
CLIP Specification

CLIP SPECIFICATION
David-John Burrowes
Joseph E. Kowalski III

Version 1.0 Approved 22 Jan 2003

PSARC 1999/645

1. Introduction
CLIP (Command Line Interface Paradigm) is a set of guidelines that specify the
human interface for command line utilities. The goal of the CLIP specification is to
provide a uniform definition of command line utility syntax and behavior while
seeking to provide the best overall experience for the end user. It starts with
familiar practice and adds guidelines for certain informal and de facto details.

2. Previous Work
For over 10 years, Sun has embraced a set of utility syntax guidelines commonly
referred to as getopt. The formal approval of this syntax is provided by
PSARC/1991/031, Getopts Usage. Fourteen command syntax guidelines are
provided. Guidelines 1 through 13 are adopted directly from the X/Open CAE
Specification, System Interface Definitions, Issue 4 (XBD). Guideline 14 is a Sun
Microsystems local extension modeled after common practice, including BSD.

These guidelines were adopted without modification with the exceptions of the
addition of guideline 14 and the deletion of text from the XBD which described
syntax used elsewhere in the XBD document to characterize exceptions.

It is worth noting that the 13 XBD guidelines are based on definitions provided
with SVID Issue 1, which in turn were based upon external customer polls. The
only clear conclusion from those polls was that consistency was highly desirable.
The exact syntax was far less important. This bias toward consistency should be
retained.

This CLIP specification includes the 14 guidelines from Getopts Usage and as
such represents a superset of the getopt convention.

3. Applicability
The getopt guidelines as described in PSARC/1991/031, Getopts Usage, continue
to represent the basic command line syntax standard of Sun Microsystems. The
CLIP specification represents an optional extension to those basic utility syntax
guidelines.

The CLIP extensions to the getopts guidelines are not to be applied haphazardly to
system utilities. The inconsistency that would result would far outweigh any gain
in usability. Rather the CLIP extensions are only to be applied to logical
collections of utilities. Note that this is an extension of the rationale provided in the

Page 1 of 17 Copyright 2003, Sun Microsystems

5

10

15

20

25

30

35

CLIP Specification

opinion on Getopts Usage:

“As the main benefit from using these guidelines is increased system
regularity, it is important that they not be used irrationally to decrease
system regularity. New additions to utilities or utility sets should
conform to the style of the utility, even if conflicting with these
guidelines. An example would be the “X” utilities. An addition to
this set should use the same multi-character option names as is
common with the “X” utilities. The same applies to Java utilities
even though there was no significant reason for the initial non-
conformance.”

It is difficult to absolutely characterize the properties that define a logical
collection of utilities. Most layered products are of a size such that the entire
product should be converted to CLIP (or not) as a unit. The difficulty lies in
characterizing what subcomponents of extremely large products comprise a logical
collection. Perhaps this difficulty only applies to Sun Solaris utilities, with all other
Sun products forming a logical collection.

There may be some consistency in first dividing Solaris utilities along
consolidation boundaries. However, historical curiosities in the consolidation
structure guarantee there will be exceptions, and the resulting decomposition still
leaves the massive OS/Networking consolidation.

Occasionally, the Solaris directory structure may provides some clues. Certainly,
nothing in the /usr/xpg4, /usr/ucb, /usr/5bin, or /usr/sfw hierarchies
should be converted to CLIP because the intent of these components is
compatibility with an external reference. /usr/openwin and /usr/sadm
(most) are probably inappropriate for conversion because these components are
near the end of their useful deployment. Conversely, the collection of utilities in
/usr/ccs/bin could represent a logical collection appropriate to consider
converting to CLIP, as these are fairly constantly program development tools.
However, the collection of utilities in /usr/ccs/bin tend to have existing
command line syntax which could not be brought into line with the CLIP syntax.
This underlines that being a logical collection is only necessary, but not sufficient,
for justifying conversion to CLIP.

That still leaves the large number of utilities in /usr/bin and /usr/sbin as a
unit. Judgment must be applied as to which collections of these utilities would
comprise a logical grouping. The concept is to place yourself in the mind of a
typical user and ask the question, “Which utilities would I expect to behave
similarly?”. Uniform opinions are unrealistic in this area, but over time experience
and consensus will be obtained on this topic. Project teams considering using CLIP
are advised to solicit early review of collections of utilities they propose to modify.

Also, due to the expense relative to the gain of enhancing existing utilities, it is in
the purview of each steering committee (or PIC) to determine if such projects
provide sufficient utility to be funded.

Page 2 of 17 Copyright 2003, Sun Microsystems

5

10

15

20

25

30

35

40

CLIP Specification

4. Definitions and Conventions
This section describes the argument syntax of the standard utilities and introduces
terminology used for describing the arguments processed by utilities. It is adapted
from IEEE Std 1003.1-2001 (SUSv3). The changes are to allow for CLIP
extensions and the deletion of irrelevant text. This section is normative with the
actual specification in subsequent sections.

The following discussion use the following command invocation as an example:

 utility_name -a --longopt1 -c option_argument \
 -foption_argument --longopt2=option_argument \
 --longopt3 option_argument operand

1. The utility in the example is named utility_name. It is followed by options,
option-arguments, and operands, collectively referred to as arguments. The
arguments that consist of a hyphen followed a single letter or digit, such as
'-a', are known as “short-options”. The arguments that consist of two
hyphens followed by a series of letters, digits and hyphens, such as
'--longopt1', are known as “long-options”. Collectively, short-options and
long-options are referred to as “options” (or historically, “flags”). Certain
options are followed by an “option-argument”, as shown with “-c
option_argument”. The arguments following the last options and option-
arguments are named “operands”. Once the first operand is encountered, all
subsequent arguments are interpreted to be operands.

2. Option-arguments are sometimes shown separated from their short-options
by <blank>s, sometimes directly adjacent. This reflects the situation that in
some cases an option-argument is included within the same argument string
as the option; in most cases it is the next argument. This document requires
that the option be a separate argument from its option-argument, but there are
some exceptions to ensure continued operation of historical applications:

a) If the SYNOPSIS of a utility shows a <space> between a short-option and
option-argument (as with “-c option_argument” in the example), a
conforming application shall use separate arguments for that option and
its option-argument.

b) If a <space> is not shown (as with “-foption_argument” in the
example), a conforming application shall place an option and its option-
argument directly adjacent in the same argument string, without
intervening <blank>s.

c) Notwithstanding the preceding requirements on conforming applications,
a conforming implementation shall permit an application to specify short-
options and option-arguments as a single argument or as separate
arguments whether or not a <space> is shown on the synopsis line.

d) Long-options with option-arguments are always documented as using an
equals sign as the separator between the option name and the option-
argument. If the OPTIONS section of a utility shows an equals sign ('=')
between a long-option and its option-argument (as with

Page 3 of 17 Copyright 2003, Sun Microsystems

5

10

15

20

25

30

35

40

CLIP Specification

“--longopt2=option_argument” in the example), a conforming
application shall also permit the use of separate arguments for that option
and its option-argument (as with “--longopt1 option_argument” in
the example).

5. CLIP Guidelines
This section presents the 21 guidelines that make up the CLIP specification.

Guidelines 1 through 14 are imported from PSARC/1991/031, Getopts Usage.
However, guidelines 1 through 13 are updated to the current wording in Open
Group Technical Standard Base Specifications, Issue 6 (SUSv3). Guideline 14 in
enhanced by clarifying the character set associated subcommand names. A utility
that conforms to guidelines 1 through 14 is said to be getopt conformant.

CLIP adds guidelines 15 through 21 to the getopt set of guidelines. A utility that
conforms to all guidelines 1 through 21 is said to be CLIP conformant. All CLIP
conformant utilities are also getopt conformant.

As the specification is expected to evolve compatibly over time, all claims of
getopt conformance or CLIP conformance should be to a specific version of this
document. Is is expected that description enhancements and additions to the
conventional names enumerated in section 6 would constitute a minor revision to
the document, while addition or deletion of a guideline would constitute a major
revision.

Source Guideline Notes

1 SUS
1 Utility names should be between two and

nine characters, inclusive.
The nine character maximum is often
waived for rarely used utilities.

2 SUS Utility names should include lower-case
letters (the lower character classification)
and digits only from the portable
character set.

Guidelines 1 and 2 are offered as
guidance for locales using Latin
alphabets.

Operands and option-arguments can
contain characters not specified in the
portable character set.

The characters '-' (hyphen) and '_'
(underscore) are often present in utility
names not expected to be subject to
standardization. Other exceptions, such
as mixed case, are rarely appropriate.

The name of a utility cannot have colon
as the last character. If a colon is used in
this position some shells will misinterpret
a command as a label.

3 SUS Each option name should be a single
alphanumeric character (the alnum
character classification) from the portable
character set. The -W (capital-W) option
shall be reserved for vendor options.

This only applies to short-option names.

The clause about the -W option is only of
concern when modifying utilities defined
by SUS or when creating/modifying a

1 Single Unix Specification ...

Page 4 of 17 Copyright 2003, Sun Microsystems

5

10

10

10

CLIP Specification

Source Guideline Notes

Multi-digit options should not be
allowed.

utility that may be standardized in the
future .

4 SUS All options should be preceded by the '-'
delimiter character.

This only applies to short-options.

5 SUS Options without option-arguments should
be accepted when grouped behind one '-'
delimiter.

This only applies to short-options.

6 SUS Each option and option-argument should
be a separate argument.

This only applies to short-options.
Specifically, this doesn't apply when a
long-option is separated from the option-
argument with ' =' (equals).

7 SUS Option-arguments should not be optional.

8 SUS When multiple option-arguments are
specified to follow a single option, they
should be presented as a single argument,
using commas within that argument or
blanks within that argument to separate
them.

This is interpreted to mean that if an
option-argument contains multiple
values, it may accept commas or blanks
as the separator, but not both. Commas
are the preferred separator to avoid
quoting issues, except in cases where
commas would be expected to be part of
the option-argument string. Whether a
utility accepts either commas or spaces
must be made clear in the documentation
for each utility.

It is up to the utility to parse a comma-
separated list itself because getopt()
just returns a single string. This situation
was retained so that certain historical
utilities would not violate the guidelines.
Applications preparing for international
use should be aware of an occasional
problem with comma separated lists: in
some locales, the comma is used as the
radix character. Thus, if an application is
preparing operands for a utility that
expects a comma-separated list, it should
avoid generating non-integer values
through one of the means that is
influenced by setting the LC_NUMERIC
variable (such as awk, bc, printf or
printf()).

The function getsubopt(3c) is
provided to parse many option-argument
formats.

9 SUS All options should precede operands on
the command line.

There exists a class of utilities where the
application of this guideline is
impractical. Specifically, these are
utilities where differing option settings
may be desired for each operand. The
compilation linking tools (ld, et al.) are

Page 5 of 17 Copyright 2003, Sun Microsystems

CLIP Specification

Source Guideline Notes

an example of this. In such cases, this
guideline should be waived (but only for
this reason).

10 SUS The argument -- should be accepted as a
delimiter indicating the end of options.
Any following arguments should be
treated as operands, even if they begin
with the '-' character. The -- argument
should not be used as an option or as an
operand.

Applications calling any utility with a
first operand starting with - should
usually specify -- , as indicated by
Guideline 10, to mark the end of the
options.

Utilities that do not support Guideline 10
indicate that fact in the OPTIONS section
of the utility description.

11 SUS The order of different options relative to
one another should not matter, unless the
options are documented as mutually
exclusive and such an option is
documented to override any incompatible
options preceding it. If an option that has
option-arguments is repeated, the option
and option-argument combinations
should be interpreted in the order
specified on the command line.

The order of repeated options that also
have option-arguments may be
significant; therefore, such options are
required to be interpreted in the order
that they are specified. The make utility
is an instance of a historical utility that
uses repeated options in which the order
is significant. Multiple files are specified
by giving multiple instances of the -f
option, for example:
make -f common_header -f
specific_rules target

12 SUS The order of operands may matter and
position-related interpretations should be
determined on a utility-specific basis.

13 SUS For utilities that use operands to
represent files to be opened for either
reading or writing, the '-' operand should
be used only to mean standard input (or
standard output when it is clear from
context that an output file is being
specified).

Guideline 13 does not imply that all of
the standard utilities automatically accept
the operand '-' to mean standard input or
output, nor does it specify the actions of
the utility upon encountering multiple '-'
operands. It simply says that, by default,
'-' operands are not used for other
purposes in the file reading or writing
(but not when using stat(), unlink(),
touch, and so forth) utilities.

All information concerning actual
treatment of the '-' operand should be
included in the individual utility
descriptions.

14 PSARC2 The form “command subcommand
[options] [operands]” is appropriate for
grouping similar operations.
Subcommand names should follow the
same conventions as command names as
specified in guidelines 1 and 2.

15 GNU3 Long-options should be preceded by -- This is reworded from the GNU form to

2 Platform Architecture Committee, case PSARC/1991/031, Getopts Usage
3 GNU getopt_long

Page 6 of 17 Copyright 2003, Sun Microsystems

CLIP Specification

Source Guideline Notes

and should include only alphanumeric
characters and hyphens from the portable
character set. Option names are typically
one to three words long, with hyphens to
separate words.

follow the conventions of this document.
The original form is “Long-options
consist of -- followed by a name made
of alphanumeric characters and dashes.
Option names are typically one to three
words long, with hyphens to separate
words.”

Dashes and hyphens refer to the same
characters.

16 GNU “--name=argument” should be used
to specify an option-argument for a long-
option. The form “--name
argument” should also be accepted

This is interpreted as requiring that both
forms must be accepted. An implication
is that a long-option argument is still
subject to guideline 7, “option-arguments
shall not be optional”. The form of an
option followed by an equals sign and
then whitespace (“--name=”) is
interpreted to specify the null string as
the argument.

17 GNU All utilities should support two standard
long-options: “--version” (with the
short-option synonym “-V”) and
“--help” (with the short-option
synonym “-?”).

A utility may claim clip conformance if it
is unable to use “-V” as the short-option
synonym for “--version” due to its
prior assignment. A short-option
synonym for “--version” must still be
provided.

See sections 6.1 and 6.2 below for
descriptions of the output of these
options.

Both of these options stop further
argument processing when encountered
and after displaying the appropriate
output, the utility successfully exits.

18 CLIP4 Every short-option should have exactly
one corresponding long-option and every
long-option should have exactly one
corresponding short-option.

Synonymous options may be allowed in
the interest of compatibility with
historical practice or community versions
of equivalent utilities. There are a few
cases where synonymous short-options
have been created by POSIX in the
interest of merging together BSD and
SysV utilities. Also, Sun has several
utility that already use -h to get help; if
they are converted to CLIP, “-h”, “-?”
and “--help” should clearly be allowed
as synonyms. Such synonyms should
always be justified to reviewers of the
utility and (if appropriate) in the
documentation.

19 CLIP The short-option name should get its
name from the long-option name

This algorithm is derived from the Java
Look and Feel Design Guidelines section

http://www.gnu.org/manual/glibc-2.2.5/html_node/Getopt-Long-Options.html
4 Defined in this document.

Page 7 of 17 Copyright 2003, Sun Microsystems

CLIP Specification

Source Guideline Notes

according to these rules:

1. Use the first letter of the long-option
name for the short-option name.

2. If the first letter conflicts with other
short-option names, choose a
prominent consonant.

3. If the first letter and the prominent
consonant conflict with other short-
option names, choose a prominent
vowel.

4. If none of the letters of the long-
option name are usable, select an
arbitrary character.

about mnemonics.

20 CLIP If a long-option name consists of a single
character, it must use the same character
as the short-option name.

Single character long-options should be
avoided. They are only allowed for the
exceptionally rare case that a single
character is the most descriptive name.

21 CLIP The subcommand in the form described
in guideline 14 is generally required. In
the case where it is omitted, the
command shall take no operands and
only options which are defined to stop
further argument processing when
encountered are allowed. Invoking a
command of this form without a
subcommand and no arguments is an
error.

This guideline is provided to allow the
common forms “command --help”,
“command -?”, “command
--version”, and “command -V” to
be accepted in the command-
subcommand construct.

The acceptance of other options without
a subcommand is strongly discouraged.

Under no circumstances will a command
of the form described in guideline 14 be
allowed to accept an operand when no
subcommand is present, as that form is
ambiguous.

6. Defined Option Output
If a utility has subcommands (see guideline 14), the options described in this
section may be used instead of the subcommand name, as well as after the
subcommand name. Differing information may be returned in either case.

6.1 Version Output (--version / -V)

The following text is freely adapted and reduced from the GNU Standards for
Command Line Utilities. Direction from that reference that is only applicable to
independently delivered components that don't comprise a product has been
deleted.

This option should direct the program (utility) to print information about its
name, version, origin and legal status, all on standard output, and then exit
successfully. Other options and arguments should be ignored once this option is

Page 8 of 17 Copyright 2003, Sun Microsystems

10

15

20

CLIP Specification

seen, and the program should not perform its normal function. The first line is
meant to be easy for a program to parse; the version string proper starts after the
last space. No other assumptions should be made about the generic ability to
parse the version output. In addition, it contains the canonical name for this
program, in this format:

cc 5.2

The program's name should be the “basename” of the utility as documented.
The idea is to state the standard or canonical name for the program, not its file
name. There are other ways to find out the precise file name where a command
is found in PATH. If the program is a subsidiary part of a larger package or
product, mention the name in parentheses, like this:

cc (Sun WorkShop 6 update 1) 5.2

If the package has a version number that is different from this program's version
number, you can mention the package version number just before the close-
parenthesis. The following line, after the version number line, should be a
copyright notice. If more than one copyright notice is called for, put each on a
separate line. Here's an example of output that follows these rules:

cc (Sun WorkShop 6 update 1) 5.2
Copyright 2002 Sun Microsystems, Inc.
All rights reserved.
Use is subject to license terms.

The exact form of the copyright text is not defined by this document, but rather
is defined (and redefined) by the Sun Legal Department. The above form is the
form specified by the Sun Legal Department as of the date of this document.

In contrast with the GNU guidelines, under no circumstances should the output
contain a list of any Sun authors of the program. Should a imported utility
contain a list of external author attributions, that list should be retained in an
unmodified form.

6.2 Help Output (--help / -?)

This option should direct the program to print information about the usage of
the utility and both the subcommands and options that it supports, all on
standard output, and then exit successfully. Other options and arguments should
be ignored once this option is seen, and the program should not perform its
normal function.

The traditional usage message (SYNOPSIS from the manual page or
equivalent) should be displayed first. Each distinct usage of a particular utility
should be listed on a separate line. The first should be prefixed by "Usage: "
while subsequent ones should be prefixed with " or: ". An example of this
is:

$ foo -?
Usage: foo -x -y -z operand
 or: foo -w [-q arg]

Page 9 of 17 Copyright 2003, Sun Microsystems

5

10

15

20

25

30

35

40

CLIP Specification

 or: foo -v
 or: foo -?

Note that the -v and -? options should only be on separate SYNOPSIS lines
when the utility would have more than one SYNOPSIS line for other reasons. In
general, the -v and -? options are not exclusive of other options, they just have
the special definition of stopping further processing of the command line.

 Utilities without subcommands, should then display a short description of the
utility and a list of all its options and what they are for.

If the help option appears in the absence of a subcommand, the utility will print
the traditional usage message, a short description of the utility, and a short
description of what each subcommand does. In this case, the options to the
subcommands are not described.

If the option appears after the subcommand name, the utility will print the
traditional usage messages of the subcommand, a short description of what the
subcommand does and a list of all its options and what they are for.

Examples:

$ sscontrol --help
Usage: sscontrol SUBCOMMAND ARGUMENTS

Control a ServiceSpace server.

The accepted values for SUBCOMMAND are:

shutdown Stops a ServiceSpace instance.
startup Starts a ServiceSpace instance.

For more information, see sscontrol(1M).

$ sscontrol startup --help
Usage: sscontrol startup [OPTIONS...]

Starts a ServiceSpace server.

-b bundle, --bundle=bundle
 Installs and starts bundles (none by
 default)

-k, --check-bundles Check validity of bundles

-r path, --bundle-prefix=path
 Prefix used to locate bundles (defaults to
 $jesInstall/bundles/)

-u, --no-update Does not update bundles on launch

-?, --help Display this help list

-V, --version Display program version information

For more information, see sscontrol(1M).

The purpose of the help output is to indicate anything special about the
arguments that the utility expects, and so the output should not enumerate the

Page 10 of 17 Copyright 2003, Sun
Microsystems

5

10

15

20

25

30

35

40

CLIP Specification

possible option-arguments and operands.

Note that this output is intended to be a subset of the output generated by the
GNU ARGP argument parser, as this provides an informal expectation for this
information.

7. Conventional Names
CLIP seeks to promote consistency across utilities. An important aspect of this
goal is for utilities to use consistent names for their option names and
subcommands. The benefit of this is that users will come to associate certain
results from particular options and subcommands, which will allow them to learn
how to use new utilities more easily.

Utilities are encouraged to use names from this set, but not at the expense of
ignoring terms commonly applied to the specific application area or “previous art”.

The following two subsections provide a set of option names and subcommands,
and describes their meanings. These lists should be expanded as more experience is
gained so there can be more consistency across utilities.

A utility may claim CLIP conformance if it uses names other than those suggested.

7.1 Conventional Option Names

If a utility supports an option that corresponds to one of the ones listed below, then
that utility should use the specified long-option name. Similarly, a utility should
not use one of these long-option names for a different meaning. If a utility uses one
of the long-option names listed in the table below, CLIP recommends that the
corresponding short-option name listed in this table be used.

Long-option Name Short-option Name Meaning

--dry-run -n Report what would have been done without
actually doing it.

--recursive -R Recursively perform the operation on all
members of a directory tree or other
hierarchy.

--hostname=name -h name Specify a hostname.

--username=name -u name Specify a user name.

--groupname=name -g name Specify a group name.

--quiet -q Show no status information while
performing the operation

--verbose -v Show additional status information while
performing the operation.

7.2 Conventional Subcommand Names

If a utility supports one of the operations listed below, then that utility should use
the subcommand name listed. A utility should not use one of these subcommand

Page 11 of 17 Copyright 2003, Sun
Microsystems

5

10

15

20

25

CLIP Specification

names to specify a different operation.

Subcommand Meaning

add Adds a reference to an existing item, specified by the operands, to an object.

create Creates a new item(s) specified by the operand(s).

delete Deletes an item(s) specified by the operand(s). This is the inverse of the
“create” subcommand.

list Prints information about the object(s) specified by the operands, or all objects
if no operands are specified in the command.

modify Modifies one or more aspects of one or more objects specified by the
operand(s).

remove Removes a reference to an item(s), specified with the operand(s), from an
object. This is the inverse of the “add” subcommand.

The following names should never be used as subcommand names. They are
overly redundant as synonyms for long-options of the same name, but using them
for another meaning would be confusing.

Subcommand Meaning

help Redundant to “--help” or confusing with another interpretation.

version Redundant to “--version” or confusing with another interpretation.

8. Manual Pages
Manual pages need two alterations to properly document the additional features
defined by CLIP.

8.1 Long-Option Names

When documenting the options used by a utility, all synonymous forms of the
option should be listed on individual lines, as shown in the example below, with
the short-option synonym listed first. When a synonym starts with a different letter
than the initial one, it should be repeated by itself later on in the options list.
Options should be sorted alphabetically by the first option in each group. When
options with long names accept an option-argument, they should always be shown
with the "=". Also note that when an option accepts an option-argument, that
argument is listed with all of the option names. Finally note that the -V and -?
options are not given a synopsis line of their own; their definition of stopping
further processing of the command line is sufficient. The following example
demonstrates all of these concepts:

SYNOPSIS

util [-a][-n][-q][-S suf][-V][-?] operands

...

OPTIONS

Page 12 of 17 Copyright 2003, Sun
Microsystems

5

10

15

20

CLIP Specification

This utility is CLIP compliant. The following options are
supported:

-a
--text

Ascii text mode: convert end-of-lines using local
conventions. This option is supported only on some non-
UNIX systems. For MSDOS, CR LF is converted to LF when
compressing, and LF is converted to CR LF when
decompressing.

-n
--name

When compressing, do not save the original file name and
time stamp by default. (The original name is always saved
if the name had to be truncated.) When decompressing, do
not restore the original file name if present.

-q
--quiet

Suppress all warnings.

-S suf
--suffix=suf

Use suffix suf instead of qy. Any suffix can be given,
but suffixes other than z and qy should be avoided to
avoid confusion when files are transferred to other
systems.

--text
Ascii text mode. See -a.

-V
--version

Display version information. (Stops interpretation of
subsequent arguments.)

-?
--help

Display help information. (Stops interpretation of
subsequent arguments.)

The SYNOPSIS line should not be modified to show the long-option form.
Including the short-option equivalents in the OPTIONS section is sufficient.

8.2 Subcommands

Utilities with subcommands should list each subcommand usage in the SYNOPSIS
section on a separate line, and document the subcommands and their options in the
DESCRIPTION section. Note that the -V and -? options are given separate lines
in this case, otherwise they would need to be replicated on each line. The following
example demonstrates these ideas:

SYNOPSIS

superutil add [-asu] [-n name] file
superutil remove [-fr] name ...

Page 13 of 17 Copyright 2003, Sun
Microsystems

5

10

15

20

25

30

35

40

45

CLIP Specification

superutil -V
superutil -?

...

DESCRIPTION

Manages named references to files.

The add subcommand adds a reference to the file with the
specified name.

The remove subcommand removes the named reference(s).

...

OPTIONS

The following options are supported:

-a
--absolute

Store an absolute path name.

-f
--force

Do not warn if the names are not present.

-n name
--name=name

Specify the name for the reference. Defaults to "ref" and
a unique number (e.g. ref2345) if not specified.

...

9. Disallowed Constructs
As mentioned above, one of the driving forces of the CLIP Specification is
increased compatibility with the freeware communities. However, several
behaviors have been implemented by the freeware community that have
unacceptable long-term consequences and are explicitly not allowed in Sun
software.

Most of these exclusions do not apply to Sun supplied software classified as
External. However, Sun software that is originally classified as External but that
expects to migrate to an Evolving or other public classification should strongly
consider disallowing these options at initial delivery.

9.1 Non-POSIX Option/Operand Interleaving

The default behavior of GNU getopt() and the only behavior of GNU
getopt_long() is to not enforce guideline 9, allowing the interleaving of
options and operands. There are cases where this can result in the ambiguous
interpretation of command lines and is explicitly not allowed under these
guidelines.

It should be understood that there exists a class of utilities where the application
of guideline 9 and/or 11 is impractical. Specifically, these are utilities where

Page 14 of 17 Copyright 2003, Sun
Microsystems

5

10

15

20

25

30

35

40

CLIP Specification

differing option settings may be desired for each operand. The compilation
linking tools (ld) are an example of such utilities. In such cases, this guideline
should be waived (but only for this reason). Such a utility can't claim either
getopt or CLIP conformance, but it can describe itself as “conforming to the
getopt (or CLIP) guidelines with the exception of guidelines 9 and 11”.

9.2 Long-Option Completion

GNU ARGP provides that “Long option names can be abbreviated as long as
those abbreviations are unique among long options”. This can lead to the
situation that the addition of a new option to a utility can cause the failure of
existing scripts. Consider a utility which provides the “--do-this” option. A
script could abbreviate this as “--do”. Adding the “--do-that” option would
cause “--do” to become ambiguous and hence fail.

Long-option abbreviation/truncation is explicitly not allowed.

9.3 Single Dash Long-Options

GNU ARGP can be used in a mode so that long-options may be delimited by a
single '-': “Long options names may be delimited by a single '-'”. This can lead
to ambiguity between a long-option and the aggregate of a number of short-
options as provided by guideline 5.

Single dash long-options are explicitly not allowed.

9.4 Optional Option-Arguments

GNU getopt_long provides for optional option arguments. Although this is
unambiguous in the case where the option is directly followed by an equals sign
it becomes ambiguous in the case (also supported by getopt_long) where the
option and its (potential) argument are separated by a space. Consider the option
“--optional-arg”. While the constructs “--optional-arg= foo” and
“--optional-arg=foo bar” are unambiguous, the construct
“--optional-arg foo” is ambiguous as to whether foo is option-argument
or the first operand. As stated in notes accompanying guideline 16, the form
“--optional-arg= ” shall be interpreted as specifying the null string as an
option-argument, not as no option-argument.

Optional option-arguments are explicitly not allowed.

9.5 POPT Configuration

POPT (used by GNONE, RedHat rpm and other utility sets) provides an option
aliasing facility. It lets the user specify options that popt() expands into other
options when they are specified. Aliases are specified in two places -
/etc/popt and $HOME/.popt. This is more “rope” than is acceptable to Sun
because it can be easily manipulated to circumvent system security. This feature
of POPT has raised sufficient concern that a separate case has been spawned to

Page 15 of 17 Copyright 2003, Sun
Microsystems

5

10

15

20

25

30

35

CLIP Specification

clarify the disposition of POPT in Solaris. (PSARC/2003/XXX).

Until the disposition of POPT is clarified, its use should be limited and any use
should disable the aliasing facility.

9.6 Authoring Credits

GNU allows (and perhaps encourages) authoring attributions in version output
(and perhaps elsewhere). Unless legal obligations require it, Sun utilities shall
not contain or display authoring attributions (even in source code). Note
however, that it is generally a legal requirement to retain all existing attributions
in imported software. In summary, Sun (generally) should neither add or delete
such credits.

10.Argument Parsing
The existing getopt(3c) and getopts(1) facilities will be enhanced to be
able to parse CLIP comformant argument arrays (argv[]). The will be done by
expanding the syntactic specification of an option in the optstring parameter.
Currently, the syntax of an option specification in optstring is:

c [:]

where the character c is the short-option character and the optional literal colon
specifies if the option requires an option-argument. This syntax will be expanded
to:

c [:] [(name) ...]

where the character c and the literal colon are defined as before. These may now be
followed by a series of zero or more name character strings enclosed in literal
parentheses. The name character strings are the long-option names to be aliased to
the short-option name. A couple of notes:

1. The use of more than one long-option name as an alias for a short-option
name violates the CLIP specification. However, it is expected that enough
exceptions will be granted to this rule that it is appropriate to require the
function to accept multiple long-options.

2. Although never allowed by the specification, this change will eliminate the
ability of getopt(3c) to accept the left parentheses as a short-option
name. The colon character is already not accepted.

3. The use of the question mark character will now become common in the
optstring parameter (so that the long-option name alias --help can be
associated with it). It will be documented as a Solaris extension to the
getopt() function, but its use for anything other than a synonym for the
help long-option will not be accepted. Note that getopt(3c)will also
return a question mark character in response to a number of argument error
conditions. This ambiguity can be resolved by checking the optopt
variable. Generally, when the questionmark is due to an error condition, a

Page 16 of 17 Copyright 2003, Sun
Microsystems

5

10

15

20

25

30

35

CLIP Specification

usage statement should be displayed rather than the full help message.

The possibility of introducing a new command line argument parsing function
modeled after the GNU getopt_long() function was considered:

int getopt_clip (int argc, char *const *argv, const
char *shortopts, const struct option *longopts, int
*indexptr)

Although this approach had some minor desirable features, the awkwardness in
implementing a similar interface for shell scripts (as getopts(1)) made it far
less desirable than simply enhancing the existing getopt(3c) interface.

The proposed manual page for getopt(3c) is available.

11.Future Directions
As more experience is gained, the lists of conventional names provided in section 7
should be expanded.

Page 17 of 17 Copyright 2003, Sun
Microsystems

5

10

	1.Introduction
	2.Previous Work
	3.Applicability
	4.Definitions and Conventions
	5.CLIP Guidelines
	6.Defined Option Output
	6.1 Version Output (--version / -V)
	6.2 Help Output (--help / -?)

	7.Conventional Names
	7.1 Conventional Option Names
	7.2 Conventional Subcommand Names

	8.Manual Pages
	8.1 Long-Option Names
	8.2 Subcommands

	9.Disallowed Constructs
	9.1 Non-POSIX Option/Operand Interleaving
	9.2 Long-Option Completion
	9.3 Single Dash Long-Options
	9.4 Optional Option-Arguments
	9.5 POPT Configuration
	9.6 Authoring Credits

	10.Argument Parsing
	11.Future Directions

