GDB Internals

A guide to the internals of the GNU debugger

John Gilmore
Cygnus Solutions
Second Edition:
Stan Shebs

Cygnus Solutions

Cygnus Solutions
Revision

TgXinfo 2004-02-19.09

Copyright (© 1990,1991,1992,1993,1994,1996,1998,1999,2000,2001, 2002, 2003, 2004 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Table of Contents

Scope of this Document 1
1 Requirements.............................. 1
2 Overall Structure.......................... 1
2.1 The Symbol Side 2
2.2 The Target Side.o 2
2.3 Configurations ...t 2

3 Algorithms........... ... i, 2
3.1 Frames 2
3.2 Breakpoint Handling 3
3.3 Single Steppingovii it 4
3.4 Signal Handling oo 4
3.5 Thread Handling 4
3.6 Inferior Function Calls............. 4
3.7 Longjmp SUppOrtt 4
3.8 Watchpoints 4
3.8.1 x86 Watchpoints.......... i 6

3.9 Observing changes in GDB internals........................... 8

4 UserInterface............................. 9
4.1 Command Interpreter.......... i 9
4.2 Ul-Independent Output—the ui_out Functions................ 9
4.2.1 Overview and Terminology 10

4.2.2 General Conventions..................ooiiiieinnao... 10

4.2.3 Table, Tuple and List Functions 11

4.2.4 Ttem Output Functions............. 13

4.2.5 Utility Output Functions............................... 14

4.2.6 Examples of Use of ui_out functions.................... 15

4.3 Console Printing i 18
4.4 MUl 18

5 libgdb.......... ... i 18
5.1 libgdb 1.0. ... 18
5.2 libgdb 2.0.o 18
5.3 The libgdb Model 19
5.4 CLISUPPOTt . .ot 19

5.5 libgdb components i 19

6 Symbol Handling 20
6.1 Symbol Reading........ 20
6.2 Partial Symbol Tables 21
6.3 LyPeS .o 22

Fundamental Types (e.g., FT_VOID, FT_BOOLEAN)................ 22
Type Codes (e.g., TYPE_CODE_PTR, TYPE_CODE_ARRAY)........... 22
Builtin Types (e.g., builtin_type_void, builtin_type_char)... 23
6.4 Object File Formats......... ... 23
6.4.1 A.0Ub ... 23
6.4.2 COFF ... 23
6.43 ECOFF ... 23
6.44 XCOFF 23
6.4.5 PE ... 24
6.4.6 ELF ... 24
6.4.7 SOM ... 24
6.4.8 Other File Formats 24
6.5 Debugging File Formats 24
6.5.1 stabs ... 24
6.5.2 COFF ... 24
6.5.3 Mips debug (Third Eye)...............iii. .. 24
6.5.4 DWARF 1 24
6.5.0 DWARF 2 24
6.5.6 SOM 25
6.6 Adding a New Symbol Reader to GDB 25
Language Support 25
7.1 Adding a Source Language to GDB............oviiiiiiii... 25
Host Definition 27
8.1 Adding a New Host i, 27
8.2 Host Conditionalst ... 28
Target Architecture Definition............. 30
9.1 Operating System ABI Variant Handling..................... 31
9.2 Registers and Memoryo i, 32
9.3 Pointers Are Not Always Addresses.......................... 33
9.4 Address Classesttt 34
9.5 Raw and Virtual Register Representations.................... 36
9.6 Using Different Register and Memory Data Representations ... 37
9.7 Frame Interpretation L 38
9.8 Inferior Call Setup ...t 38
9.9 Compiler Characteristics................... i, 38
9.10 Target Conditionals i 38
9.11 Adding a New Target.......... ..., 55
9.12 Converting an existing Target Architecture to Multi-arch.. ... 56
9.12.1 Preparation 56

9.12.2 Add the multi-arch initialization code 56

ii

9.12.3 Update multi-arch incompatible mechanisms............ 57
9.12.4 Prepare for multi-arch level toone 57
9.12.5 Set multi-arch levelone 57
9.12.6 Convert remaining MacroS.uveeuuneeennnn... 58
9.12.7 Set multi-arch level totwo............................. 58
9.12.8 Delete the TM file............ 58
10 Target Vector Definition 58
10.1 File Targets.t 58
10.2 Standard Protocol and Remote Stubs....................... 58
10.3 ROM Monitor Interface.............. 59
10.4 Custom ProtocolS, 59
10.5 Transport Layer...........o i 59
10.6 Builtin Simulator.......... 59
11 Native Debugging 59
11.1 Native core file Support........ i 60
11.2 ptraceo 61
1103 /DPTOC. ot 61
114 WINB2 L. 61
11.5 shared libraries............cco i 61
11.6 Native Conditionals 61
12 Support Libraries........................ 63
12.1 BED .. 63
12,2 0pCOdeS .« v v e 64
123 readlineooo i 64
124 mmalloc. ... 64
12.5 libiberty 64
12.5.1 0bStacksS N GDB .o .ottt et e 64
126 gNU-TEZEX . . oot 65
12,7 dnclude 65
13 Coding......ccvviiiiiiiiiiiiiiinnnn. 65
13,1 Cleanups . .o oo ettt e e e e e 65
13.2 Per-architecture module data............................... 66
13.3 Wrapping Output Lines............ 68
13.4 @DB Coding Standardscooo i 69
13.4.1 ISO C oo 69
13.4.2 Memory Managementcouiieinen... 69
13.4.3 Compiler Warningsooiiiiiiiiiinnnea .. 69
13.4.4 Formatting.......... ... i 70
13.4.5 Commentscovuriet e 71
1346 CUSAZE . oo v vttt e 71
13.4.7 Function Prototypes i 72
13.4.8 Internal Error Recovery 72

13.4.9 File Names. 72

iii

13.4.10 Include Files 72
13.4.11 Clean Design and Portable Implementation............ 73

14 Porting GDBcvtiiiiiiiinnnnnnnnnns 75
15 Releasing GDBovviiiinneeennnnns 75
15.1 Versions and Branches..................................... 75
15.1.1 Version Identifierscc ... 76
15.1.2 Branches............. 77

15.2 Branch Commit Policy 77
15.3 Obsoleting codeoiiiii 77
154 Beforethe Branch................. 78
15.4.1 Review the bug database............................. 78
15.4.2 Check all cross targets build 78

15,5 CuttheBranch 79
15.6 Stabilizethe branch 80
15.7 Createa Release........ 80
15.7.1 Create a release candidate............................. 80
15.7.2 Sanity check the tar ball 83
15.7.3 Make a release candidate available 83
15.7.4 Make a formal release available 84
15.7.5 Cleanup. . ..ottt e e e 85

15.8 Postrelease. 86
16 Testsuite...........coiieinninennn.. 86
16.1 Using the Testsuite.............co ... 86
16.2 Testsuite Organization.............. ..., 87
16.3 Writing Testsot 88
17 Hintsttt et i et i e e, 88
17.1 Getting Started 88
17.2 Debugging GDB with itself 89
17.3 Submitting Patches.......... 90
17.4 Obsolete Conditionals 91

Appendix A GDB Currently available observers

.. 91
A.1 TImplementation rationale................................... 91
A.2 normal_stop Notifications......................... 92

Appendix B GNU Free Documentation License
.. 92
B.1 ADDENDUM: How to use this License for your documents ... 99

v

Chapter 2: Overall Structure 1

Scope of this Document

This document documents the internals of the GNU debugger, GDB. It includes description
of GDB’s key algorithms and operations, as well as the mechanisms that adapt GDB to
specific hosts and targets.

1 Requirements

Before diving into the internals, you should understand the formal requirements and other
expectations for GDB. Although some of these may seem obvious, there have been proposals
for ¢DB that have run counter to these requirements.

First of all, ¢DB is a debugger. It’s not designed to be a front panel for embedded
systems. It’s not a text editor. It’s not a shell. It’s not a programming environment.

GDB is an interactive tool. Although a batch mode is available, GDB’s primary role is to
interact with a human programmer.

GDB should be responsive to the user. A programmer hot on the trail of a nasty bug, and
operating under a looming deadline, is going to be very impatient of everything, including
the response time to debugger commands.

GDB should be relatively permissive, such as for expressions. While the compiler should
be picky (or have the option to be made picky), since source code lives for a long time
usually, the programmer doing debugging shouldn’t be spending time figuring out to mollify
the debugger.

GDB will be called upon to deal with really large programs. Executable sizes of 50 to 100
megabytes occur regularly, and we’ve heard reports of programs approaching 1 gigabyte in
size.

GDB should be able to run everywhere. No other debugger is available for even half as
many configurations as GDB supports.

2 Overall Structure

GDB consists of three major subsystems: user interface, symbol handling (the symbol side),
and target system handling (the target side).

The user interface consists of several actual interfaces, plus supporting code.

The symbol side consists of object file readers, debugging info interpreters, symbol table
management, source language expression parsing, type and value printing.

The target side consists of execution control, stack frame analysis, and physical target
manipulation.

The target side/symbol side division is not formal, and there are a number of excep-
tions. For instance, core file support involves symbolic elements (the basic core file reader
is in BFD) and target elements (it supplies the contents of memory and the values of reg-
isters). Instead, this division is useful for understanding how the minor subsystems should
fit together.

Chapter 3: Algorithms 2

2.1 The Symbol Side

The symbolic side of GDB can be thought of as “everything you can do in GDB without
having a live program running”. For instance, you can look at the types of variables, and
evaluate many kinds of expressions.

2.2 The Target Side

The target side of GDB is the “bits and bytes manipulator”. Although it may make reference
to symbolic info here and there, most of the target side will run with only a stripped
executable available—or even no executable at all, in remote debugging cases.

Operations such as disassembly, stack frame crawls, and register display, are able to work
with no symbolic info at all. In some cases, such as disassembly, GDB will use symbolic info
to present addresses relative to symbols rather than as raw numbers, but it will work either
way.

2.3 Configurations

Host refers to attributes of the system where GDB runs. Target refers to the system where
the program being debugged executes. In most cases they are the same machine, in which
case a third type of Native attributes come into play.

Defines and include files needed to build on the host are host support. Examples are tty
support, system defined types, host byte order, host float format.

Defines and information needed to handle the target format are target dependent. Ex-
amples are the stack frame format, instruction set, breakpoint instruction, registers, and
how to set up and tear down the stack to call a function.

Information that is only needed when the host and target are the same, is native depen-
dent. One example is Unix child process support; if the host and target are not the same,
doing a fork to start the target process is a bad idea. The various macros needed for finding
the registers in the upage, running ptrace, and such are all in the native-dependent files.

Another example of native-dependent code is support for features that are really part
of the target environment, but which require #include files that are only available on the
host system. Core file handling and setjmp handling are two common cases.

When you want to make GDB work “native” on a particular machine, you have to include
all three kinds of information.

3 Algorithms

GDB uses a number of debugging-specific algorithms. They are often not very complicated,
but get lost in the thicket of special cases and real-world issues. This chapter describes the
basic algorithms and mentions some of the specific target definitions that they use.

3.1 Frames

A frame is a construct that GDB uses to keep track of calling and called functions.

FRAME_FP in the machine description has no meaning to the machine-independent part
of GDB, except that it is used when setting up a new frame from scratch, as follows:

Chapter 3: Algorithms 3

create_new_frame (read_register (DEPRECATED_FP_REGNUM), read_pc ()));

Other than that, all the meaning imparted to DEPRECATED_FP_REGNUM is imparted by the
machine-dependent code. So, DEPRECATED_FP_REGNUM can have any value that is convenient
for the code that creates new frames. (create_new_frame calls DEPRECATED_INIT_EXTRA_
FRAME_INFQO if it is defined; that is where you should use the DEPRECATED_FP_REGNUM value,
if your frames are nonstandard.)

Given a GDB frame, define DEPRECATED_FRAME_CHAIN to determine the address of the
calling function’s frame. This will be used to create a new GDB frame struct, and then
DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be called for
the new frame.

3.2 Breakpoint Handling

In general, a breakpoint is a user-designated location in the program where the user wants
to regain control if program execution ever reaches that location.

There are two main ways to implement breakpoints; either as “hardware” breakpoints
or as “software” breakpoints.

Hardware breakpoints are sometimes available as a builtin debugging features with some
chips. Typically these work by having dedicated register into which the breakpoint address
may be stored. If the PC (shorthand for program counter) ever matches a value in a
breakpoint registers, the CPU raises an exception and reports it to GDB.

Another possibility is when an emulator is in use; many emulators include circuitry that
watches the address lines coming out from the processor, and force it to stop if the address
matches a breakpoint’s address.

A third possibility is that the target already has the ability to do breakpoints somehow;
for instance, a ROM monitor may do its own software breakpoints. So although these are
not literally “hardware breakpoints”, from GDB’s point of view they work the same; GDB
need not do anything more than set the breakpoint and wait for something to happen.

Since they depend on hardware resources, hardware breakpoints may be limited in num-
ber; when the user asks for more, GDB will start trying to set software breakpoints. (On
some architectures, notably the 32-bit x86 platforms, GDB cannot always know whether
there’s enough hardware resources to insert all the hardware breakpoints and watchpoints.
On those platforms, GDB prints an error message only when the program being debugged
is continued.)

Software breakpoints require GDB to do somewhat more work. The basic theory is that
GDB will replace a program instruction with a trap, illegal divide, or some other instruction
that will cause an exception, and then when it’s encountered, GDB will take the exception
and stop the program. When the user says to continue, GDB will restore the original
instruction, single-step, re-insert the trap, and continue on.

Since it literally overwrites the program being tested, the program area must be writable,
so this technique won’t work on programs in ROM. It can also distort the behavior of
programs that examine themselves, although such a situation would be highly unusual.

Also, the software breakpoint instruction should be the smallest size of instruction, so
it doesn’t overwrite an instruction that might be a jump target, and cause disaster when
the program jumps into the middle of the breakpoint instruction. (Strictly speaking, the

Chapter 3: Algorithms 4

breakpoint must be no larger than the smallest interval between instructions that may be
jump targets; perhaps there is an architecture where only even-numbered instructions may
jumped to.) Note that it’s possible for an instruction set not to have any instructions usable
for a software breakpoint, although in practice only the ARC has failed to define such an
instruction.

The basic definition of the software breakpoint is the macro BREAKPOINT.

Basic breakpoint object handling is in ‘breakpoint.c’. However, much of the interesting
breakpoint action is in ‘infrun.c’.

3.3 Single Stepping
3.4 Signal Handling
3.5 Thread Handling

3.6 Inferior Function Calls

3.7 Longjmp Support

GDB has support for figuring out that the target is doing a longjmp and for stopping at
the target of the jump, if we are stepping. This is done with a few specialized internal
breakpoints, which are visible in the output of the ‘maint info breakpoint’ command.

To make this work, you need to define a macro called GET_LONGJMP_TARGET, which will
examine the jmp_buf structure and extract the longjmp target address. Since jmp_buf is
target specific, you will need to define it in the appropriate ‘tm-target.h’ file. Look in
‘tm-sun4os4.h’ and ‘sparc-tdep.c’ for examples of how to do this.

3.8 Watchpoints

Watchpoints are a special kind of breakpoints (see Chapter 3 [Algorithms]|, page 2) which
break when data is accessed rather than when some instruction is executed. When you have
data which changes without your knowing what code does that, watchpoints are the silver
bullet to hunt down and kill such bugs.

Watchpoints can be either hardware-assisted or not; the latter type is known as “software
watchpoints.” GDB always uses hardware-assisted watchpoints if they are available, and falls
back on software watchpoints otherwise. Typical situations where GDB will use software
watchpoints are:

e The watched memory region is too large for the underlying hardware watchpoint sup-
port. For example, each x86 debug register can watch up to 4 bytes of memory, so
trying to watch data structures whose size is more than 16 bytes will cause GDB to use
software watchpoints.

e The value of the expression to be watched depends on data held in registers (as opposed
to memory).

e Too many different watchpoints requested. (On some architectures, this situation is
impossible to detect until the debugged program is resumed.) Note that x86 debug

Chapter 3: Algorithms 5

registers are used both for hardware breakpoints and for watchpoints, so setting too
many hardware breakpoints might cause watchpoint insertion to fail.

e No hardware-assisted watchpoints provided by the target implementation.

Software watchpoints are very slow, since GDB needs to single-step the program being
debugged and test the value of the watched expression(s) after each instruction. The rest
of this section is mostly irrelevant for software watchpoints.

GDB uses several macros and primitives to support hardware watchpoints:

TARGET_HAS_HARDWARE_WATCHPOINTS
If defined, the target supports hardware watchpoints.

TARGET_CAN_USE_HARDWARE_WATCHPOINT (type, count, other)
Return the number of hardware watchpoints of type type that are possible to
be set. The value is positive if count watchpoints of this type can be set, zero
if setting watchpoints of this type is not supported, and negative if count is
more than the maximum number of watchpoints of type type that can be set.
other is non-zero if other types of watchpoints are currently enabled (there are
architectures which cannot set watchpoints of different types at the same time).

TARGET_REGION_OK_FOR_HW_WATCHPOINT (addr, len)
Return non-zero if hardware watchpoints can be used to watch a region whose
address is addr and whose length in bytes is len.

TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (size)
Return non-zero if hardware watchpoints can be used to watch a region whose
size is size. GDB only uses this macro as a fall-back, in case TARGET_REGION_
OK_FOR_HW_WATCHPOINT is not defined.

TARGET_DISABLE_HW_WATCHPOINTS (pid)
Disables watchpoints in the process identified by pid. This is used, e.g., on
HP-UX which provides operations to disable and enable the page-level memory
protection that implements hardware watchpoints on that platform.

TARGET_ENABLE_HW_WATCHPOINTS (pid)
Enables watchpoints in the process identified by pid. This is used, e.g., on
HP-UX which provides operations to disable and enable the page-level memory
protection that implements hardware watchpoints on that platform.

target_insert_watchpoint (addr, len, type)
target_remove_watchpoint (addr, len, type)
Insert or remove a hardware watchpoint starting at addr, for len bytes. type
is the watchpoint type, one of the possible values of the enumerated data type
target_hw_bp_type, defined by ‘breakpoint.h’ as follows:
enum target_hw_bp_type

{
hw_write = 0, /* Common (write) HW watchpoint */
hw_read =1, /* Read HW watchpoint */
hw_access = 2, /* Access (read or write) HW watchpoint */
hw_execute = 3 /* Execute HW breakpoint */

};

These two macros should return 0 for success, non-zero for failure.

Chapter 3: Algorithms 6

target_remove_hw_breakpoint (addr, shadow)

target_insert_hw_breakpoint (addr, shadow)
Insert or remove a hardware-assisted breakpoint at address addr. Returns zero
for success, non-zero for failure. shadow is the real contents of the byte where
the breakpoint has been inserted; it is generally not valid when hardware break-
points are used, but since no other code touches these values, the implementa-
tions of the above two macros can use them for their internal purposes.

target_stopped_data_address ()
If the inferior has some watchpoint that triggered, return the address associated
with that watchpoint. Otherwise, return zero.

HAVE_STEPPABLE_WATCHPOINT
If defined to a non-zero value, it is not necessary to disable a watchpoint to
step over it.

HAVE_NONSTEPPABLE_WATCHPOINT
If defined to a non-zero value, GDB should disable a watchpoint to step the
inferior over it.

HAVE_CONTINUABLE_WATCHPOINT
If defined to a non-zero value, it is possible to continue the inferior after a
watchpoint has been hit.

CANNOT_STEP_HW_WATCHPOINTS
If this is defined to a non-zero value, GDB will remove all watchpoints before
stepping the inferior.

STOPPED_BY_WATCHPOINT (wait_status)
Return non-zero if stopped by a watchpoint. wait_status is of the type struct
target_waitstatus, defined by ‘target.h’.

3.8.1 x86 Watchpoints

The 32-bit Intel x86 (a.k.a. ia32) processors feature special debug registers designed to
facilitate debugging. GDB provides a generic library of functions that x86-based ports
can use to implement support for watchpoints and hardware-assisted breakpoints. This
subsection documents the x86 watchpoint facilities in GDB.

To use the generic x86 watchpoint support, a port should do the following:

e Define the macro I386_USE_GENERIC_WATCHPOINTS somewhere in the target-dependent
headers.

e Include the ‘config/i386/nm-i386.h’ header file after defining I386_USE_GENERIC_
WATCHPOINTS.

e Add ‘i386-nat.o’ to the value of the Make variable NATDEPFILES (see Chapter 11 [Na-
tive Debugging], page 59) or TDEPFILES (see Chapter 9 [Target Architecture Definition],
page 30).

e Provide implementations for the I386_DR_LOW_* macros described below. Typically,
each macro should call a target-specific function which does the real work.

The x86 watchpoint support works by maintaining mirror images of the debug registers.
Values are copied between the mirror images and the real debug registers via a set of macros
which each target needs to provide:

Chapter 3: Algorithms 7

I1386_DR_LOW_SET_CONTROL (val)
Set the Debug Control (DR7) register to the value val.

I386_DR_LOW_SET_ADDR (idx, addr)
Put the address addr into the debug register number idx.

I386_DR_LOW_RESET_ADDR (idx)
Reset (i.e. zero out) the address stored in the debug register number idx.

I386_DR_LOW_GET_STATUS
Return the value of the Debug Status (DR6) register. This value is used im-
mediately after it is returned by I386_DR_LOW_GET_STATUS, so as to support
per-thread status register values.

For each one of the 4 debug registers (whose indices are from 0 to 3) that store addresses,
a reference count is maintained by GDB, to allow sharing of debug registers by several
watchpoints. This allows users to define several watchpoints that watch the same expression,
but with different conditions and/or commands, without wasting debug registers which are
in short supply. GDB maintains the reference counts internally, targets don’t have to do
anything to use this feature.

The x86 debug registers can each watch a region that is 1, 2, or 4 bytes long. The ia32
architecture requires that each watched region be appropriately aligned: 2-byte region on
2-byte boundary, 4-byte region on 4-byte boundary. However, the x86 watchpoint support
in GDB can watch unaligned regions and regions larger than 4 bytes (up to 16 bytes) by
allocating several debug registers to watch a single region. This allocation of several registers
per a watched region is also done automatically without target code intervention.

The generic x86 watchpoint support provides the following API for the GDB’s application
code:

1386_region_ok_for_watchpoint (addr, len)
The macro TARGET_REGION_OK_FOR_HW_WATCHPOINT is set to call this function.
It counts the number of debug registers required to watch a given region, and
returns a non-zero value if that number is less than 4, the number of debug
registers available to x86 processors.

1386_stopped_data_address (void)
The macros STOPPED_BY_WATCHPOINT and target_stopped_data_address are
set to call this function. The argument passed to STOPPED_BY_WATCHPOINT is
ignored. This function examines the breakpoint condition bits in the DR6
Debug Status register, as returned by the I386_DR_LOW_GET_STATUS macro,
and returns the address associated with the first bit that is set in DRE.

i386_insert_watchpoint (addr, len, type)

1386_remove_watchpoint (addr, len, type)
Insert or remove a watchpoint. The macros target_insert_watchpoint and
target_remove_watchpoint are set to call these functions. i386_insert_
watchpoint first looks for a debug register which is already set to watch the
same region for the same access types; if found, it just increments the reference
count of that debug register, thus implementing debug register sharing between
watchpoints. If no such register is found, the function looks for a vacant de-
bug register, sets its mirrored value to addr, sets the mirrored value of DR7

Chapter 3: Algorithms 8

Debug Control register as appropriate for the len and type parameters, and
then passes the new values of the debug register and DR7 to the inferior by
calling I386_DR_LOW_SET_ADDR and I386_DR_LOW_SET_CONTROL. If more than
one debug register is required to cover the given region, the above process is
repeated for each debug register.

i1386_remove_watchpoint does the opposite: it resets the address in the mir-
rored value of the debug register and its read/write and length bits in the
mirrored value of DR7, then passes these new values to the inferior via I386_
DR_LOW_RESET_ADDR and I386_DR_LOW_SET_CONTROL. If a register is shared by
several watchpoints, each time a i386_remove_watchpoint is called, it decre-
ments the reference count, and only calls I386_DR_LOW_RESET_ADDR and I386_
DR_LOW_SET_CONTROL when the count goes to zero.

i386_insert_hw_breakpoint (addr, shadow

i1386_remove_hw_breakpoint (addr, shadow)
These functions insert and remove hardware-assisted breakpoints. The macros
target_insert_hw_breakpoint and target_remove_hw_breakpoint are set
to call these functions. These functions work like 1386_insert_watchpoint
and 1386_remove_watchpoint, respectively, except that they set up the debug
registers to watch instruction execution, and each hardware-assisted breakpoint
always requires exactly one debug register.

1386_stopped_by_hwbp (void)
This function returns non-zero if the inferior has some watchpoint or hardware
breakpoint that triggered. It works like i386_stopped_data_address, except
that it doesn’t return the address whose watchpoint triggered.

i386_cleanup_dregs (void)
This function clears all the reference counts, addresses, and control bits in the
mirror images of the debug registers. It doesn’t affect the actual debug registers
in the inferior process.

Notes:

1. x86 processors support setting watchpoints on I/O reads or writes. However, since no
target supports this (as of March 2001), and since enum target_hw_bp_type doesn’t
even have an enumeration for I/O watchpoints, this feature is not yet available to GDB
running on x86.

2. x86 processors can enable watchpoints locally, for the current task only, or globally, for
all the tasks. For each debug register, there’s a bit in the DR7 Debug Control register
that determines whether the associated address is watched locally or globally. The
current implementation of x86 watchpoint support in GDB always sets watchpoints to
be locally enabled, since global watchpoints might interfere with the underlying OS
and are probably unavailable in many platforms.

3.9 Observing changes in GDB internals

In order to function properly, several modules need to be notified when some changes occur
in the GDB internals. Traditionally, these modules have relied on several paradigms, the
most common ones being hooks and gdb-events. Unfortunately, none of these paradigms

Chapter 4: User Interface 9

was versatile enough to become the standard notification mechanism in GDB. The fact that
they only supported one “client” was also a strong limitation.

A new paradigm, based on the Observer pattern of the Design Patterns book, has there-
fore been implemented. The goal was to provide a new interface overcoming the issues with
the notification mechanisms previously available. This new interface needed to be strongly
typed, easy to extend, and versatile enough to be used as the standard interface when
adding new notifications.

See Appendix A [GDB Observers|, page 91 for a brief description of the observers cur-
rently implemented in GDB. The rationale for the current implementation is also briefly
discussed.

4 User Interface

GDB has several user interfaces. Although the command-line interface is the most common
and most familiar, there are others.

4.1 Command Interpreter

The command interpreter in GDB is fairly simple. It is designed to allow for the set of
commands to be augmented dynamically, and also has a recursive subcommand capability,
where the first argument to a command may itself direct a lookup on a different command
list.

For instance, the ‘set’ command just starts a lookup on the setlist command list,
while ‘set thread’ recurses to the set_thread_cmd_list.

To add commands in general, use add_cmd. add_com adds to the main command list,
and should be used for those commands. The usual place to add commands is in the
_initialize_xyz routines at the ends of most source files.

To add paired ‘set’ and ‘show’ commands, use add_setshow_cmd or add_setshow_cmd_
full. The former is a slightly simpler interface which is useful when you don’t need to
further modify the new command structures, while the latter returns the new command
structures for manipulation.

Before removing commands from the command set it is a good idea to deprecate them
for some time. Use deprecate_cmd on commands or aliases to set the deprecated flag.
deprecate_cmd takes a struct cmd_list_element as it’s first argument. You can use the
return value from add_com or add_cmd to deprecate the command immediately after it is
created.

The first time a command is used the user will be warned and offered a replacement (if
one exists). Note that the replacement string passed to deprecate_cmd should be the full
name of the command, i.e. the entire string the user should type at the command line.

4.2 Ul-Independent Output—the ui_out Functions

The ui_out functions present an abstraction level for the GDB output code. They hide
the specifics of different user interfaces supported by GDB, and thus free the programmer
from the need to write several versions of the same code, one each for every Ul, to produce
output.

Chapter 4: User Interface 10

4.2.1 Overview and Terminology

In general, execution of each GDB command produces some sort of output, and can even
generate an input request.

Output can be generated for the following purposes:
to display a result of an operation;
to convey info or produce side-effects of a requested operation;

to provide a notification of an asynchronous event (including progress indication of a
prolonged asynchronous operation);

to display error messages (including warnings);
to show debug data;

to query or prompt a user for input (a special case).

This section mainly concentrates on how to build result output, although some of it also
applies to other kinds of output.

Generation of output that displays the results of an operation involves one or more of

the following:

output of the actual data

formatting the output as appropriate for console output, to make it easily readable by
humans

machine oriented formatting—a more terse formatting to allow for easy parsing by pro-
grams which read GDB’s output

annotation, whose purpose is to help legacy GUIs to identify interesting parts in the
output

The ui_out routines take care of the first three aspects. Annotations are provided by

separate annotation routines. Note that use of annotations for an interface between a GUI
and GDB is deprecated.

Output can be in the form of a single item, which we call a field; a list consisting

of identical fields; a tuple consisting of non-identical fields; or a table, which is a tuple
consisting of a header and a body. In a BNF-like form:

<table> —

<header> <body>

<header> —

{ <column> }

<column> —

<width> <alignment> <title>

<body> — {<row>}

4.2.2 General Conventions

Most ui_out routines are of type void, the exceptions are ui_out_stream_new (which
returns a pointer to the newly created object) and the make_cleanup routines.

The first parameter is always the ui_out vector object, a pointer to a struct ui_out.

Chapter 4: User Interface 11

The format parameter is like in printf family of functions. When it is present, there
must also be a variable list of arguments sufficient used to satisfy the % specifiers in the
supplied format.

When a character string argument is not used in a ui_out function call, a NULL pointer
has to be supplied instead.

4.2.3 Table, Tuple and List Functions

This section introduces ui_out routines for building lists, tuples and tables. The routines
to output the actual data items (fields) are presented in the next section.

To recap: A tuple is a sequence of fields, each field containing information about an
object; a list is a sequence of fields where each field describes an identical object.

Use the table functions when your output consists of a list of rows (tuples) and the
console output should include a heading. Use this even when you are listing just one object
but you still want the header.

Tables can not be nested. Tuples and lists can be nested up to a maximum of five levels.

The overall structure of the table output code is something like this:

ui_out_table_begin
ui_out_table_header

ui_out_table_body
ui_out_tuple_begin
ui_out_field_x*

ui_out_tuple_end

ui_out_table_end

Here is the description of table-, tuple- and list-related ui_out functions:

void ui_out_table_begin (struct ui_out *uiout, int nbrofcols, int [Function]
nr_rows, const char *tblid)

The function ui_out_table_begin marks the beginning of the output of a table. It
should always be called before any other ui_out function for a given table. nbrofcols
is the number of columns in the table. nr_rows is the number of rows in the table.
tblid is an optional string identifying the table. The string pointed to by tblid is
copied by the implementation of ui_out_table_begin, so the application can free
the string if it was malloced.

The companion function ui_out_table_end, described below, marks the end of the
table’s output.

void ui_out_table_header (struct ui-out *uiout, int width, enum [Function]
ui_align alignment, const char *colhdr)
ui_out_table_header provides the header information for a single table column.
You call this function several times, one each for every column of the table, after
ui_out_table_begin, but before ui_out_table_body.

The value of width gives the column width in characters. The value of alignment is
one of left, center, and right, and it specifies how to align the header: left-justify,
center, or right-justify it. colhdr points to a string that specifies the column header;

Chapter 4: User Interface 12

the implementation copies that string, so column header strings in malloced storage
can be freed after the call.

void ui_out_table_body (struct ui_out *uiout) [Function]
This function delimits the table header from the table body.

void ui_out_table_end (struct ui_out *uiout) [Function]
This function signals the end of a table’s output. It should be called after the table
body has been produced by the list and field output functions.

There should be exactly one call to ui_out_table_end for each call to ui_out_table_
begin, otherwise the ui_out functions will signal an internal error.

The output of the tuples that represent the table rows must follow the call to ui_out_
table_body and precede the call to ui_out_table_end. You build a tuple by calling ui_
out_tuple_begin and ui_out_tuple_end, with suitable calls to functions which actually
output fields between them.

void ui_out_tuple_begin (struct ui_out *uiout, const char *id) [Function]
This function marks the beginning of a tuple output. id points to an optional string
that identifies the tuple; it is copied by the implementation, and so strings in malloced
storage can be freed after the call.

void ui_out_tuple_end (struct ui-out *uiout) [Function]
This function signals an end of a tuple output. There should be exactly one call to
ui_out_tuple_end for each call to ui_out_tuple_begin, otherwise an internal GDB
error will be signaled.

struct cleanup *make_cleanup_ui_out_tuple_begin_end (struct ui_out [Function]
*uiout, const char *id)
This function first opens the tuple and then establishes a cleanup (see Chapter 13
[Coding], page 65) to close the tuple. It provides a convenient and correct implemen-
tation of the non-portable! code sequence:
struct cleanup *old_cleanup;
ui_out_tuple_begin (uiout, "...");
0ld_cleanup = make_cleanup ((void(*) (void *)) ui_out_tuple_end,
uiout);

void ui_out_list_begin (struct ui_out *uiout, const char *id) [Function]
This function marks the beginning of a list output. id points to an optional string
that identifies the list; it is copied by the implementation, and so strings in malloced
storage can be freed after the call.

void ui_out_list_end (struct ui_out *uiout) [Function]
This function signals an end of a list output. There should be exactly one call to
ui_out_list_end for each call to ui_out_list_begin, otherwise an internal GDB
error will be signaled.

! The function cast is not portable ISO C.

Chapter 4: User Interface 13

struct cleanup *make_cleanup_ui_out_list_begin_end (struct ui_out [Function]
*uiout, const char *id)

Similar to make_cleanup_ui_out_tuple_begin_end, this function opens a list and

then establishes cleanup (see Chapter 13 [Coding], page 65) that will close the list.list.

4.2.4 Item Output Functions

The functions described below produce output for the actual data items, or fields, which
contain information about the object.

Choose the appropriate function accordingly to your particular needs.

void ui_out_field_fmt (struct ui_out *uiout, char *fldname, char [Function]
*format, ...)
This is the most general output function. It produces the representation of the data
in the variable-length argument list according to formatting specifications in format,
a printf-like format string. The optional argument fldname supplies the name of the
field. The data items themselves are supplied as additional