶ I_PROFILEID is the ID of the profile that has to be activated.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

7.9.20.2.4 Deactivating a Criteria Profile

Function name BAPI_CM_PROFILE_DEACTIVATE

Short description This function module sets an active profile to inactive.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name DeactivateProfile

RFC interface FUNCTION BAPI_CM_PROFILE_DEACTIVATE

IMPORTING

 I_EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I _PROFILETYPE like BTC_CRITTYPE

 type CHAR length 6

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_PROFILETYPE is the criteria type of the profile that has to be set
to inactive.

 For the default criteria types provided by SAP, the values are:

 EVTHIS identifies a criteria type for event history.

 EVHIRO identifies a criteria type for the reorganization of raised
 events.

 INTERC identifies a criteria type for job interception

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

 119

7.9.20.2.5 Returning a List of Existing Profiles

Function name BAPI_CM_PROFILES_GET

Short description This function returns a list of the existing profiles filtered by profile type.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name GetProfiles

RFC interface FUNCTION BAPI_CM_PROFILES_GET

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 E_PROFILETYPE like BTC_CRITTYPE optional

 type CHAR length 6 default '%'

EXPORTING

 E_T_PROFILES type BTC_T_PROFILE_RAW

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_PROFILETYPE is the criteria type of the profile by which the
returned criteria profiles are to be filtered. The default is % which
means that all profiles are to be selected. You can use wildcards.
Only * is supported.

 For the default criteria types provided by SAP, the values are:

 EVTHIS identifies a criteria type for event history.

 EVHIRO identifies a criteria type for the reorganization of raised
events.

 INTERC identifies a criteria type for job interception

Parameter (Output) ¶ E_T_PROFILES is the database table containing the returned
criteria profiles with all important parameters. See
BTC_T_PROFILE_RAW ABAP dictionary type for details.

¶ BAPIRET2 is the return structure used by BAPIs.

7.9.20.3 Working with Criteria

7.9.20.3.1 Returning the Criteria Hierarchy of a Profile

Function name BAPI_CM_CRITERIA_GET

Short description This function module returns the criteria hierarchy of a particular profile
in XML format.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name GetCriteria

RFC interface FUNCTION BAPI_CM_CRITERIA_GET

IMPORTING

 I_ EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 120

 I _PROFILEID like BTCPROFILEID

 type INT2 length 5

 I _PROFILETYPE like BTC_CRITTYPE

 type CHAR length 6

EXPORTING

 E_CRITERIA_XML type STRING

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_PROFILETYPE is the criteria type of the profile whose criteria
are to be exported in XML format.

 For the default criteria types provided by SAP, the values are:

 EVTHIS identifies a criteria type for event history.

 EVHIRO identifies a criteria type for the reorganization of raised
events.

 INTERC identifies a criteria type for job interception

¶ I_PROFILEID is the ID of the profile whose criteria are to be
exported in XML format.

Parameter (Output) ¶ E_CRITERIA_XML returns an XML description of the criteria
hierarchy of the profile.

¶ BAPIRET2 is the return structure used by BAPIs.

7.9.20.3.2 Importing Criteria to an Existing Criteria Profile

Function name BAPI_CM_CRITERIA_SET

Short description This function module imports criteria to an existing criteria profile. The
criteria which you want to import have to be written in XML format. If
you import criteria in a profile which already contains certain criteria,
the criteria in the profile are overwritten by the imported criteria.

New in XBP 3.0 The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name SetCriteria

RFC interface FUNCTION BAPI_CM_CRITERIA_SET

IMPORTING

 I_ EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I _PROFILEID like BTCPROFILEID

 type INT2 length 5

 I _PROFILETYPE like BTC_CRITTYPE

 type CHAR length 6

 I _CRITERIA_XML type STRING

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_PROFILETYPE is the type of the profile in which you want to
import criteria.

 121

¶ I_PROFILEID is the ID of the profile in which you want to import
criteria.

¶ I_CRITERIA_XML provides an XML description of the criteria
profile and its criteria hierarchy. For more information about the
relevant Document Type Definition, see chapter 8. Appendix,
section Document Type Definition for Defining Profiles and Criteria
for Event History.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

7.9.21 Reading a Particular Spool List as PDF
With this function itôs possible to pass the number of a particular spool list and the
system will return its content in PDF format.

Function name BAPI_XBP_GET_SPOOL_AS_PDF

Short description Convert to PDF format and read a particular ABAP spool list of a job
that has been run.

If spool list contains more than 100 pages conversion will be
performed asynchronous in background.

From SAP NW 7.0 PDF-Spool-Lists are compressed using ZIP
compress methods.

Introduced in XBP
2.0

Available as XBP 2.0 extension and delivered via correction
instruction.

BAPI object name BackgroundJob

BAPI method name

RFC interface FUNCTION bapi_xbp_get_spool_as_pdf.

 IMPORTING

 VALUE(I_SPOOLID) TYPE RSPOID

 VALUE(I_EXTERNAL_USER_NAME) TYPE XMILOGEUSR

 EXPORTING

 VALUE(RETURN) TYPE BAPIRET2

 VALUE(E_PDF) TYPE XSTRING

 VALUE(E_COMPRESSED) TYPE BOOLEAN

 VALUE(E_JOBNAME) TYPE BTCJOB

 VALUE(E_JOBCOUNT) TYPE BTCJOBCNT

Parameter (Input)

¶ I_EXTERNAL_USER_NAME is the name of the XBP user.

¶ I_SPOOLID is the number of a spool request in the SAP
system.

Parameter (Output) ¶ E_PDF: Spool List in binary format

¶ E_COMPRESSED: =ôXô when spool list is compressed

¶ E_JOBNAME: Jobname of the PDF conversion job

¶ E_JOBCOUNT: Jobcount of the PDF conversion job

¶ RETURN is the standard return structure containing return
values of the function.

MessageIDs ¶ MSG_NOT_LOGGED_ON: The external management tool has
not logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PRIVILEGE_MISSING: The user used by the external
management system to log onto the AS ABAP system is not
authorized to read the spool list.

 122

¶ Errors in text form. Please take a notice of a message text.

7.9.22 Reading a Particular Binary Spool List
With this function itôs possible to read binary spool lists crated, for example, via
BAPI_XBP_GET_SPOOL_AS_PDF function module.

Function name BAPI_XBP_READ_SPOOL_BIN

Short description Read particular binary spool list unconverted in binary format.

From SAP NW 7.0 PDF-Spool-Lists are compressed using ZIP
compress methods.

Introduced in XBP
2.0

Available as XBP 2.0 extension and delivered via correction
instruction.

BAPI object name BackgroundJob

BAPI method name

RFC interface FUNCTION bapi_xbp_read_spool_bin.

 IMPORTING

 VALUE(I_SPOOLID) TYPE RSPOID

 VALUE(I_EXTERNAL_USER_NAME) TYPE XMILOGEUSR

 VALUE(I_BYTES_FROM) TYPE INT4 DEFAULT 0

 VALUE(I_PORTION) TYPE INT4 DEFAULT 4194304

 EXPORTING

 VALUE(RETURN) TYPE BAPIRET2

 VALUE(E_SPOOL) TYPE XSTRING

 VALUE(E_MIME_TYPE) TYPE SAEMIME

 VALUE(E_COMPRESSED) TYPE BOOLEAN

 VALUE(E_MORE) TYPE BOOLEAN

Parameter (Input)

¶ I_EXTERNAL_USER_NAME is the name of the XBP user.

¶ I_SPOOLID is the number of a spool request in the SAP
system.

¶ The I_BYTES_FROM and I_PORTION parameters allow
the external scheduler to read long spools in chunks to
improve performance.

Parameter (Output) ¶ E_SPOOL: List in binary format

¶ E_COMPRESSED: =ôXô when spool list is compressed

¶ E_MIME_TYPE: Mime type (=òPDFò ï for PDF spool)

¶ E_MORE has the value óXô when more bytes than given in
I_PORTION are available in the spool list.

¶ RETURN is the standard return structure containing return
values of the function.

MessageIDs ¶ MSG_NOT_LOGGED_ON: The external management tool has
not logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PRIVILEGE_MISSING: The user used by the external
management system to log onto the AS ABAP system is not
authorized to read the spool list.

¶ Errors in text form. Please take a notice of a message text.

 123

7.10 Searching with Wildcards
Using the following function modules, you can search with wildcards for ABAP reports,
external commands, output devices and print formats available in the current system:

7.10.1 Searching for ABAP Reports

Function name BAPI_XBP_REPORT_SEARCH

Short description This function module is a value help function for ABAP reports. It
returns a list of ABAP reports available in the current systems, which
match a certain wildcard. It is possible to return the list in several parts.
These parts can also vary in size from call to call.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_REPORT_SEARCH

importing

 REPORT like TRDIRT - NAME optional

 type RFC_CHAR length 40

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 COUNT TYPE I OPTIONAL

exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

Tables

 REPORTS structure TRDIRT

 length 111 number of fields 3

Detailed function
description

With this function you can get a full list of ABAP reports available in the
current system, whose names correspond to a certain wildcard and
whose descriptions are written in the logon language. The wildcard is
given with the optional and case-insensitive parameter REPORT. Valid
wildcard special symbols are ó*ô (asterisk) and ó.ô (dot). If no wildcard is
specified, all reports are returned. Names of reports, languages, and
text descriptions are stored in the REPORTS table.

If no description for a report is found in the logon language, the entry is
returned with any available non-empty description.

The optional parameter COUNT is used to limit the size of the output
list. This parameter makes it possible to divide the output into parts.
The size of each part can vary as well. When the list is divided into
parts, each call to the current function module returns the next portion
of the specified size unless the output is complete.

If a sequence of calls with the same environment, that is, the same
REPORT and EXTERNAL_USER_NAME parameters, is interrupted
by a call with different parameters, the environment for the first call is
lost, and only the interrupting call is able to proceed retrieving the rest
of its output.

Parameter (Input) ¶ REPORT is a wildcard for names of required ABAP reports.

 124

¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ COUNT is an optional parameter for limiting the size of the output
list. This parameter enables you to divide the output into parts.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ REPORTS is a table that contains names of all the ABAP reports
that will be returned by the function module.

MessageIDs ¶ MSG_EXT_USER_MISSING: External user name is missing
(initial).

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_WRONG_COUNTER: Counter has a negative value.

¶ MSG_SELECTION_FINISHED: All output has been retrieved.

7.10.2 Searching for External Commands

Function name BAPI_XBP_EXT_COMM_SEARCH

Short description This function module is a value help function for external commands. It
returns a list of external commands available in the current system,
whose names match a certain wildcard.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_EXT_COMM_SEARCH

Importing

 COMMAND LIKE SXPGCOLIST- NAME

 optional default '*'

 type RFC_CHAR.length 18

 OPSYS LIKE SXPGCOLIST- OPSYSTEM optional

 type RFC_CHAR length 10

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

Exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

Tables

 EXT_COMMANDS structure SXPGCOLIST

 length 445 number of fields 9

Detailed function

description

With this function you can get a full list of external commands available
in the current system, whose names and operating systems
correspond to certain requirements. The wildcard is specified in the
optional and case-insensitive parameter COMMAND. The OPSYS
parameter specifies the name of the operating system for which the
commands are valid. If no operating system name is specified, all are

 125

assumed. If no wildcard for command names is specified, then all
commands are returned. Names, operating systems, types, underlying
commands, etc. of external programs are placed in the
EXT_COMMANDS table.

Parameter (Input)

¶ COMMAND is a wildcard for required names of external
commands.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ OPSYS is the name of the operating system, for which external
commands are searched.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ EXT_COMMANDS is a table that contains all external commands
that correspond to the given wildcard and the name of the
operating system.

MessageIDs ¶ MSG_EXT_USER_MISSING: External user name is missing.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PROBLEM_DETECTED: Internal error.

7.10.3 Searching for Output Devices

Function name BAPI_XBP_OUTPUT_DEVICE_SEARCH

Short description This function module is a value help function for printer output devices.
It returns a list of output devices available in the current system, whose
names match a certain wildcard.

Enhanced to XBP
3.0

The function module was new in XBP 2.0 and has been enhanced
for XBP 3.0

You can now also search for a certain device type as well as for output
devices whose definitions have been changed after a certain date.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_OUTPUT_DEVICE_SEARCH

Import parameters

 OUTPUT_DEVICE_SHORT like TSP03L - PADEST

 optional type RFC_CHAR length 4

 OUTPUT_DEVICE_LONG like TSP03L - LNAME

 optional type RFC_CHAR length 30

 EXTERNAL_USER_NAME LIKE BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 DEVTYPE like RSPOPTYPE

 optional type RFC_CHAR length 8

 CHANGE_DATE type TSPOC- DATUM

 optional type DATS length 8

 CHANGE_TIME type TSPOC- ZEIT

 optional type TIMS length 6

 RETURN_LONG_NAMES type BTCH0000- CHAR1

 126

 Optional RFC_CHAR length 1

Export parameters

 RETURN structure BAPIRET2 length 548

 number of fields 14

Tables

 OUTPUT_DEVICES structure RSPOLD

 opti onal length 92, number of fields 4

 OUTPUT_DEVICES_LONG structure RSPODEVL

 Optional length 158 , number of fields 7

Detailed function

description

With this function you can get a full list of output devices available in
the current system, whose short and long names correspond to certain
requirements. Long names are non-technical names, which are first
converted into short names.

The names should be given using the OUTPUT_DEVICE_SHORT and
OUTPUT_DEVICE_LONG parameters. Both are optional, case-
insensitive parameters, which accept wildcards. If both names are left
blank, it is assumed that the long name is ó*ô. Output devices and some
of their properties are stored in the table OUTPUT_DEVICES.

As of XBP 3.0, you can also search for a certain device type as well as
for output devices whose definitions have been changed after a certain
date and time.

Parameter (Input)

¶ OUTPUT_DEVICE_LONG is a wildcard for long names of output
devices. These long names will first be converted into short
names.

¶ OUTPUT_DEVICE_SHORT is a wildcard for technical names of
output devices.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ DEVTYPE is the name of a device type.

¶ CHANGE_DATE is the date when an output device definition has
been changed for the last time.

¶ CHANGE_TIME is the time when an output device definition has
been changed.

¶ RETURN_LONG_NAMES is a flag that tells the system to return
also the long names of output devices in a separate table.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

Tables ¶ OUTPUT_DEVICES is a table that contains all output devices that
correspond to the given wildcards for short and long names.

¶ OUTPUT_DEVICES_LONG is a table that contains long and short
names of output devices plus some extra information.

MessageIDs ¶ MSG_EXT_USER_MISSING: External user name is missing.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 127

7.10.4 Searching for Print Formats

Function name BAPI_XBP_PRINT_FORMAT_SEARCH

Short description This function module is a value help function for print formats. It
returns a list of print formats available for a certain printer. The names
of the print formats match a certain wildcard.

Introduced in XBP
2.0

The entire function module was new in XBP 2.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_PRINT_FORMAT_SEARCH

Importing

 PRINTER like TSP03L - PADEST

 type RFC_CHAR length 4

 LAYOUT like RSPOLD - LAYOUT

 optional DEFAULT '*'

 type RFC_CHAR length 16

 EXTERNAL_USER_NAME LIKE BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

Exporting

 RETURN structure BAPIRET2

 length 548 number of fields 14

Tables

 LAYOUTS structure RSPOLD

 length 92, number of fields 4

Parameter (Input)

¶ PRINTER specifies a certain printer, for which print formats are
retrieved.

¶ LAYOUT defines a wildcard for required print formats. If this
optional parameter is left blank, ó*ô is assumed.

¶ EXTERNAL_USER_NAME is the name of the XBP user.

Parameter (Output) ¶ RETURN is the return structure for function modules used for
BAPIs.

Tables ¶ LAYOUTS is a table that contains all the print formats that were
requested.

MessageIDs ¶ MSG_EXT_USER_MISSING: External user name is missing.

¶ MSG_CANT_LOG: Activity was terminated because the AS ABAP
XMI logging mechanism returned an error.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_WRONG_PRINTER_NAME: There is no printer of the given
name in the system.

 128

7.10.5 Searching for Archive Parameters

Function name BAPI_XBP_GET_ARCHIVE_OBJECTS

Short description This function returns SAP Objects and Archive Objects that are
defined in a system.

Introduced in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object name

BAPI method name

RFC interface FUNCTION BAPI_XBP_GET_ARCHIVE_OBJECTS

IMPORTING

 EXTERNAL_USER_NAME TYPE XMILOGEUSR

 type CHAR length 16

 SAP_OBJECT TYPE SAEANWDID

 optional default SPACE

 type CHAR length 10

EXPORTING

 RETURN structure BAPIRET2

 length 548 number of fields 14

TABLES

 AR_OBJECTS structure BAPIARCOBJECTS

 length 167 number of fields 5

Detailed function

description

This function returns a table of SAP and Archive Objects that are
defined in a system. The values can be passed as archive parameters
to BAPI_XBP_JOB_ADD_ABAP_STEP.

Parameter (Input)

¶ EXTERNAL_USER_NAME is the name of the XBP user

¶ SAP_OBJECT (optional) is the name of a SAP Object. This
parameter does not support wildcards. It is only possible to return
Archive Objects for a given single SAP Object.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

Tables AR_OBJECTS contains SAP Objects and Archive Objects with
descriptions. For the description of structure BAPIARCOBJECTS see
section 7.10.5.1.

7.10.5.1 Description of structure BAPIARCOBJECTS

Field Name Field type Description

SAP_OBJECT CHAR10 Object type of business object

NTEXT CHAR80 Description of business object

AR_OBJECT CHAR10 Document type

OBJECTTEXT CHAR40 Document type description

RESERVE CHAR27 Reserved for future usage

 129

7.10.6 Searching for Batch Events

Function name BAPI_XBP_EVENT_DEFINITIONS_GET

Short description This function module is a value help function for batch events. It
returns a list of batch events that are available in the current system
and whose names match a certain wildcard.

Introduced in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object name BackgroundJob

BAPI method name

RFC interface Function BAPI_XBP_ EVENT_DEFINITIONS_GET

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 I_EVENTID _MASK like BTCEVENTID Optional

 type CHAR length 32 default %

 I_FROM type INT4 Optional

 CHAR length 10 default 0

 I_TO type INT4 Optional

 CHAR length 10 default 0

EXPORTING

 E_T_EVENTS TYPE BTC_T_EVTINFO

 E_MORE TYPE BOOLEAN CHAR1

 RETURN structure BAPIRET2 length 548

 number of fields 14

Detailed function

description

With this function you can get a full list of batch events available in the
current system. The wildcard is specified in the optional and case-
insensitive parameter I_EVENTID_MASK. Optional parameters
I_FROM and I_TO are used for the reading in packets.

Parameter (Input)

¶ I_EXTERNAL_USER_NAME is the name of the user in the
external scheduler who called the function.

¶ I_EVENTID_MASK is a wildcard for the event name.

¶ I_FROM specifies the number of the line in the batch event
definitions from which the external scheduler should start reading.
The default value is 0: read all events.

¶ I_TO specifies the number of the line in the batch event definitions
at which the external scheduler should stop reading. The default
value is 0: read all events.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

¶ E_T_EVENTS is a table that contains all batch events that
correspond to the given wildcard and are within the package
range.

¶ E_MORE has the value óXô, when more batch events than stated in
I_TO are available in the current system.

 130

7.11 General Help Functions
Below are descriptions of the following functions which allow you to:

¶ see all variants of a given ABAP program
(BAPI_XBP_VARIANT_INFO_GET).

¶ see the resources currently available for jobs in the AS ABAP system
(BAPI_XBP_ GET_CURR_BP_RESOURCES).

¶ determine whether resources are available for a job on a particular server at a
particular time
(BAPI_XBP_ GET_BP_SRVRES_ON_DATE).

¶ determine whether resources are available for a job on any server in the AS ABAP
system at a particular time
(BAPI_XBP_GET_BP_RESRC_ON_DATE).

¶ read syslog entries in the AS ABAP system.

¶ read SAP Factory calendar
 (BAPI_XBP_FACT_CALENDERS_GET).

¶ read SAP Holiday calendar
(BAPI_XBP_HOL_CALENDERS_GET).

7.11.1 Showing All Defined Variants of an ABAP Program

Function name BAPI_XBP_VARIANT_INFO_GET

Short description For a given ABAP the variants are read.

BAPI object name BackgroundJob

BAPI method name GetVariantListForReportname

RFC interface function BAPI_XBP_VARIANT_INFO_GET

importing

 ABAP_PROGRAM_NAME like BAPIXMREP- REPORTID

 type RFC_CHAR length 40

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 VARIANT_SELECT_OPTION like BAPIXMREP -

 VARSELOPT

 type RFC_CHAR length 1

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

tables

 ABAP_VARIANT_TABLE structure BAPIXMVAR

 length 54 number of fields 2

Parameter (Input) ¶ ABAP_PROGRAM_NAME is name of the ABAP program for
which existing variants are to be determined. The program must
have type 1 (interactively executable).

¶ EXTERNAL_USER_NAME is the name of the XBP user

¶ VARIANT_SELECT_OPTION defines which type of variables
should be chosen. Permissible values are as follows:

 'A' - variants that are available for batch as well as for dialog will
 be selected
 'B' - óbatch onlyô variants will be selected

¶ MORE_INFO: If this parameter is set to 'X', table parameter
VARIANT_INFO will be filled (see below).

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

Tables ¶ ABAP_VARIANT_TABLE contains all defined variants of the

 131

ABAP program.

¶ VARIANT_INFO contains the following fields:

¶ REPORT (type CHAR, length 40)

¶ VARIANT (type CHAR, length 14)

¶ VTEXT (type CHAR, length 30)

¶ ENVIRONMNT(type CHAR, length 1)

¶ PROTECTED (type CHAR, length 1)

¶ ENAME (type CHAR, length 12): creator

¶ EDAT (type DATS, length 6): creation date

¶ AENAME (type CHAR, length 12): last modifier

¶ AEDAT (type DATS, length 6): last modification date

¶ MANDT (type CLNT, length 3)

MessageIDs ¶ MSG_PROGRAM_DOES_NOT_EXIST: The specified ABAP
program does not exist in the AS ABAP system.

¶ MSG_PROGNAME_MISSING: You did not enter an ABAP
program name.

¶ MSG_INVALID_SELECT_OPTION: Wrong code used to select
variants of an ABAP.

¶ MSG_PROGRAM_HAS_NO_VARIANT: The ABAP program has
no variants.

¶ MSG_NO_VARIANTS_DEFINED: You have not yet defined any
variants.

¶ MSG_PROG_NOT_EXECUTABLE: The program is not
executable.

¶ MSG_NO_EXECUTE_PRIVILEGE: The SAP user used by the
external job management system to log onto the AS ABAP system
is not authorized to execute the ABAP program.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 132

7.11.2 Determining Current Resources for Jobs in the AS
ABAP System

Function name BAPI_XBP_GET_CURR_BP_RESOURCES

Short description Using this function module you can retrieve the following values
from the AS ABAP system:

¶ Names of the servers which currently have background work
processes

¶ Number of background work processes on each server and
their status (total number, free, working, class A background
work processes)

BAPI object name SystemServiceInfo

BAPI method name GetCurrentBackgroundResources

RFC interface function BAPI_XBP_GET_CURR_BP_RESOURCES

importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

exporting

 RETURN structure BAPIRET2 length 552

 number of fields 14

 tables

 RESOURCE_INFO structure BAPIXMCRES

 length 69 number of fields 5

Parameter (Input) EXTERNAL_USER_NAME is the name of the XBP user.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

Parameter (Output) RESOURCE_INFO is a table containing the following information in
each line:

¶ Server name

¶ Host name

¶ Total number of background work processes on the
server

¶ Number of free background work processes on the
server

¶ Number of working background work processes on
the server

¶ Number of reserved class A background work
processes on the server

MessageIDs ¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling
system has discovered an error.

¶ MSG_NO_RESOURCES_FOUND: There are no background
processing resources in the AS ABAP system.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 133

7.11.3 Checking Available Job Resources at a Particular
Time on a Server

In the AS ABAP system, within the framework of switching operation modes on servers,
you can assign different work process types at different times. For example, you might
only have dialog processes during the day, but at night some of these processes switch
to operating as background work processes. You can use the function module
BAPI_XBP_GET_BP_SRVRES_ON_DATE to determine whether background work
processes are available at a particular time on a particular server.

Function name BAPI_XBP_GET_BP_SRVRES_ON_DATE

Short description Get resource information for a particular server at a certain date and
time.

BAPI object name SystemServiceInfo

BAPI method name GetBgrdResourcesOnDateOnServer

RFC interface function BAPI_XBP_GET_BP_SRVRES_ON_DATE

importing

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 SERVER_NAME like BAPIXMJOB - EXECSERVER

 type RFC_CHAR length 20

 DATE like BAPIXMJOB - SDLSTRTDT

 type RFC_DATE length 8

 TIME like BAPIXMJOB - SDLSTRTTM

 type RFC _TIME length 6

exporting

 RESOURCE_INFO structure BAPIXMRES

 length 66 number of fields 4

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ SERVER_NAME is the name of the AS ABAP instance on
which the availability of resources is to be determined.

 The name must be specified in the format <host_name>
<SAP_system_name>_<SAP_system_number>. The instance
name is contained in system profile parameter rdisp/myname.

 Example: host1234_C11_55

¶ DATE is the date on which the availability of resources is to be
determined. You must specify the date in the format
YYYYMMDD. Example 20000101.

¶ TIME is the time of day at which the availability of resources is to
be determined. The time must be specified as HHMMSS.
Example: 231255.

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

¶ RESOURCE_INFO is a table that lists the resources available for
background processing for each instance:

¶ Host name

¶ Number of background work processes

¶ Number of reserved class A background work
processes

MessageIDs ¶ MSG_NO_RESOURCES_FOUND: There are no background work
processes on the server at the given time and date.

¶ MSG_PROBLEM_DETECTED: The AS ABAP job scheduling

 134

system has discovered a problem.

¶ MSG_INVALID_SERVER_NAME: The specified server name is
invalid.

¶ MSG_INVALID_DATE_TIME: The specified date and/or time is
invalid.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in an external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

The XMI log does not record any calls to this function, since it does not change
or output any security-sensitive data.

 135

7.11.4 Checking Available Job Resources at a Particular
Time in the Whole SAP System.

Function name BAPI_XBP_GET_BP_RESRC_ON_DATE

Short description You can use this function module to determine whether background
work processes are available at a particular time on any server in the
AS ABAP system.

BAPI object name SystemServiceInfo

BAPI method name GetBackgroundResourcesOnDate

RFC interface function BAPI_XBP_GET_BP_RESRC_ON_DATE

importing

 EXTERNAL_USER_NAME like BAPIXMLOGR_EXTUSER

 type RFC_CHAR length 16

 DATE like BAPIXMJOB_SDLSTRTDT

 type RFC_DATE length 8

 TIME like BAPIXMJOB_SDLSTRTTM

 type RFC_TIME length 6

exporting

 RETURN structure BAPIRET2 length 548

 number of fields 14

tables

 RESOURCE_INFO_TBL structure BAPIXMRES

 length 66 number of fields 4

Parameter (Input) ¶ EXTERNAL_USER_NAME is the name of the XBP user.

¶ DATE is the date on which the availability of resources is to be
determined. You must specify the date in the format
YYYYMMDD. Example 20000101.

¶ TIME is the time of day at which the availability of resources is to
be determined. The time must be specified as HHMMSS.
Example: 231255.

Parameter (Output) ¶ BAPIRET2 is the return used by BAPIs.

Tables ¶ RESOURCE_INFO_TBL is a table that lists the resources
available for background processing for each instance. It
contains the following values:

o Server name

o Host name

o Number of background work processes

o Number of reserved class A background work processes

MessageIDs ¶ MSG_NO_RESOURCES_FOUND: There are no background work
processes in the AS ABAP system at the given time and date.

¶ MSG_INVALID_DATE_TIME: The specified time and/ or date is
invalid.

¶ MSG_PROBLEM_DETECTED: The job scheduling system has
discovered an error.

¶ MSG_CANT_LOG: The activity was terminated because the AS
ABAP XMI logging system returned an error.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not

 136

logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

7.11.5 Reading SAP Factory Calendars

Function name BAPI_XBP_FACT_CALENDERS_GET

Short description You can use this function module to read SAP Factory calendars.

Introduced in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_FACT_CALENDERS_GET

Importing

 I_EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I_CALENDER_ID like WFCID optional

 DEFAULT '%'

 type CHAR length 2

 I_GET_DETAILS TYPE BOOLEAN optional

 DEFAULT ABAP_FALSE

EXPORTING

 T_CAL_DEFINITIONS TYPE BAPI_T_TFACD

 T_CAL_DETAILS TYPE BAPI_T_TFACS

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME: Name of the XBP user.

¶ I_CALENDER_ID: Wildcard for the calendar ID. The default is ó%ô
which means 'read all'.

¶ I_GET_DETAILS: When flag: =ôXô, the detail info is transferred to

the external scheduler (Table T_CAL_DETAILS).

Parameter (Output) ¶ BAPIRET2 is the return structure used by BAPIs.

¶ T_CAL_DEFINITIONS: Table with SAP factory calendar
definition(s).

¶ T_CAL_DETAILS: Table with details of SAP factory calendar(s).

MessageIDs ¶ MSG_CALENDER_DOES_NOT_EXISTS: There were no
calendars found with the specified mask

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 137

7.11.6 Reading SAP Holiday Calendars

Function name BAPI_XBP_HOL_CALENDERS_GET

Short description You can use this function module to read SAP Holiday calendars.

Introduced in XBP
3.0

The entire function module is new in XBP 3.0.

BAPI object name

BAPI method name

RFC interface

Function BAPI_XBP_HOL_CALENDERS_GET

Importing

 I_EXTERNAL_USER_NAME like XMILOGEUSR

 type CHAR length 16

 I_CALENDER_ID like WFCID optional

 DEFAULT '%'

 type CHAR length 2

 I_GET_DETAILS TYPE BOOLEAN optional

 DEFAULT ABAP_FALSE

EXPORTING

 T_CAL_DEFINITIONS TYPE BAPI_T_TFACD

 T_CAL_DETAILS TYPE BAPI_T_TFACS

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ I_EXTERNAL_USER_NAME is the name of the XBP user.

¶ I_CALENDER_ID: Wildcard for the calendar ID. The default is ó%ô
which means 'read all'.

¶ I_GET_DETAILS: When flag: =ôXô, the detail info is transferred to

the external scheduler (Table T_CAL_DETAILS).

Parameter (Output) ¶ BAPIRET2 is the return used by BAPIs.

¶ T_CAL_DEFINITIONS: Table with SAP holiday calendar
definition(s).

¶ T_CAL_DETAILS: Table with details of SAP holiday calendar(s).

MessageIDs ¶ MSG_CALENDER_DOES_NOT_EXISTS: There were no
calendars found with the specified mask.

¶ MSG_EXT_USER_MISSING: The name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 138

7.12 Variant Functions
With XBP 3.0 some functions for simplified variant handling are introduced.

7.12.1 Creating a Variant

Function name BAPI_XBP_VARIANT_CREATE

Short description Create a variant of an ABAP program

Regarding support of full length 132 (instead of 45) for simple
selection fields, see note 1144882.

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_VARIANT_CREATE

IMPORTING

 ABAP_PROGRAM_NAME type BAPIXMREP- REPORTID

 type CHAR length 40

 ABAP_VARIANT_NAME type BAPIXMREP- VARIANTNAM

 type CHAR length 14

 ABAP_VARIANT_TEXT type RVART_VTXT

 Type CHAR length 30

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

TABLES

 VARIANT_INFO like BAPIVARINF O

 length 196 number of fields 10

Parameter (Input) ¶ ABAP_PROGRAM_NAME: Name of the ABAP program for
which a variant is to be created.

¶ ABAP_VARIANT_NAME: Is the name of the variant to be
created.

¶ ABAP_VARIANT_TEXT: Short text of the variant.

¶ EXTERNAL_USER_NAME: Name of the XBP user (user of the
external management system).

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

Tables VARIANT_INFO: Contains the information of a report variant.

MessageIDs ¶ MSG_ERROR_IN_FUNCTION: A function called within this
function returned an error. This error message contains the name
and return code of the called function as variable parts.

¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling

 139

system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PROGNAME_MISSING

¶ MSG_NO_VARIANT_SPECIFIED: No variant name has been
specified

¶ MSG_PROG_DOES_NOT_EXIST:

¶ MSG_NO_EXECUTE_PRIVILEGE: The user, who wants to create
a new variant for a report, does not have the authorization to
execute this report

¶ MSG_PROG_NOT_EXECUTABLE: The specified program is not
an executable program

¶ MSG_VARIANT_ALREADY_EXISTS: The specified variant
already exists

¶ MSG_WRONG_CLIENT: the caller tries to create a system
variant, but the logon client is other than 000

7.12.2 Changing a Variant

Function name BAPI_XBP_VARIANT_CHANGE

Short description Change a variant of an ABAP program.

Regarding support of full length 132 (instead of 45) for simple
selection fields, see note 1144882.

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_VARIANT_CHANGE

IMPORTING

 ABAP_PROGRAM_NAME type BAPIXMREP- REPORTID

 type CHAR length 40

 ABAP_VARIANT_NAME type BAPIXMREP- VARIANTNAM

 type CHAR length 14

DIA type BTCHCHAR1

 type CHAR length 1

PROTECTED type VARID- PROTECTED

 type CHAR length 1

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

MERGE type BTC HCHAR1

 type CHAR length 1

 APPEND_SELOP type BTCHCHAR1

 type CHAR length 1

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

 140

TABLES

 VARIANT_INFO like BAPIVARINF O

 length 196 number of fields 10

Parameter (Input) ¶ ABAP_PROGRAM_NAME: Name of the ABAP program for
which a variant is to be changed.

¶ ABAP_VARIANT_NAME: Is the name of the variant to be
changed.

¶ EXTERNAL_USER_NAME: Name of the XBP user (user of the
external management system).

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

Tables VARIANT_INFO: Contains the information about a report variant.

VARIANT_INFO_L: Contains the information about a report
variant.(as of Basis release 7.02)

VARI_TEXT (optional): Contains the describing text of a variant

MessageIDs ¶ MSG_ERROR_IN_FUNCTION: A function called within this
function returned an error. This error message contains the name
and return code of the called function as variable parts.

¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PROGNAME_MISSING

¶ MSG_NO_VARIANT_SPECIFIED: No variant name has been
specified

¶ MSG_PROG_DOES_NOT_EXIST

¶ MSG_VARIANT_DOES_NOT_EXIST

¶ MSG_NO_EXECUTE_PRIVILEGE: The user, who wants to create
a new variant for a report, does not have the authorization to
execute this report

¶ MSG_PROG_NOT_EXECUTABLE: The specified program is not
an executable program

¶ MSG_WRONG_CLIENT: the caller tries to create a system
variant, but the logon client is other than 000

If import parameter MERGE is set to 'X', variant fields that are not transferred in table
VARIANT_INFO (or VARIANT_INFO_L) will not be initialized.
Regarding the parameter APPEND_SELOP see note 2179397.

7.12.3 Copying a Variant

Function name BAPI_XBP_VARIANT_COPY

Short description Copy a variant of an ABAP program

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

 141

BAPI method name

RFC interface Function BAPI_XBP_VARIANT_COPY

IMPORTING

 ABAP_PROGRAM_NAME type BAPIXMREP- REPORTID

 type CHAR length 40

 SOURCE_VARIANT type BAPIXMREP - VARIANTNAM

 type CHAR length 14

 TARGET_VARIANT type BAPIXMREP - VARIANTNAM

 type CHAR length 140

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ ABAP_PROGRAM_NAME: Name of the ABAP program from
which a variant is to be copied.

¶ SOURCE_VARIANT: Name of the variant to copy.

¶ TARGET_VARIANT: Name of the copied variant.

¶ EXTERNAL_USER_NAME: Name of the XBP user (user of the
external management system).

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PROGNAME_MISSING: No program name has been
specified

¶ MSG_NO_VARIANT_SPECIFIED: No variant name has been
specified

¶ MSG_PROG_DOES_NOT_EXIST

¶ MSG_VARIANT_DOES_NOT_EXIST: The source variant does not
exist

¶ MSG_VARIANT_ALREADY_EXISTS: The target variant already
exists

¶ MSG_PROG_NOT_EXECUTABLE: The specified program is not
an executable program

¶ MSG_WRONG_CLIENT: the caller tries to create a system
variant, but the logon client is other than 000.

¶ MSG_ERROR_IN_FUNCTION: A function called within this
function returned an error. This error message contains the name
and return code of the called function as variable parts.

 142

7.12.4 Reading Variant Data

Function name BAPI_XBP_VARINFO

Short description Read the data of all variants of an ABAP program

Regarding support of full length 132 (instead of 45) for simple
selection fields, see note 1144882.

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_VARINFO

IMPORTING

 ABAP_PROGRAM_NAME type BAPIXMREP- REPORTID

 type CHAR length 40

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 VARIANT_SELECT_OPTION type BAPIXMREP -

 VARSELOPT optional

 Default 'A'

 Type CHAR length 1

EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

TABLES

 VARIANT_INFO like BAPIVARINF O

 length 196 number of fields 10

Parameter (Input) ¶ ABAP_PROGRAM_NAME: Name of the ABAP program of
which you want to read all variants.

¶ EXTERNAL_USER_NAME: Name of the XBP user (user of the
external management system).

¶ VARIANT_SELECT_OPTION: The default value is 'A' which
means that all variants are read. 'B' means that only variants for
background processing are selected.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs

Table VARIANT_INFO: Contains the information about a report variant.

MessageIDs ¶ MSG_ERROR_IN_FUNCTION: A function called within this
function returned an error. This error message contains the name
and return code of the called function as variable parts.

¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PROGNAME_MISSING: No program name has been
specified

 143

¶ MSG_PROG_DOES_NOT_EXIST

¶ MSG_NO_EXECUTE_PRIVILEGE: The user, who wants to create
a new variant for a report, does not have the authorization to
execute this report

¶ MSG_PROG_NOT_EXECUTABLE: The specified program is not
an executable program

7.12.5 Deleting a Variant

Function name BAPI_XBP_VARIANT_DELETE

Short description Delete a variant of an ABAP program

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_VARIANT_DELETE

IMPORTING

 ABAP_PROGRAM_NAME type BAPIXMREP- REPORTID

 type CHAR length 40

 ABAP_VARIANT_NAME type BAPIXMREP- VARIANTNAM

 type CHAR length 14

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 CLIENT_ONLY type CHAR1 optional

 EXPORTING

 RETURN structure BAPIRET2 length 548

 number of fields 14

Parameter (Input) ¶ ABAP_PROGRAM_NAME: Name of the ABAP program of
which a variant is to be deleted.

¶ ABAP_VARIANT_NAME: Name of the variant to be deleted.

¶ EXTERNAL_USER_NAME: Name of the XBP user (user of the
external management system).

¶ CLIENT_ONLY: The flag X means that the variant is to be
deleted only in current client.

Parameter (Output) BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

¶ MSG_PROGNAME_MISSING: No program name has been
specified

¶ MSG_NO_VARIANT_SPECIFIED: No variant name has been
specified

¶ MSG_PROG_DOES_NOT_EXIST

 144

¶ I_EXTERNAL_USER_NAME is the name of the XBP user.

¶ I_CALENDER_ID is a wildcard for the calendar ID, default ó%ô:
read all.

¶ MSG_VARIANT_DOES_NOT_EXIST: The source variant does
not exist

¶ MSG_NO_EXECUTE_PRIVILEGE: The user, who wants to create
a new variant for a report, does not have the authorization to
execute this report

¶ MSG_PROG_NOT_EXECUTABLE: The specified program is not
an executable program

¶ MSG_WRONG_CLIENT: The caller tries to create a system
variant, but the logon client is other than 000.

¶ MSG_ERROR_IN_FUNCTION: A function called within this
function returned an error. This error message contains the name
and return code of the called function as variable parts.

7.12.6 Reading Selection Screen of an ABAP Program

Function name BAPI_XBP_READ_SELSCREEN

Short description Read information about the selection fields of an ABAP program.

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_READ_SELSCREEN

IMPORTING

 PROGRAM like BAPIXMREP- REPORTID

 type CHAR length 40

 DEFAULT_VALUES like BTCH0000- CHAR1 optional

 Default 'X'

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

SEL_TEXT_LANG type BAPIXMSTEP- LANGUAGE

(available with note 1640533)

 EXPORTING

 RETURN structure BAPIRET2

 length 548 number of fields 14

TABLES

SELSCREEN_INFO like BAPI_SELSCREEN_INFO

SELSCREEN_TEXTS like TEXTPOOL

(The last 4 fields of table SELSCREEN_INFO

contain the default values, if there are any,

represented in the well known format)

Parameter (Input) ¶ PROGRAM: Name of the ABAP program of which the selection
fields are to be read.

¶ DEFAULT_VALUES: If marked, the default values are also
returned.

¶ EXTERNAL_USER_NAME: Name of the XBP user (user of the

 145

external management system).

Parameter (Output) BAPIRET2 is the return structure used by BAPIs

Tables SELSCREEN_INFO: Information on the selection fields of an
ABAP program.
SELSCREEN_TEXTS: Selection texts

7.12.7 Reading Free Selections of an ABAP Program

Function name BAPI_XBP_GET_FREE_SELECTIONS

Short description Read the free selections of an ABAP program.

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_GET_FREE_SELECTIONS

IMPORTING

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 ABAP_PROGRAM_NAME type BAPIXMREP- REPORTID

 type CHAR length 40

EXPORTING

 FREE_SELINFO type RSDSRANGE_T_SSEL

 (this is a table with a nested table)

 FREE_SEL_EXISTS type SYCHAR01 (char 1)

 RETURN structure BAPIRET2

 length 548 number of fields 14

Parameter (Input) ¶ EXTERNAL_USER_NAME: Name of the XBP user (user of the
external management system).

¶ ABAP_PROGRAM_NAME: Name of the ABAP program of
which free selections are to be read.

Parameter (Output) ¶ FREE_SELINFO: Contains information on the free selections.

¶ FREE_SEL_EXISTS: The parameter has the value Y, if there
are free selections. Otherwise, the value is N.

¶ BAPIRET2 is the return structure used by BAPIs.

 146

7.13 Synchronizing Jobs
Synchronizing jobs means, that the external scheduler reads all jobs from the SAP system,
which have been created from a certain point of time on. Thus the external scheduler can
synchronize its jobs with the job database of an SAP system.

Function name BAPI_XBP_SYNCHRONIZE_JOBS

Short description Read the SAP jobs (in order to synchronize the database of an
external job scheduler with the SAP job database).

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_ SYNCHRONIZE_JOBS

IMPORTING

 JOBNAME type BAPIXMJOB - JOBNAME optional

 type CHAR length 32

 USERNAME type BAPIXMJOB- SDLUNAME optional

 type CHAR length 12

 NOT_THIS_USER flag optional

 type CHAR length 1

 FROM_CREATEDATE type BTCSDLDATE optional

 type DATS length 8

 FROM_CREATETIME type BTCSDLTIME optional

 type TIMS length 6

 MAX type I default 5000 optional

 ONLY_THIS_CLIENT optional

 type CHAR1 default 'N'

 EXTERNAL_USER_NAME like BAPIXMLOGR- EXTUSER

 type CHAR length 16

 EXPORTING

 RETURN struc ture BAPIRET2 length 548

 number of fields 14

 NR_OF_ENTRIES type I

 TO_CREATEDATE type BTCSDLDATE

 type DATS length 8

 TO_CREATETIME type BTCSDLTIME

 type TIMS length 6

 MORE type BTCH0000- CHAR1

TABLES

 JOBS like BP30JOB

Parameter (Input) ¶ JOBNAME: Wildcard * is possible. If no jobname is specified, *
is assumed.

¶ USERNAME: Creator of the jobs to be selected. Wildcard * is
possible.

¶ NOT_THIS_USER: If set to X, jobs of all other users than the
user specified in USERNAME are selected.

¶ FROM_CREATEDATE, FROM_CREATETIME: Only jobs,

 147

which were created after the point of time specified by these
two parameters, are selected. The upper limit of the time
interval is the system time.

¶ ONLY_THIS_CLIENT: If set to X, only jobs of the current client
are selected. If empty, jobs of all clients are selected.

¶ MAX: In order to cause not too much traffic, when this function
is called via RFC, not more than MAX jobs are selected. If MAX
is empty or less than 5000, it is internally set to 5000. If there
are more than MAX jobs, which fit the selection criteria, it is not
intended to return exactly MAX jobs.

Example:
Assume that system time is 2006/4/5, 16:00:00 and the function is
called with

FROM_CREATEDATE, FROM_CREATETIME = 2006/04/01 , 00:00:00.

Assume futher that 12000 jobs have been created since that point of
time, and assume

JOBNAME = * and USERNAME = *
MAX = 5000
ONLY_THIS_CLIENT is empty

Since more than 5000 jobs have been created in the time interval
under consideration, the function divides the time interval into two
halves, the first half being
 2006/04/01 , 00:00:00 - 2006/04/03 , 08:00:00
Then the function checks, how many jobs have been created in the
first interval. If more than 5000, the process is repeated. If less, these
jobs are returned. It can even happen, that 0 jobs are returned.

Moreover the output-parameter MORE is set to X to indicate that there
are more jobs in the original time interval and that the function has to
be called again.

The lower limit of the time interval to be considered in the next call is
returned in the output parameters TO_CREATEDATE and
TO_CREATETIME.

Parameter (Output) ¶ NR_OF_ENTRIES: Number of entries returned

¶ TO_CREATEDATE; TO_CREATETIME : See above

¶ MORE: See above

¶ JOBS: Internal table containing the jobs selected. Note that the
status of a job is returned as óIô, if it has been intercepted.

MessageIDs ¶ MSG_INVALID_PARAMETERS: There is something wrong with
the specified date and / or time, which is the lower limit of the time
interval to be considered. Probably, the date is in the future.

¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 148

7.14 Setting Spool List Recipients.
The following functions help to read values (SAP users or distribution lists), which can
be used as spool list recipients for jobs. The values returned by the functions contained
in this section can be passed to parameter RECIPIENT of BAPI_XBP_JOB_CLOSE.

7.14.1 Reading SAP Users
With this function the SAP users can be read in blocks.

Function name BAPI_XBP_GET_USER_LIST

Short description Read the SAP users.

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_GET_USER_LIST

IMPORTING

 START_ROW type RFC_INT4 optional

 NR_OF_ROWS type RFC_INT4 optional

 EXTERNAL_USER_NAME like

 BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 EXPORTING

 ROWS type BAPIUSMISC - BAPIROW

 RETURN structure BAPIRET2 length 548

 number of fields 14

TABLES

 USERLIST like BAPIUSNAME (length 172, number

 of fields 4) optional

Parameter (Input) With this function the SAP users can be read in blocks.
With the parameters START_ROW and NR_OF_ROWS (number of
rows) the size of the block can be determined.
In a subsequent call of this function, the parameter START_ROW
should be (START_ROW + NR_OF_ROWS) of the previous call.

Parameter (Output) The parameter ROWS contains the number of users returned in the
table USERLIST.
If ROWS < NR_OF_ROWS, no addititional block needs to be read.

MessageIDs ¶ MSG_PROBLEM_DETECTED: The SAP job scheduling
system has discovered an error

¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 149

7.14.2 Reading SAP Office Distribution Lists

Function name BAPI_XBP_GET_DL_LIST

Short description Read the SAP Office distribution llists

New in XBP 3.0 This function is new in XBP 3.0

BAPI object name

BAPI method name

RFC interface Function BAPI_XBP_GET_ DL_LIST

IMPORTING

 START_ROW type RFC_INT4 optional

 NR_OF_ROWS type RFC_INT4 optional

 EXTERNAL_USER_NAME like

 BAPIXMLOGR- EXTUSER

 type RFC_CHAR length 16

 EXPORTING

 ROWS type BAPIUSMISC - BAPIROW

 RETURN structure BAPIRET2 length 548

 number of fields 14

TABLES

 DLIST S like BAPI DLI (length 75, number of

 fields 4) optional

Parameter (Input) With this function the SAP Office distribution lists can be read in
blocks.
With the parameters START_ROW and NR_OF_ROWS (number of
rows) the size of the block can be determined.
In a subsequent call of this function, the parameter START_ROW
should be START_ROW + NR_OF_ROWS of the previous call.

Parameter (Output) The parameter ROWS contains the number of distribution lists
returned in the table DLIST. If ROWS < NR_OF_ROWS, no
addititional block needs to be read.

BAPIRET2 is the return structure used by BAPIs.

MessageIDs ¶ MSG_PROBLEM_DETECTED: The SAP job scheduling
system has discovered an error

¶ MSG_CANT_LOG: Activity was terminated because the SAP XMI
logging mechanism returned an error.

¶ MSG_EXT_USER_MISSING: Name of the external user is
missing. This is the name of a user in the external job scheduling
system.

¶ MSG_NOT_LOGGED_ON: The external management tool has not
logged onto the CCMS XMI interface. Therefore, the activity
cannot be carried out.

 150

8 Appendix

8.1 BAPI Return Structure
Each XBP function module has a RET structure of type BAPIRET2 as export
parameter. With the help of this structure messages are reported from the SAP system
to the caller.

STRUCTURE BAPIRET2

Field name Type Short description

TYPE

ID

NUMBER

MESSAGE

LOG_NO

LOG_MSG_NO

MESSAGE_V1

MESSAGE_V2

MESSAGE_V3

MESSAGE_V4

PARAMETER

ROW

FIELD

SYSTEM

CHAR 1

CHAR 20

NUMC 3

CHAR 220

CHAR 20

NUMC 6

CHAR 50

CHAR 50

CHAR 50

CHAR 50

CHAR 32

INT4 10

CHAR 30

CHAR 10

Messagetyp: S Success, E Error ...

Message-ID

Message-Number

Message Text

Appication-Log: Protocol Number

Application-Log: actual Number

Message-Variable

Message-Variable

Message-Variable

Message-Variable

Parameter Name

Line in Parameter

Field in Parameter

Logical System; origin of message

Notes This structure is used for all BAPIs and is not

related to XBP directly

Related to There have been older structures with different

names such as: BAPIRETURN1

 151

8.1.1 Message IDs and Their Meaning
In the table below you find a list of the message numbers as they are in the transaction
SE91and the corresponding aliases that are used in the XBP functions described in
chapter 7. Note that only messages from the message class XM are used.

You will be able to see the actual text of the message once you analyze the BAPIRET2
values. For your convenience we include here the constants which are referenced in
the function module descriptions.

xmi_messages like sy-msgid value 'XM',

msg_logon_gen like sy-msgno value '9',

msg_logon like sy-msgno value '010'

msg_logoff_gen like sy-msgno value '011'

msg_logoff like sy-msgno value '012'

msg_auditlevel_set like sy-msgno value '013'

msg_versions_get_gen like sy-msgno value '014'

msg_versions_get like sy-msgno value '015'

msg_version_check like sy-msgno value '016'

msg_interface_describe like sy-msgno value '017'

msg_logmsg_enter like sy-msgno value '018'

msg_log_select like sy-msgno value '019'

msg_message_formats_upload like sy-msgno value '020'

msg_already_logged_on_gen like sy-msgno value '021',

msg_already_logged_on like sy-msgno value '022',

msg_unknown_interface like sy-msgno value '023',

msg_unknown_version like sy-msgno value '024',

msg_logon_denied_gen like sy-msgno value '025',

msg_logon_denied like sy-msgno value '026',

msg_not_logged_on_gen like sy-msgno value '027',

msg_not_logged_on like sy-msgno value '028',

msg_invalid_range like sy-msgno value '029',

msg_cant_select like sy-msgno value '030',

msg_cant_log like sy-msgno value '031',

msg_cant_upload like sy-msgno value '032',

msg_invalid_parameters like sy-msgno value '033',

msg_problem_detected like sy-msgno value '034',

msg_reorg like sy-msgno value '035',

msg_reorg_gen like sy-msgno value '037',

msg_jobname_missing like sy-msgno value '046',

msg_jobid_missing like sy-msgno value '047',

msg_ext_user_missing like sy-msgno value '048',

msg_job_does_not_exist like sy-msgno value '049',

 152

msg_progname_missing like sy-msgno value '050',

msg_no_archive_info like sy-msgno value ó051ô

msg_invalid_print_params like sy-msgno value '052',

msg_invalid_archive_params like sy-msgno value '053',

msg_no_release_privilege like sy-msgno value '054',

msg_job_not_active like sy-msgno value '055',

msg_no_abort_privilege like sy-msgno value '056',

msg_no_job_found like sy-msgno value '057',

msg_targethost_missing like sy-msgno value ó058ô

msg_no_jobsteps like sy-msgno value '059',

msg_no_job_protocol like sy-msgno value '060',

msg_empty_job_protocol like sy-msgno value '061',

msg_step_count_missing like sy-msgno value '062',

msg_no_spoollist like sy-msgno value '063',

msg_privilege_missing like sy-msgno value '064',

msg_invalid_spoolid like sy-msgno value '065',

msg_no_immediate_start_poss like sy-msgno value '066',

msg_no_resources_found like sy-msgno value '067',

msg_invalid_date_time like sy-msgno value '068',

msg_invalid_server_name like sy-msgno value '069',

msg_prog_has_no_variant like sy-msgno value '070',

msg_prog_does_not_exist like sy-msgno value '071',

msg_no_execute_privilege like sy-msgno value '072',

msg_prog_not_executable like sy-msgno value '073',

msg_no_variants_defined like sy-msgno value '074'

msg_invalid_select_option like sy-msgno value '075'

msg_select_param_missing like sy-msgno value '076'

msg_trace_before_call like sy-msgno value '077'

msg_select_jobname_missing like sy-msgno value '078'

msg_select_username_missing like sy-msgno value '079'

msg_cant_del_in_jobtable like sy-msgno value '080'

msg_cant_del_joblog like sy-msgno value '081ô

msg_problem_pred_succ like sy-msgno value ó082ô

msg_commit_failed like sy-msgno value ó083ô

msg_no_delete_privilege like sy-msgno value ó084ô

msg_job_running like sy-msgno value ó085ô

msg_interface_reorg like sy-msgno value '086'

msg_interface_reorg_gen like sy-msgno value '087'

msg_parent_child_inconsistency like sy-msgno value '088'

 153

msg_child_register_error like sy-msgno value '089'

msg_mask_error like sy-msgno value '090'

msg_param_missing like sy-msgno value '091'

msg_event_does_not_exist like sy-msgno value '092'

msg_event_raise_failed like sy-msgno value '093'

msg_job_confirmation_failed like sy-msgno value '094'

msg_wrong_confirmation_type like sy-msgno value '095'

msg_wrong_selection_par like sy-msgno value '096'

msg_parentchild_inactive like sy-msgno value '097'

msg_interception_inactive like sy-msgno value '098'

msg_wrong_counter like sy-msgno value '099'

msg_wrong_printer_name like sy-msgno value '100'

msg_selection_finished like sy-msgno value '101'

msg_cant_enq_job like sy-msgno value '194'

msg_cant_read_jobdata like sy-msgno value '195'

msg_cant_release_job like sy-msgno value '196'

msg_cant_set_jobstatus_in_db like sy-msgno value '197'

msg_cant_start_job_immediately like sy-msgno value '198'

msg_cant_update_jobdata like sy-msgno value '199'

msg_eventcnt_generation_error like sy-msgno value '200'

msg_invalid_dialog_type like sy-msgno value '201'

msg_invalid_new_jobdata like sy-msgno value '202'

msg_invalid_new_jobstatus like sy-msgno value '203'

msg_invalid_startdate like sy-msgno value '204'

msg_job_edit_failed like sy-msgno value '205'

msg_job_modify_canceled like sy-msgno value '206'

msg_job_not_modifiable_anymore like sy-msgno value '207'

msg_nothing_to_do like sy-msgno value '208'

msg_no_batch_on_target_host like sy-msgno value '209'

msg_no_batch_server_found like sy-msgno value '210'

msg_no_batch_wp_for_jobclass like sy-msgno value '211'

msg_no_modify_privilege_given like sy-msgno value '212'

msg_no_release_privilege_given like sy-msgno value '213'

msg_no_startdate_no_release like sy-msgno value '214'

msg_invalid_targetgroup like sy-msgno value '216'

msg_conflicting_targets like sy-msgno value '217'

msg_job_doesnt_have_steps like sy-msgno value '218'

msg_wrong_step_type like sy-msgno value '219'

 154

msg_job_doesnt_have_this_step like sy-msgno value '220'

msg_cannot_get_priarc_params like sy-msgno value '221'

msg_cannot_read_job like sy-msgno value '222'

msg_cannot_modify_job like sy-msgno value '223'

msg_wrong_step_number like sy-msgno value '224'

msg_error_modifying_worktable like sy-msgno value '225'

msg_job_nosteps like sy-msgno value '227'

msg_jobcount_missing like sy-msgno value '228'

msg_invalid_target like sy-msgno value '229'

msg_error_reading_worktable like sy-msgno value '230'

msg_delete_line_error like sy-msgno value '231'

msg_no_step_info like sy-msgno value '232'

msg_wrong_action like sy-msgno value '233'

msg_no_change_authority like sy-msgno value ó234ô

msg_invalid_jobclass like sy-msgno value ó235ô

msg_wrong_client like sy-msgno value ó236ô

msg_calender_does_not_exist like sy-msgno value ó267ô

8.2 Document Type Definition for Defining Profiles
and Criteria for Event History

8.2.1 Overview
By calling the function modules BAPI_CM_PROFILE_CREATE and
BAPI_CM_CRITERIA_SET, the external scheduler can create a criteria profile in event
history and import a criteria hierarchy in a criteria profile from an XML source file. The XML
source file provides a description of that profile and criteria hierarchy respectively. This
section provides and explains the Document Type Definition (DTD) to be used when
preparing an XML description of a criteria profile or of a criteria hierarchy.

¶ Criteria hierarchy

A criteria hierarchy is the set of all the criteria and conditions which event names
and/or event arguments of the raised events need to fulfill to be logged in the event
history.

When you prepare an XML description of a criteria hierarchy for event history, you
specify conditions for the fields EVENTID (event name) and EVENTPARM (event
argument). Conditions are grouped into criteria. A criterion may contain separate
conditions for EVENTID and EVENTPARM, or only for one of the fields EVENTID
and EVENTPARM.

Criteria are grouped into nodes. Nodes impose the logical relationship that
governs the conditions and/or criteria in it. A node can be of one of two types: AND
or OR, which impose an AND or OR relationship respectively. A node can contain
one or more criteria.

All criteria and nodes in a hierarchy are grouped into the root of the hierarchy. The
relationship between the criteria and nodes in the root is always an AND
relationship.

¶ Criteria profile

A criteria hierarchy is stored in a criteria profile which can be in one of two states:
active and inactive.

 155

8.2.2 Setting a Criteria Hierarchy
The excerpt below provides the DTD for a criteria profile and its criteria hierarchy for
event history. The DTD elements and their attributes are explained in the text the
accompanying texts.

<!ELEMENT crite rion EMPTY>

<!ATTLIST criterion

 sign CDATA #REQUIRED

 opt CDATA #REQUIRED

 low CDATA #REQUIRED

 high CDATA #IMPLIED>

<!ELEMENT field (#PCDATA|criterion)*>

<!ELEMENT item (field)+>

<!ATTLIST item

 description CDATA #REQUIRED>

<!ELEMENT node ((item)*,(node)*,(item)*,(node)*,(item)*,(node)*)>

<!ATTLIST node

 type CDATA #REQUIRED>

<!ELEMENT root ((item)*,(node)*,(item)*,(node)*,(item)*,(node)*)>

<!ELEMENT profile (root)>

<!ATTLIST profile

 type CDATA #REQUIRED

 id CDATA #IMPLIED

 description CDATA #REQUIRED

 state CDATA #IMPLIED

 lastchuser CDATA #IMPLIED

 lastchtmstmp CDATA #IMPLIED

 createuser CDATA #IMPLIED>

<!ELEMENT criterion EMPTY>

<!-- The element criterion specifies the conditions for the values of the

EVENTID and/or EVENTPARM fields. A criterion may contain separate conditions
for both fields or for just one of the them. -->

<!ATTLIST criterion

 sign CDATA #REQUIRED

<!-- The attribute sign of a criterion specifies the general operation between the

field (EVENTID or EVENTPARM) and the field values. The possible values for

sign are:

 I = include.

 E = exclude. -->

 opt CDATA #REQUIRED

<!ðThe criterion attribute opt specifies the operation between the field and the

field values. The possible values for opt are:

 BT ï between. You can specify a range of values for a field.

 156

 NB ï exclude (not between). You can exclude a range of values for a field.

 EQ ï equal. You can provide an exact value.

 GE ï greater or equal to and exact value.

 GT ï greater than and exact value.

 LE ï less or equal to an exact value.

 LT ï less than an exact value.

 NE ï not equal to. You can exclude exact values.

 CP ï contains pattern. You can specify a range of values by using a pattern.

The following wildcard patterns are supported: *, and ?.

 NP ï no pattern. You can exclude values by using a pattern. The following
wildcard patterns are supported: *, and ?.-->

 low CDATA #REQUIRED

<!ðSpecifies an exact value, for example, when opt = EQ , or the lowest exact

value of a range, for example, when opt = GT, or GE -->

 high CDATA #IMPLIED>

<!-- Specifies the highest value of a range, for example, when opt = LE or LT

-->

<!ELEMENT field (#PCDATA|criterion)*>

<!--The element field specifies the field ï EVENTID or EVENTPARM, for which

the conditions in the criterion apply and is a placeholder for the criterion. -->

<!ELEMENT item (field)+>

<!-- The element item is a placeholder for the criteria applicable to the fields

EVENTID and EVENTPARM. -->

<!ATTLIST item

 description CDATA #REQUIRED>

<!ðThe attribute description provides a description of a criterion. -->

<!ELEMENT node

((item)*,(node)*,(item)*,(node)*,(item)*,(node)*)>

<!-- By grouping item elements, the element node groups criteria in the hierarchy

and imposes a logical relationship between them. Depending on its type, the node
imposes a logical AND or OR relationship between items. -->

<!ATTLIST node

 type CDATA #REQUIRED>

<!-- The attribute type of a node specifies whether the node is an AND or OR

node and determines the logical relationship which the node imposes on the
criteria it contains The possible values for type are:

 A = AND. The node of type AND imposes an AND relationship between the

criteria it contains.

 O = OR. The node of type OR imposes and OR relationship between the criteria

it contains.

-->

<!ELEMENT root

((item)*,(node)*,(item)*,(node)*,(item)*,(node)*)>

<!-- The element root groups all the nodes in the criteria hierarchy. The root

always imposes an AND relationship between the nodes it contains. Criteria do not

need to be grouped in nodes: you can insert criteria directly in the root element. In

this case, criteria are related by the AND relationship imposed by the root.-->

<!ELEMENT profile (root)>

<!-- The element profile is a placeholder for the whole criteria hierarchy. -->

<!ATTLIST profile

 type CDATA #REQUIRED

 157

<!-- The attribute type specifies the type of the criteria type. The value for a

profile for event history is EVTHIS. -->

 id CDATA #IMPLIED

 description CDATA #REQUIRED

<!-- The attribute description specifies a free-text description of the profile.--

>

 state CDATA #IMPLIED

 lastchuser CDATA #IMPLIED

 lastchtmstmp CDATA #IMPLIED

 createuser CDATA #IMPLIED>

The external scheduler has to create a profile named My_Profile with criteria specifying
which events are to be logged in the event history. Event history has to log all events
with event name MY_EVENT_1 and event argument greater than 123, as well as all
events with an event name starting with ABC and an event argument equal to 123.

The excerpt below provides an XML description of this criteria profile and the
corresponding criteria hierarchy:

<?xml version="1.0"?> <!DOCTYPE profile SYSTEM

"criteria_profile.dtd">

<profile type =" EVTHIS" id =" 15" description =" My_Profile "

<root >

 <node type =" O">

 <item description =" Criterion 1 ">

 <field >

 EVENTID

 <criterion sign =" I " opt =" EQ" low =" MY_EVENT_1" high =""/>

 </ field >

 <field >

 EVENTPARM

 <criterion sign =" I " opt =" GT" low =" 123" high =""/>

 </ field >

 </ item >

 <item description =" Criterion 2 ">

 <field >

 EVENTID

 <criterion sign =" I " opt =" EQ" low =" ABC*" high =""/>

 </ field >

 <field >

 EVENTPARM

 <criterion sign =" I " opt =" EQ" low =" 123" high =""/>

 </ field >

 </ item >

 </ node >

</ root >

</ profile >

8.2.3 Creating a Blank Criteria Profile
If you want to create a blank criteria profile (BAPI_CM_PROFILE_CREATE) without
setting any criteria hierarchy, you use the same DTD as for setting a criteria hierarchy,

 158

However, the XML source has to provide a description only for the profile attributes.
The excerpt below shows an XML source for a criteria profile for event history with
name My_Profile.

<?xml version="1.0"?> <!DOCTYPE profile SYSTEM

"criteria_profile.dtd">

<profile type =" EVTHIS" id =" <ID> " description =" My_Profile ">

<root />

</ profile >

In the XML source, you can specify an integer value for the ID attribute. If there is no
profile with this ID, the profile is created with the ID you specified. If the ID is already
occupied by another profile, an ID is generated for the profile you create from the XML
source.

 159

8.3 Language Key Mapping
The following table shows an overview of the mapping of one-digit SAP language keys
to two-digit ISO language codes.

SAP
language
key

UC representation of
SAP language key

ISO language
code

Name of
Language

1 U+0031 ZH Chinese

2 U+0032 TH Thai

3 U+0033 KO Korean

4 U+0034 RO Romanian

5 U+0035 SL Slovene

6 U+0036 HR Croatian

7 U+0037 MS Malaysian

8 U+0038 UK Ukrainian

A U+0041 AR Arabic

B U+0042 HE Hebrew

C U+0043 CS Czech

D U+0044 DE German

E U+0045 EN English

F U+0046 FR French

G U+0047 EL Greek

H U+0048 HU Hungarian

I U+0049 IT Italian

J U+004A JA Japanese

K U+004B DA Danish

L U+004C PL Polish

M U+004D ZF Chinese trad.

N U+004E NL Dutch

O U+004F NO Norwegian

P U+0050 PT Portuguese

Q U+0051 SK Slovakian

R U+0052 RU Russian

S U+0053 ES Spanish

T U+0054 TR Turkish

U U+0055 FI Finnish

V U+0056 SV Swedish

W U+0057 BG Bulgarian

Z U+005A Z1
Customer
reserve

 160

 U+B282 1B Arabic_QA

 U+B283 1C Chinese_HK

 U+B2E2 2B Arabic_SY

 U+B342 3B Arabic_TN

 U+B466 6F French_HT

 U+B46E 6N English_GB

 U+B4C6 7F French_LU

 U+B4CE 7N English_ZW

 U+B526 8F French_ML

 U+B585 9E English_JM

 U+B586 9F French_MC

 U+B881 AA Afar

 U+B882 AB Abkhazian

 U+B883 AC Achinese

 U+B885 AE Avestan

 U+B88B AK Akan

 U+B88D AM Amharic

 U+B88E AN Aragonese

 U+B893 AS Assamese

 U+B896 AV Avaric

 U+B899 AY Aymara

 U+B89A AZ Azerbaijani

 U+B8E1 BA Bashkir

 U+B8E5 BE Belarusian

 U+B8E8 BH Bihari

 U+B8E9 BI Bislama

 U+B8ED BM Bambara

 U+B8EE BN Bengali

 U+B8EF BO Tibetan

 U+B8F2 BR Breton

 U+B8F3 BS Bosnian

 U+B938 C8
CreolesPidgins
P

 U+B945 CE Chechen

 U+B948 CH Chamorro

 U+B94F CO Corsican

 161

 U+B952 CR Cree

 U+B955 CU Church Slavic

 U+B956 CV Chuvash

 U+B959 CY Welsh

 U+B9B6 DV Divehi

 U+B9BA DZ Dzongkha

 U+BA0F EO Esperanto

 U+BA15 EU Basque

 U+BA61 FA Persian

 U+BA66 FF Fulah

 U+BA6A FJ Fijian

 U+BA6F FO Faroese

 U+BA79 FY Frisian

 U+BAC1 GA Irish

 U+BAC4 GD Gaelic

 U+BACC GL Gallegan

 U+BACE GN Guarani

 U+BAD5 GU Gujarati

 U+BAD6 GV Manx

 U+BB21 HA Hausa

 U+BB29 HI Hindi

 U+BB2F HO Hiri Motu

 U+BB34 HT Haitian

 U+BB39 HY Armenian

 U+BB3A HZ Herero

 U+BB81 IA Interlingua

 U+BB85 IE Interlingue

 U+BB87 IG Igbo

 U+BB89 II Sichuan Yi

 U+BB8B IK Inupiaq

 U+BB8F IO Ido

 U+BB95 IU Inuktitut

 U+BBF6 JV Javanese

 U+BC41 KA Georgian

 U+BC49 KI Kikuyu

 U+BC4A KJ Kuanyama

 162

 U+BC4B KK Kazakh

 U+BC4C KL Greenlandic

 U+BC4D KM Khmer

 U+BC4E KN Kannada

 U+BC52 KR Kanuri

 U+BC53 KS Kashmiri

 U+BC55 KU Kurdish

 U+BC56 KV Komi

 U+BC57 KW Cornish

 U+BC59 KY Kirghiz

 U+BCA1 LA Latin

 U+BCA2 LB Luxembourgish

 U+BCA7 LG Ganda

 U+BCA9 LI Limburgish

 U+BCAE LN Lingala

 U+BCAF LO Lao

 U+BCB5 LU Luba-Katanga

 U+BD07 MG Malagasy

 U+BD08 MH Marshall

 U+BD09 MI Maori

 U+BD0B MK Macedonian

 U+BD0C ML Malayalam

 U+BD0E MN Mongolian

 U+BD0F MO Moldavian

 U+BD12 MR Marathi

 U+BD14 MT Maltese

 U+BD19 MY Burmese

 U+BD61 NA Nauru

 U+BD62 NB
Norwegian
Bokmal

 U+BD64 ND Ndebele, North

 U+BD65 NE Nepali

 U+BD67 NG Ndonga

 U+BD69 NI
Niger-
Kordofani

 U+BD6E NN
Norweg.
Nynorsk

 163

 U+BD72 NR
Ndebele,
South

 U+BD76 NV Navajo

 U+BD79 NY Nyanja

 U+BDC3 OC Occitan

 U+BDCA OJ Ojibwa

 U+BDCD OM Oromo

 U+BDD2 OR Oriya

 U+BDD3 OS Ossetian

 U+BE21 PA Punjabi

 U+BE29 PI Pali

 U+BE33 PS Pushto

 U+BE95 QU Quechua

 U+BEED RM
Rhaeto-
Romance

 U+BEEE RN Rundi

 U+BEF7 RW Kinyarwanda

 U+BF41 SA Sanskrit

 U+BF43 SC Sardinian

 U+BF44 SD Sindhi

 U+BF45 SE Northern Sami

 U+BF47 SG Sango

 U+BF49 SI Sinhalese

 U+BF4D SM Samoan

 U+BF4E SN Shona

 U+BF4F SO Somali

 U+BF51 SQ Albanian

 U+BF53 SS Swati

 U+BF54 ST
Sotho,
Southern

 U+BF55 SU Sundanese

 U+BF57 SW Swahili

 U+BFA1 TA Tamil

 U+BFA5 TE Telugu

 U+BFA7 TG Tajik

 U+BFA9 TI Tigrinya

 U+BFAB TK Turkmen

 164

 U+BFAC TL Tagalog

 U+BFAE TN Tswana

 U+BFAF TO Tonga

 U+BFB3 TS Tsonga

 U+BFB4 TT Tatar

 U+BFB7 TW Twi

 U+BFB9 TY Tahitian

 U+C007 UG Uighur

 U+C012 UR Urdu

 U+C01A UZ Uzbek

 U+C065 VE Venda

 U+C069 VI Vietnamese

 U+C06F VO Volapuk

 U+C0C1 WA Walloon

 U+C0CF WO Wolof

 U+C128 XH Xhosa

 U+C189 YI Yiddish

 U+C18F YO Yoruba

8.4 Structures for Print and Archive Parameters
In order to set print and archive parameters for job steps, the structures ALLPRIPAR
and ALLARCPAR should be used. Here is a list of all the fields in these structures:

8.4.1 Structure ALLPRIPAR

Field Type Length Description

PDEST CHAR 4 Short name of the
printer

PRCOP NUMC 3 Number of
copies, maximum
255

PLIST CHAR 12 Third part of
three-part name
of the spool
request

PRTXT CHAR 68 Title of the spool
request

PRIMM CHAR 1 Flag for
immediate output

PRREL CHAR 1 Flag for delete
after output

PRNEW CHAR 1 Flag to invoke
creation of new
spool request (no

 165

appending)

PEXPI NUMC 1 Spool retention in
days, 9 meaning
indefinitely

LINCT INT4 10 Number of lines
(should not be set
as it is
determined
internally)

LINSZ INT4 10 Number of
columns (should
not be set as it is
determined
internally)

PAART CHAR 16 Name of list
format, will be
determined
automatically if
not set

PRBIG CHAR 1 Flag to invoke
printing of
selection cover
page

PRSAP CHAR 1 Flag to invoke
printing of SAP
cover page
containing print
job information

PRREC CHAR 12 Recipient of the
print job (only
documentation)

PRABT CHAR 12 Department of
recipient (only
documentation)

PRBER CHAR 12 Authority field
(will be used for
authority checks
on spool
requests)

PRDSN CHAR 6 First part of three-
part name of the
spool request

PTYPE CHAR Not used

ARMOD CHAR Archive mode,
possible values:

1 = print only

2 = archive only

3 = print and
archive

FOOTL CHAR 1 Not used

PRIOT NUMC 1 Priority of the
spool request

 166

PRUNX CHAR 1 Flag to invoke
printing of
operating system
cover page

The SAP System sets default values in the following fields of the print
parameter structure if initial values are transferred in the interface:

PRIMM = Output immediately (Default = NO)

PRREL = Delete after output (Default = NO)

PRNEW = New spool request (Default = YES)

PRSAP = SAP cover page (Default = Printer settings)

PRREC = Recipient (Default = Created by)

PRABT = Department (Default = Created by department)

PRUNX = Host spooler cover page (Default = Printer settings)

If these fields are actually supposed to be transferred empty (for example, if an empty
PRIMM overrides the 'Output immediately' setting in the user master), the XBP
interface expects the '$' character to be transferred in this case.

8.4.2 Structure ALLARCPARS

Field Type Length Description

SAP_OBJECT CHAR 10 Type of Business
Object

AR_OBJECT CHAR 10 Archive object

ARCHIV_ID CHAR 2 Not used

DOC_TYPE CHAR 20 Not used

RPC_HOST CHAR 32 Not used

RPC_SERVIC CHAR 32 Not used

INTERFACE CHAR 14 Not used

MANDANT CHAR 3 Not used

REPORT CHAR 40 Will be set
internally

INFO CHAR 3 Info field

ARCTEXT CHAR 40 Text information

DATUM CHAR 8 Not used

ARCUSER CHAR 12 Not used

PRINTER CHAR 4 Not used

FORMULAR CHAR 16 Not used

ARCHIVPATH CHAR 70 Not used

PROTOKOLL CHAR 8 Not used

VERSION CHAR 4 Not used

Possible values for SAP_OBJECT and AR_OBJECT can be retrieved with
BAPI_XBP_GET_ARCHIVE_OBJECTS (see above).

 167

9 INDEX

A

ABAP reports

search with wildcards · 124

Aborting jobs

(BAPI_XBP_JOB_ABORT) · 61

Activating Criteria Profiles · 118

Adding ABAP steps

(BAPI_XBP_JOB_ADD_ABAP_STEP) · 43

Adding job step via XMI

(BAPI_XBP_ADD_JOB_STEP) · 69

Appendix · 151

Application Information

obtaining · 108

Archive parameter search · 129

Assigning ext. program to steps

(BAPI_XBP_JOB_ADD_EXT_STEP) · 47

B

Background processing

introduction · 17

BAPI return structure · 151

BAPI_CM_CRITERIA_GET · 120

BAPI_CM_CRITERIA_SET · 121

BAPI_CM_CRITTYPES_GET · 116

BAPI_CM_PROFILE_ACTIVATE · 118

BAPI_CM_PROFILE_CREATE · 117

BAPI_CM_PROFILE_DEACTIVATE · 119

BAPI_CM_PROFILE_DELETE · 118

BAPI_CM_PROFILE_GET · 120

BAPI_XBP_ADD_JOB_STEP · 69

BAPI_XBP_APPL_CONTENT_GET · 109

BAPI_XBP_APPL_INFO_GET · 108

BAPI_XBP_BTC_EVTHIST_CONFIRM · 114

BAPI_XBP_BTC_EVTHISTORY_GET · 112

BAPI_XBP_CONFIRM_JOB · 78

BAPI_XBP_EVENT_DEFINITIONS_GET · 114,

130

BAPI_XBP_EVENT_RAISE · 57

BAPI_XBP_EXT_COMM_SEARCH · 125

BAPI_XBP_FACT_CALENDERS_GET · 137

BAPI_XBP_GET_ARCHIVE_OBJECTS · 129

BAPI_XBP_GET_BP_RESRC_ON_DATE · 136

BAPI_XBP_GET_BP_SRVRES_ON_DATE ·

134

BAPI_XBP_GET_CURR_BP_RESOURCES ·

133

BAPI_XBP_GET_DL_LIST · 150

BAPI_XBP_GET_FREE_SELECTIONS · 146

BAPI_XBP_GET_INTERCEPTED_JOBS · 76

BAPI_XBP_GET_USER_LIST · 149

BAPI_XBP_HOL_CALENDERS_GET · 138

BAPI_XBP_JOB _COPY · 58

BAPI_XBP_JOB__READ_SINGLE_SPOOL · 93,

94

BAPI_XBP_JOB_ABAP_STEP_MODIFY · 64

BAPI_XBP_JOB_ABORT · 61

BAPI_XBP_JOB_ADD_ABAP_STEP · 43

BAPI_XBP_JOB_ADD_EXT_STEP · 47

BAPI_XBP_JOB_CHILDREN_GET · 102

BAPI_XBP_JOB_CLOSE · 48

BAPI_XBP_JOB_COUNT · 100

BAPI_XBP_JOB_DEFINITION_GET · 51

BAPI_XBP_JOB_EXT_STEP_MODIFY · 67

BAPI_XBP_JOB_GET_SPOOL_ATTRIBUTES ·

92

BAPI_XBP_JOB_HEADER_MODIFY · 60, 63

BAPI_XBP_JOB_JOBLOG_READ · 85

BAPI_XBP_JOB_OPEN · 42

BAPI_XBP_JOB_PARENT_CHILD_INFO · 104

BAPI_XBP_JOB_READ · 101

BAPI_XBP_JOB_SELECT · 98

BAPI_XBP_JOB_SPOOLLIST_READ_20 · 90

BAPI_XBP_JOB_START_ASAP · 56

BAPI_XBP_JOB_START_IMMEDIATELY · 55

BAPI_XBP_JOB_STATUS_CHECK · 95

BAPI_XBP_JOB_STATUS_GET · 82

BAPI_XBP_JOBLIST_STATUS_GET · 84

BAPI_XBP_MODIFY_CRITERIA_TABLE · 80

BAPI_XBP_MODIFY_JOB_STEP · 72

BAPI_XBP_NEW_FUNC_CHECK · 107

BAPI_XBP_OUTPUT_DEVICE_SEARCH · 126

BAPI_XBP_PRINT_FORMAT_SEARCH · 128

BAPI_XBP_READ_SELSCREEN · 145

BAPI_XBP_REPORT_SEARCH · 124

BAPI_XBP_SPECIAL_CONFIRM_JOB · 79

BAPI_XBP_SYNCHRONIZE_JOBS · 147

BAPI_XBP_VARIANT_CHANGE · 140

BAPI_XBP_VARIANT_COPY · 141

BAPI_XBP_VARIANT_CREATE · 139

BAPI_XBP_VARIANT_DELETE · 144

BAPI_XBP_VARIANT_INFO_GET · 131

BAPI_XBP_VARINFO · 143

BAPI_XMI_LOGOFF · 41

BAPI_XMI_LOGON · 39

Batch events

search with wildcards · 130

C

Changing a Variant

(BAPI_XBP_VARIANT_CHANGE) · 140

Changing job steps via XMI

(BAPI_XBP_MODIFY_JOB_STEP) · 72

Checking job resources on any server

(BAPI_XBP_GET_BP_RESRC_ON_DATE) ·

136

Checking job status

(BAPI_XBP_JOB_STATUS_CHECK) · 95

Closing job definitions

(BAPI_XBP_JOB_CLOSE) · 48

Configuring Profiles and Critera · 116

Confirming Events in Event History

(BAPI_XBP_BTC_EVTHISTORY_CONFIRM

) · 114

Confirming jobs · 25, 76, 78

Confirming jobs (special confirm)

(BAPI_XBP_SPECIAL_CONFIRM_JOB) · 79

Confirming jobs generally

(BAPI_XBP_CONFIRM_JOB) · 78

Consuming Raised Events · 112

Copying a Variant

(BAPI_XBP_VARIANT_COPY) · 141

Copying jobs

(BAPI_XBP_JOB _COPY) · 58

Create jobs · 19

Creating a Blank Criteria Profile · 158

 168

Creating a Variant

(BAPI_XBP_VARIANT_CREATE) · 139

Creating Criteria Profiles · 117

Criteria

import in profile · 121

Criteria Hierarchy

get · 120

Criteria Manager

configuring profiles and criteria · 116

Criteria Profiles

activate · 118

create · 117

deactivate · 119

delete · 118

get · 120

working with · 117

Criteria table · 22

modify · 80

Criteria Types

finding information · 116

D

Database · 27

Deactivating Criteria Profiles · 119

Define jobs · 42

Deleting a Variant

(BAPI_XBP_VARIANT_DELETE) · 144

Deleting Criteria Profiles · 118

Deleting jobs

(BAPI_XBP_JOB_DELETE) · 63

Determining current job resources

(BAPI_XBP_GET_CURR_BP_RESOURCES)

· 133

Determining job children

(BAPI_XBP_JOB_CHILDREN_GET) · 102

Determining job list status

(BAPI_XBP_JOBLIST_STATUS_GET) · 84

Determining job status

(BAPI_XBP_JOB_STATUS_GET) · 82

Determining jobs with particular name

(BAPI_XBP_JOB_COUNT) · 100

Determining parent/child relation

(BAPI_XBP_JOB_PARENT_CHILD_INFO) ·

104

Document Type Definition · 155

DTD for Defining Profiles and Criteria for Event

History · 155

Dynamic job priorization · 22

E

End jobs · 21

Event

trigger from outside · 57

Events

confirming · 114

consuming · 112

reading from history · 112

External commands

search with wildcards · 125

External interface · 29

function description · 17

types · 29

F

Factory Calendars

Reading · 137

Free Selections

Reading · 146

G

Getting Criteria Hierarchy · 120

Getting Criteria Profiles · 120

Getting information on a particular spool list · 92

Getting intercepted jobs

(BAPI_XBP_GET_INTERCEPTED_JOBS) ·

76

H

Help functions (general) · 131

Holiday Calendars

Reading · 138

I

Importing Criteria in a Profile · 121

Intercept jobs · 22, 76

Intercept status

read and change · 107

Interface description · 34

J

Job

abort · 61

confirm · 76, 78

confirmation · 25

control · 60

copy · 58

define · 42

delete · 63

intercept · 76

log · 28

open · 42

output · 28

priorization · 22

select · 98

start · 55

start asap · 56

start immediately · 55

Job children

determine · 102

job header

modify · 60

Job list status

determine · 84

Job log

read · 85

Job monitor data

find, control, and modify · 82

Job scheduler · 27

Job Scheduling Architecture · 27

Job Starter · 28

 169

Job status

check · 95

determine · 82

Job step

add via XMI · 69

change via XMI · 69

delete via XMI · 69

modify · 64

Jobs

Synchronize · 147

L

Language Key Mapping · 160

Logging off (BAPI_XMI_LOGOFF) · 41

Logging on

(BAPI_XMI_LOGON) · 39

M

Message IDs and their meanings · 152

Modify job steps (ext. program)

(BAPI_XBP_JOB_EXT_STEP_MODIFY) · 67

Modifying criteria table

(BAPI_XBP_MODIFY_CRITERIA_TABLE) ·

80

Modifying global data

(BAPI_XBP_JOB_HEADER_MODIFY) · 60

Modifying job step containing a report

(BAPI_XBP_JOB_ABAP_STEP_MODIFY) ·

64

Monitoring Performance

(BAPI_XBP_BTC_SATISTIC_GET) · 110

N

Naming conventions · 29

O

Obtaining Application Information · 108

Obtaining key job parameter from headers and

steps

(BAPI_XBP_JOB_READ) · 101

Opening jobs

(BAPI_XBP_JOB_OPEN) · 42

Output device

search with wildcards · 126

P

Parent/Child functionality · 23

Parent/child relation

determine · 104

read and change · 107

Periodic intercepted jobs · 23

Print formats

search with wildcards · 128

R

Reading and changing (Status Intercept -

Parent/Child)

(BAPI_XBP_NEW_FUNC_CHECK) · 107

Reading Event Definitions in Event History

(BAPI_XBP_EVENT_DEFINITIONS_GET) ·

114

Reading Events From Event History

(BAPI_XBP_BTC_EVTHISTORY_GET) · 112

Reading Factory Calendars

(BAPI_XBP_FACT_CALENDERS_GET) ·

137

Reading Free Selections

(BAPI_XBP_GET_FREE_SELECTIONS) ·

146

Reading Holiday Calendars

(BAPI_XBP_HOL_CALENDERS_GET) · 138

Reading job definitions

(BAPI_XBP_JOB_DEFINITION_GET) · 51

Reading job logs

(BAPI_XBP_JOB_JOBLOG_READ) · 85

Reading job spool list · 90

Reading SAP Office Distribution Lists

(BAPI_XBP_GET_DL_LIST · 150

Reading SAP Users

BAPI_XBP_GET_USER_LIST · 149

Reading Selection Screen

(BAPI_XBP_READ_SELSCREEN) · 145

Reading Variant Data

(BAPI_XBP_VARINFO) · 143

Reference manual · 39

Release information · 9

Release jobs · 20

Remote function call · 30

Retrieving Information on Criteria Types

(BAPI_CM_CRITTYPES_GET) · 116

S

SAP Office destribution lists

reading · 150

SAP users

reading · 149

Searching for ABAP reports with wildcards

(BAPI_XBP_REPORT_SEARCH) · 124

Searching for archive parameters · 129

Searching for batch events with wildcards

(BAPI_XBP_EVENT_DEFINITIONS_GET) ·

130

Searching for external commands with wildcards

(BAPI_XBP_EXT_COMM_SEARCH) · 125

Searching for output devices with wildcards

(BAPI_XBP_OUTPUT_DEVICE_SEARCH) ·

126

Searching for print formats with wildcards

(BAPI_XBP_PRINT_FORMAT_SEARCH) ·

128

Searching with wildcards · 124

Selecting jobs

(BAPI_XBP_JOB_SELECT) · 98

Selection Screen

Reading · 145

Server resource information (date and time)

(BAPI_XBP_GET_BP_SRVRES_ON_DATE)

· 134

 170

Setting a Criteria Hierarchy · 156

Setting Spool List Recipients · 149, 168

Showing all defined variants for an ABAP

program.

(BAPI_XBP_VARIANT_INFO_GET) · 131

Spool list

getting information on a particular one · 92

Spool list read

job spool list · 90

Spool list recipients

setting · 149

Start jobs · 21

Starting jobs asap

(BAPI_XBP_JOB_START_ASAP) · 56

Starting jobs immediately

(BAPI_XBP_JOB_START_IMMEDIATELY)

· 55

Statistic Information

obtaining · 110

Status

intercept · 22

intercept-confirmed · 22

Symbols · 15

Synchronize Jobs · 147

T

TBCICPT1 · 22

TBCICPT1 (criteria table)

modify · 80

Triggering event from outside

(BAPI_XBP_EVENT_RAISE) · 57

V

Variant

getting variant info for ABAP progr. · 131

Variant Functions · 139

Variants

Changing · 140

Copying · 141

Creating · 139

deleting · 144

Reading Variant Data · 143

W

Wildcard search · 124

Working with Criteria Profiles) · 117

X

XMI Monitor · 30

XML Description of a Criteria Profile or of a

Criteria Hierarchy · 155

