

S·W·O·R·D

System of Windows for the Organization of the Desktop

V2.10 (beta1)

Programmer’s Manual

Eric NICOLAS <nicolas@dsys.ceng.cea.fr>

� DATE \@ "MMMM j, aaaa" * FUSIONFORMAT �April 15, 1996��(WARNING : This documentation is under construction. Parts of this text might be inexact or temporary.

Abstract

S·W·O·R·D is a set of C++ objects provided in order to easily build friendly user interfaces for your msdos-based programs. It can be used with both compilers DJgpp and TurboC without code modifications.

DJgpp users will obtain full 32bit applications with graphics only limited by their graphic card (or by the driver they have) ;

TurboC users will obtain 16bit applications with graphics limited to 640x480 points in 16 colors.

Typically, TurboC will be used to write and debug programs quickly thanks to its nice Integrated Development Environment, and DJgpp will allow you to rebuild them in order to reach the 32bit power.

All the programmers who participated to this package are grouped under the term The S·W·O·R·D Group. It is mainly composed of :

Eric NICOLAS : Main programmer, creator of S·W·O·R·D ;

Cedric JOULAIN : Part of the image manipulation toolbox, Mandel sample program ;

Gregory Borysiak : The cdebug object, Linux testing.

Requirements

In order to build new applications with S·W·O·R·D, you will need :

A computer. Physically, you will need a Intel386 or better to run 32bit applications. Seriously speaking, a Intel486sx25 is a minimum. Testing was done on computers from Intel486sx25 to IntelPentium90 without problems ;

Some memory on your computer. 4Mo seems to be minimal, but it works. Compilation with DJgpp will need more memory if you don't want to waste too much time ;

Some hard disk space. 9Mo are necessary to install the package. If you want to recompile the libraries, you will need at least 20Mo ;

A C++ compiler. You can use DJgpp version 1.12maint4, DJgpp version 2.0, or TurboC. Keep in mind that TurboC will only let you build 16bit applications, limited to 16-color graphics, and that it is commercial (You have to pay for it, whereas DJgpp is free) ;

The graphic library LibGrx, version 1.03 (when using TurboC or DJgpp v1.12maint4) or version 2.00 (when using DJgpp v2.0).

�For convenience, minimal libgrx and libjpeg files (headers, archive .a or .lib) are packaged together with S·W·O·R·D. Those files are NOT the official distributions. Please get it from the same place you get DJgpp compiler (for libgrx) or from common UNIX archives (for libjpeg).

Copyright notice

All this package is Copyright © 1993-1996 The S·W·O·R·D Group, and is protected under the terms of the GNU public license. The basic ideas behind this license are :

This package and its source code is free in the sense that it can be freely distributed verbatim. You are not allowed to distribute modified or incomplete parts of it without special agreement. In particular, the COPYING* files which describe this copyright must be present, and the copyright notice at the beginning of each source file must not be removed ;

If you use this package for teaching or study purpose, You will have the support of S·W·O·R·D group. We made the source code available in order to help people in learning programming ;

If you include this package in a commercial product or any other form of software from which you earn money, the S·W·O·R·D group have to get a part of that money. Contact us for specific information and agreements.

This package is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

For more legal information, see the COPYING* files which must be present in the software package under /sword/docs directory.

Table of contents

� TM \o "1-3" �Abstract	� BOUTONATTEINDRE _Toc354162135 � RENVOIPAGE _Toc354162135 �2��

Requirements	� BOUTONATTEINDRE _Toc354162136 � RENVOIPAGE _Toc354162136 �2��

Copyright notice	� BOUTONATTEINDRE _Toc354162137 � RENVOIPAGE _Toc354162137 �3��

Table of contents	� BOUTONATTEINDRE _Toc354162138 � RENVOIPAGE _Toc354162138 �4��

Chapter 1. Introduction	� BOUTONATTEINDRE _Toc354162139 � RENVOIPAGE _Toc354162139 �6��

1.1. Basic concepts	� BOUTONATTEINDRE _Toc354162140 � RENVOIPAGE _Toc354162140 �6��

1.1.1. Objects construction and destruction	� BOUTONATTEINDRE _Toc354162141 � RENVOIPAGE _Toc354162141 �6��

1.1.2. Linked lists	� BOUTONATTEINDRE _Toc354162142 � RENVOIPAGE _Toc354162142 �12��

1.1.3. Object streams	� BOUTONATTEINDRE _Toc354162143 � RENVOIPAGE _Toc354162143 �14��

1.1.4. Object registration	� BOUTONATTEINDRE _Toc354162144 � RENVOIPAGE _Toc354162144 �15��

1.2. Events	� BOUTONATTEINDRE _Toc354162145 � RENVOIPAGE _Toc354162145 �16��

1.2.1. Interaction events	� BOUTONATTEINDRE _Toc354162146 � RENVOIPAGE _Toc354162146 �17��

1.2.2. User events	� BOUTONATTEINDRE _Toc354162147 � RENVOIPAGE _Toc354162147 �17��

1.2.3. Command number attribution	� BOUTONATTEINDRE _Toc354162148 � RENVOIPAGE _Toc354162148 �18��

1.2.4. The events loop	� BOUTONATTEINDRE _Toc354162149 � RENVOIPAGE _Toc354162149 �18��

1.3. The color system	� BOUTONATTEINDRE _Toc354162150 � RENVOIPAGE _Toc354162150 �18��

1.3.1. System colors	� BOUTONATTEINDRE _Toc354162151 � RENVOIPAGE _Toc354162151 �18��

1.3.2. Users colors	� BOUTONATTEINDRE _Toc354162152 � RENVOIPAGE _Toc354162152 �18��

1.3.3. Color space conversions	� BOUTONATTEINDRE _Toc354162153 � RENVOIPAGE _Toc354162153 �18��

1.4. Debugging facilities	� BOUTONATTEINDRE _Toc354162154 � RENVOIPAGE _Toc354162154 �18��

1.5. Objects hierarchy	� BOUTONATTEINDRE _Toc354162155 � RENVOIPAGE _Toc354162155 �19��

1.6. File organization	� BOUTONATTEINDRE _Toc354162156 � RENVOIPAGE _Toc354162156 �21��

Chapter 2 : Kits reference	� BOUTONATTEINDRE _Toc354162157 � RENVOIPAGE _Toc354162157 �23��

2.1. the Common kit	� BOUTONATTEINDRE _Toc354162158 � RENVOIPAGE _Toc354162158 �23��

2.1.1. Using the common kit	� BOUTONATTEINDRE _Toc354162159 � RENVOIPAGE _Toc354162159 �23��

2.1.2. Basic data types	� BOUTONATTEINDRE _Toc354162160 � RENVOIPAGE _Toc354162160 �24��

2.2. Drivers kit	� BOUTONATTEINDRE _Toc354162161 � RENVOIPAGE _Toc354162161 �24��

2.3. Mecanism kit	� BOUTONATTEINDRE _Toc354162162 � RENVOIPAGE _Toc354162162 �24��

Chapter 3 : Objects reference	� BOUTONATTEINDRE _Toc354162163 � RENVOIPAGE _Toc354162163 �25��

TAtom	� BOUTONATTEINDRE _Toc354162164 � RENVOIPAGE _Toc354162164 �Erreur! Signet non défini.��

TButton	� BOUTONATTEINDRE _Toc354162165 � RENVOIPAGE _Toc354162165 �26��

TDialog	� BOUTONATTEINDRE _Toc354162166 � RENVOIPAGE _Toc354162166 �27��

TDisk	� BOUTONATTEINDRE _Toc354162167 � RENVOIPAGE _Toc354162167 �28��

TStdButton	� BOUTONATTEINDRE _Toc354162168 � RENVOIPAGE _Toc354162168 �30��

TStdWindow	� BOUTONATTEINDRE _Toc354162169 � RENVOIPAGE _Toc354162169 �31��

Chapter 4 : Frequently Asked Questions	� BOUTONATTEINDRE _Toc354162170 � RENVOIPAGE _Toc354162170 �33��

4.1. What is SWORD	� BOUTONATTEINDRE _Toc354162171 � RENVOIPAGE _Toc354162171 �33��

4.2. Using SWORD	� BOUTONATTEINDRE _Toc354162172 � RENVOIPAGE _Toc354162172 �33��

4.3. Compilation troubles	� BOUTONATTEINDRE _Toc354162173 � RENVOIPAGE _Toc354162173 �33��

INDEX	� BOUTONATTEINDRE _Toc354162174 � RENVOIPAGE _Toc354162174 �34��

�

Chapter 1.	Introduction

1.1. Basic concepts

This section introduce some basic concepts which are used anywhere in S·W·O·R·D. It is important to understand this section before jumping to another one.

1.1.1. Objects construction and destruction

In order to avoid problems during construction and destruction of objects, S·W·O·R·D define a standard way for creating and destroying objects. Let's see first where is the problem.

1.1.1.1. Why object construction is so complex ?

When one is new to C++, he usually says « Object are really cool : just define a constructor, a destructor and everything is fine ». This is completely wrong. Many problems can come from too much simple construction or destruction of objects. Here is an example where simple object construction fails :

FILE : /sword/docs/chap1/fail.cc

#include <stdio.h>

// --- class TObject1 definition

class TObject1

{ public:

 TObject1();

 virtual void foo();

};

TObject1::TObject1()

{ foo();

}

void TObject1::foo()

{ printf("TObject1::foo\n");

}

// --- class TObject2 definition

class TObject2 : public TObject1

{ public:

 TObject2();

 virtual void foo();

}

TObject2::TObject2() : TObject1()

{ }

void TObject2::foo()

{ printf("TObject2::foo\n");

}

void main(void)

{ TObject1 *O1;

 TObject2 *O2;

 printf("TObject1 creation : ");

 O1=new TObject1();

 printf("TObject2 creation : ");

 O2=new TObject2();

 //

 delete O2;

 delete O1;

}

When you run this little program, you get the unexpected result :

TObject1 creation : TObject1::foo

TObject2 creation : TObject1::foo

The explication is simple : TObject2 cannot call his virtual method foo during construction of its base object TObject1 because at this time virtual methods tables for TObject2 does not exist yet.

Similar problems can be encountered during object destruction.

1.1.1.2. Unified model of objects construction and destruction

In order to solve those problems, you will find everywhere in S·W·O·R·D an unified way of perform construction and destruction of objects. Here is a sample code of this unified model :

FILE : /sword/docs/chap1/constr.cc

#include <stdio.h>

#define FALSE 0

#define TRUE 1

typedef int boolean;

#define DECLARE(a) \

 public: \

 virtual ~a(void); \

#define DEFINE(a) \

 a::~a(void) \

 { if (!Destroyed) \

 { Done(); \

 Destroyed=TRUE; \

 } \

 }

// --- TBase object

class TBase

{ DECLARE(TBase)

 // -- Datas

 protected:

 boolean Destroyed;

 int Value;

 // -- Functions

 public:

 // Public constructors

 TBase(void);

 TBase(int _Value);

 // Creation / Destruction

 void Defaults(void);

 void Init(int _Value);

 void Done(void);

 // Virtual functions

 protected:

 virtual void FooConstruct(void);

 virtual void FooDestruct(void);

};

DEFINE(TBase);

TBase::TBase(void)

{ Defaults();

}

TBase::TBase(int _Value)

{ Defaults();

 Init(_Value);

}

void TBase::Defaults(void)

{ printf(" Begin: TBase::Defaults\n");

 // Set defaults values

 Value=0;

 Destroyed=FALSE;

 printf(" End: TBase::Defaults\n");

}

void TBase::Init(int _Value)

{ printf(" Begin: TBase::Init\n");

 Value=_Value;

 FooConstruct();

 printf(" End: TBase::Init\n");

}

void TBase::Done(void)

{ printf(" Begin: TBase::Done\n");

 FooDestruct();

 printf(" End: TBase::Done\n");

}

void TBase::FooConstruct(void)

{ printf(" TBase::FooConstruct\n");

}

void TBase::FooDestruct(void)

{ printf(" TBase::FooDestruct\n");

}

// --- TDerived object

class TDerived : public TBase

{ DECLARE(TDerived)

 // -- Datas

 protected:

 // -- Functions

 public:

 // Public constructors

 TDerived(void);

 TDerived(int _Value);

 // Creation / Destruction

 void Defaults(void);

 void Init(int _Value);

 // Virtual functions

 protected:

 virtual void FooConstruct(void);

 virtual void FooDestruct(void);

};

DEFINE(TDerived);

TDerived::TDerived(void)

{ Defaults();

}

TDerived::TDerived(int _Value)

{ Defaults();

 Init(_Value);

}

void TDerived::Defaults(void)

{ printf(" Begin: TDerived::Defaults\n");

 printf(" End: TDerived::Defaults\n");

}

void TDerived::Init(int _Value)

{ printf(" Begin: TDerived::Init\n");

 // Base constructions

 TBase::Init(_Value);

 // Other constructions

 // ...

 printf(" End: TDerived::Init\n");

}

void TDerived::FooConstruct(void)

{ printf(" TDerived::FooConstruct\n");

}

void TDerived::FooDestruct(void)

{ printf(" TDerived::FooDestruct\n");

}

// --- Example

void main(void)

{ TBase *B;

 TDerived *D;

 printf("\nTBase construction : \n");

 B=new TBase(2);

 getc(stdin);

 printf("\nTDerived construction : \n");

 D=new TDerived(2);

 getc(stdin);

 printf("\nTBase destruction : \n");

 delete B;

 getc(stdin);

 printf("\nTDerived destruction : \n");

 delete D;

 getc(stdin);

}

When you run this program, you get the right result (Begin: and End: are here to show precisely how construction and destruction are performed) :

TBase construction :

 Begin: TBase::Defaults

 End: TBase::Defaults

 Begin: TBase::Init

 TBase::FooConstruct

 End: TBase::Init

TDerived construction :

 Begin: TBase::Defaults

 End: TBase::Defaults

 Begin: TDerived::Defaults

 End: TDerived::Defaults

 Begin: TDerived::Init

 Begin: TBase::Init

 TDerived::FooConstruct

 End: TBase::Init

 End: TDerived::Init

TBase destruction :

 Begin: TBase::Done

 TBase::FooDestruct

 End: TBase::Done

TDerived destruction :

 Begin: TBase::Done

 TDerived::FooDestruct

 End: TBase::Done

As you can see, virtual functions fooXXX are correctly called because this occurs later in the construction process, inside the Init or the Done functions.

Object construction is performed in two steps :

C++ construction : the constructor for the object is called. As no base constructor is specified, the automatic TBase() constructor is called. All C++ tables are created ;

Object construction : the objet enters the Init function and safely perform its data construction.

Similarly, destruction is performed in two steps :

Object destruction : the Done function is called and data destruction is safely performed ;

C++ destruction : all virtual tables and other C++ parts of the object are destroyed.

You probably noticed also the Defaults() function. It is not mandatory, but is strongly recommended. If you use a Defaults() function you are sure that all your variables will be correctly initialized. Moreover, all those initializations are put together in a single function, which is much more readable.

1.1.1.3. Model for object definition

Here is a model for any object definition. Take it and just fill in the missing parts. Most of this code is always the same, but is mandatory for the unified construction and destruction mechanism to work (See object registration, § 1.2.4, for precisions about Ident and Register).

FILE : /sword/docs/Chap1/defmodel.cc

// ===== Class declaration (put this in your MyObject.H file)

extern short RegTMyObject;

extern char *IdentTMyObject;

class TMyObject : public TBaseObject

{ DECLARE(TMyObject)

 // -- Datas

 protected:

 // %%TODO: put here your new datas introduced by this object

 // -- Functions

 public:

 // Public constructors

 TMyObject(void);

 TMyObject(/* Here is the construction parameters list */);

 // Creation / Destruction

 void Defaults(void);

 void Init(/* Here is the construction parameters list */);

 // %%TODO: put here your other functions

};

// ===== Class definition (put this in your MyObject.CC file)

short RegTMyObject;

char *IdentTMyObject = "TMyObject";

DEFINE(TMyObject);

TMyObject::TMyObject(void)

{ Defaults();

}

TMyObject::TMyObject(/* Here is the construction parameters list */)

{ Defaults();

 Init(/* Pass here all the parameters without modification */);

}

void TMyObject::Defaults(void)

{ // Object identification

 Register=RegTMyObject;

 Ident=IdentTMyObject;

 // %%TODO: Set the default values for new datas

 // introduced by this object

}

void TMyObject::Init(/* Here is the construction parameters list */)

{ // Base constructions

 TBaseObject::Init(/* Parameters for Base object construction*/);

 // Other constructions

 // %%TODO: Perform here other constructions specifics to this

 // object

}

1.1.1.4 Multiple constructors

Many times when you provide objects for general use, you have to write several constructors with different parameters. Here is as an example the possible constructors for the TPoint object :

TPoint();

TPoint(int X, int Y);

TPoint(TPoint P);

It would be a waste of code to repeat the same initializations in the three constructors. So in S·W·O·R·D we will always use Defaults()/Init() functions pair for implementing initializations only once. As an example, here is how that could be done for Tpoint :

class Tpoint

{ //...

 public:

 TPoint();

 TPoint(int X, int Y);

 TPoint(TPoint P);

 void Defaults();

 void Init(int X, int Y);

 // ...

};

TPoint::TPoint()

{ Defaults();

}

TPoint::TPoint(int X, int Y)

{ Defaults();

 Init(X,Y);

}

TPoint::TPoint(TPoint P)

{ Defaults();

 Init(P.X, P.Y);

}

void TPoint::Defaults()

{ // Put here default values for variables

 // ...

}

void TPoint::Init(int X, int Y)

{ // Put here initializations, only once

 // ...

}

1.1.2. Linked lists

All objects created during S·W·O·R·D execution are all linked with each others using linked lists.

1.1.2.1. Introduction

One object can be linked to four others :

Its father. For example, in a dialog box, the dialog is the father of all the buttons ;

Its son. One button in a dialog box is a son of a dialog box ;

Its previous. In a dialog box with 2 buttons 'OK' and 'Cancel', one button is the previous of the other ;

Its next. In a dialog box with 2 buttons 'OK' and 'Cancel', one button is the next of the other ;

�������������������������������

We will call vertical the linked lists between father and sons, and horizontal the linked lists between previous and next :

Vertical lists usually represent hierarchical levels among the objects. Hierarchical levels are, for example, the application, the desktop, the windows on the desktop, the controls in one window... ;

Horizontal lists link objects that lays in one hierarchical level, like the buttons in a dialog box for instance.

1.1.2.2. Using the lists

All the necessary data for those linked lists is stored in the basic class TAtom. As most of S·W·O·R·D's objects derive from TAtom, it is possible to link together almost any object that you will use.

TAtom* _Next;

TAtom* _Previous;

TAtom* _Son;

TAtom* _Father;

It could be very easy to access any object in the linked tree using _Next, _Previous, _Son, _Father Data members, but unfortunatly, all those members are class TAtom* whereas objects that you will use will not be this type. So type casts are necessary for each access to the linked lists.

One way of avoiding this is to create non-virtual functions that perform the type cast. For instance, if TClass is derived from TAtom, and if you are sure that every object linked with a TClass object derive from TClass, then you can create functions such as :

TClass *TClass::Son(void)

{ return (TClass*)_Son;

}

Doing so, you can access the links through Son(), Next() and Previous() functions without doing any manual type cast.

As an example, TAtom defines the following functions :

TAtom* Son(void);

TAtom* Father(void);

TAtom* Next(void);

TAtom* Previous(void);

TAtom* First(void);

TAtom* Last(void);

All those methods are declared inline in order to avoid speed diminution during execution.

1.1.3. Object streams

As explained in the previous paragraph, it is possible to create very complex object networks where every object is link to one or several others.

With object streams, it is possible to save into a file, and formerly to restore, such a tree. The file created during this operation will also be called an object stream.

One example of an object stream use would be in a kind of 'interface builder' for S·W·O·R·D� : the programmer could create a dialog visually, dragging objects (button, ...) onto a dialog. Then, using an object stream, this dialog could be saved into an object stream file (.OSF). The final application will only have to read this file to load in memory the complete dialog with all its attributes.

1.1.3.1. Reading, Writing data into object streams

One object implements these operations through two member functions :

void Write(TDisk *file);

void Read(TDisk *file);

Each class which have to access objects streams and which implements some data must override those two member functions. Only new data introduced by one object have to be managed. Derived data is handled by derived code.

For example, TObject class introduce :

long Status;

long Options;

So, here are its Read and Write member functions :

void TObject::Read(TDisk *file)

{ TAtom::Read(file);

 file->Read(&Status,sizeof(long));

 file->Read(&Options,sizeof(long));

}

void TObject::Write(TDisk *file)

{ TAtom::Write(file);

 file->Write(&Status,sizeof(long));

 file->Write(&Options,sizeof(long));

}

1.1.3.2. Writing one objects stream

The global function WriteObject puts the specified object, as well as all its sons, into one object stream.

1.1.3.3. Reading one objects stream

The global function ReadObject Reads one object stream and create in memory the object tree formerly written.

We can notice here an interesting point : S·W·O·R·D must be able to create objects from informations stored one objects stream file. So S·W·O·R·D have to numerically identify each class. This is the purpose of Object registration.

1.1.4. Object registration

In S·W·O·R·D, each class is identified with an unique, 16bit number called its register. Giving one register, S·W·O·R·D can create one object from the class.

Object registration is primarily implemented in TAtom class, through the data members :

short Register;

char *Ident;

and through one overridable function member :

TAtom *Duplicate(void);

The object identification is stored into the data members Register and Ident. Register clearly receive the object's register and Ident points to a characters string which must contain the name of the class. They typically are initialized in the Defaults() function (See the model for object definition in § 1.1.1.3 for an example).

The function Duplicate() is used to make a copy of one object. Each object must provide such a function to be streamable. Here are some examples :

TAtom *TAtom::Duplicate(void)

{ return new TAtom();

}

TAtom *TObject::Duplicate(void)

{ return new TObject();

}

Fortunately, the DECLARE and DEFINE macros automatically define this Duplicate functions.

Finally, every class must be declared to S·W·O·R·D registration system using the RegisterObject function. As an example, here is the registration code for TObject class :

RegisterObject(new TObject(), &RegTObject);

1.2. Events

Events are used in S·W·O·R·D for communication between objects. One event is stored in a TEvent :

struct TEvent

{ long What;		// Kind of the event

 int Options;		// Options for event propagation

 TPoint Where;		// Position of the event (for mouse events)

 int Buttons;		// Buttons of the mouse (for mouse events)

 int KbStat;		// Toggle keys status (for key events)

 int ScanCode;		// Scancode (for key events)

 long Command;		// Command for a evCommand event

 char Info08b;		// Other User-defined datas

 short Info16b;

 long Info32b;

 void* InfoPtr;

};

The kind of an event which is stored in What data member, can be one of the following :

Kind of event�Value�Description��evNothing�0x0000�No event is stored is the structure��evMouseLDown�0x0001�The mouse left button was pressed��evMouseRDown�0x0002�The mouse right button was pressed��evMouseLUp�0x0004�The mouse left button was released��evMouseRUp�0x0008�The mouse right button was released��evMouseDblClk�0x0010�The left mouse button was double clicked��evMouseMove�0x0020�The mouse was moved��evKeyDown�0x0080�A key was pressed��evToggle�0x0100�One toggle key status (NumLock...) has changed��evTime�0x0E00�The system time changed (once every second)��evCommand�0x2000�One user command��evAuto�0x8000�Automatic event. Send when no other event are available��

Each kind of event can be connected to a treatment function boolean OneAction(void). If the event has been fully treated, the function must return TRUE.

For exemple, it is possible to perform special actions when the user hit a key by overriding the KeyDown treatment function :

boolean TMyObject::KeyDown(int ScanCode, int Toggle)

{ if (ScanCode==ScanEnter)

 { // Perform action when the user hit [Enter] key

 // ...

 return TRUE;

 }

 return FALSE;

}

All the possible events can be classified in two categories : Interaction events and user events.

1.2.1. Interaction events

***** CORRECT this: Macros like MOUSELDOWN() in the events table...

When the user interact with S·W·O·R·D with keyboard or mouse, interaction events are generated. They can be any of evMouseLDown, evMouseRDown, evMouseLUp, evMouseRUp, evMouseDblClk, evMouseMove, evKeyDown, evToggle.

It is possible to perform action upon those interactions by overriding the treatment functions :

Event�Treatment function��evMouseLDown�boolean MouseLDown(TPoint Where, int Buttons);��evMouseRDown�boolean MouseRDown(TPoint Where, int Buttons);��evMouseLUp�boolean MouseLUp(TPoint Where, int Buttons);��evMouseRUp�boolean MouseRUp(TPoint Where, int Buttons);��evMouseDblClk�boolean MouseDblClk(TPoint Where, int Buttons);��evMouseMove�boolean MouseMove(TPoint Where, int Buttons);��evKeyDown�boolean KeyDown(int ScanCode, int Toggle);��evToggle�boolean Toggle(int Toggle);��1.2.2. User events

User events can be created by any object at any time. They are also called commands. Each command is uniquely defined with a number stored in the command data of one event.

One object can link a command to an action using some macros :

In the declaration of the object, add one line DECLARE_COMMAND_TABLE;

In the definition of the object, add the command table itself, following this model :

DEFINE_COMMAND_TABLE(TMyObject,TDerived)

	COMMAND(CommandId1, Function1)

	COMMAND(CommandId2, Function2)

END_COMMAND_TABLE

FunctionXX must be of the form boolean Function(void) and must return TRUE if the event has been processed, FALSE if not.

As an example, here is some code from TDialog sample application, where TDialogApp::doDialogTest will be called upon cmDialogTest command :

class TDialogApp : public TApp

{ public:

 // Public constructor

 TDialogApp(char *argv0);

 //

 virtual boolean CanClose(void);

 boolean doDialogTest(void);

 DECLARE_COMMAND_TABLE;

};

DEFINE_COMMAND_TABLE(TDialogApp,TApp)

 ENTRY(cmDialogTest,doDialogTest)

END_COMMAND_TABLE

1.2.3. Command number attribution

1.2.4. The events loop

1.3. The color system

� EX "Color system" �S·W·O·R·D implements a very special color system which allow quick drawings and pseudo-truecolor in any color depth graphic mode.

(In all references (r,g,b) : r, g and b are in the range [0..255].

1.3.1. System colors

For all system drawings (windows, buttons...), S·W·O·R·D use only 5 colors : One Black, One White and 3 color-levels. The default for the color-levels are three grays.

While Black and White are fixed colors, the other 3 colors can be redefine by the user. For a good appearance, we recommend a same color with 3 intensities.

It is possible to change those 3 colors using :

	boolean ChangeSystemColor(int n, int r, int g, int b);� EX "ChangeSystemColor" �� EX "Color system:ChangeSystemColor" �

This function return TRUE if the screen has to be redrawn, FLASE if not.

It is NOT possible to change any other color. Because all other available colors are requested by the system for implementing a very powerful user colors selection system.

1.3.2. Users colors

In any graphic mode (16, 256 or 32000 colors), it is possible to draw in truecolor. The feature is implemented in the TDither object.

The function :

virtual TColor GetRGBColor(int X, int Y, int R, int G, int B);� EX "GetRGBColor" �� EX "Color system:GetRGBColor" �

return one color reference when you give it an R,G,B true color and a screen (X,Y) position. If the exact color is not available, a dithering is performed.

1.3.3. Color space conversions

1.4. Debugging facilities

It is well known that debugging graphical applications is difficult.

When one create text-mode applications, he usually dump information on the screen simply using prinf() calls. But when you are in graphic mode, this is no longer possible. Moreover, it is not always desirable to run a debugger and to set breakpoints in the code (when the code is optimized for example, or when the debugger don't know how to switch between his tex-mode page and the program graphic page).

In order to facilitate debugging of programs written with S·W·O·R·D, the common kit contain a very simple but useful Debug()� EX "Debug" � function. Just use it as a printf(), and the output will go to a debugging file. On msdos, the debugging file is always C:\DEBUG.TXT. On UNIX systems, the debugging file is ./sword_debug.txt.

Here is an little example of using Debug() function :

void FunctionToDebug(int a, int b)

{ // Perform operations on a and b

 // ..

 Debug("End of FunctionToDebug: a=%d b=%d\n",a,b);

}

After execution, if the function was called with a=5 and b=11, the debugging file will contain :

SWORD 2.10. Debugging file

[.... Other begining standard messages]

End of FunctionToDebug: a=5 b=11

[... Other ending standard messages]

1.5. Objects hierarchy

Following charts show how objects derive one from the others. Some little objects used internally by S·W·O·R·D are not represented, as they will normally not used directly.

��

���������������������������

1.6. File organization

S·W·O·R·D is structured into six kits : Common, Drivers, Mecanism, Graphics, Gadgets, Tools, and additional toolboxes. Half of these kits are text-only (Common, Drivers, Mecanism), and so rely only on the C/C++ compiler and its run-time library. The three other kits rely on libgrx for graphical drawings.

Here is a graphical view of the dependencies between kits :

����������������������

The directory structure of S·W·O·R·D package reflects this organization :

Three text-only kits :

Declarations :

/sword/include/common

/sword/include/drivers

/sword/include/mecanism

Definitions :

/sword/src/common

/sword/src/drivers

/sword/src/mecanism

Three graphical kits :

Declarations :

/sword/include/graphics

/sword/include/gadgets

/sword/include/tools

Definitions :

/sword/src/graphics

/sword/src/gadgets

/sword/src/tools

Two toolboxes :

Declarations :

/sword/include/toolboxes/image

/sword/include/toolboxes/math

Definitions :

/sword/src/toolboxes/image

/sword/src/toolboxes/math

Chapter 2 : Kits reference

2.1. the Common kit

The common kit contains all the basic types, data and functions that are useful for S·W·O·R·D system. It provides some compatibility functions that can be defined on one compiler but not on another. It also contains the basic non-object mechanism such as debugging facilities and error handling.

2.1.1. Using the common kit

This kit can be used alone. It does not rely one any other part of S·W·O·R·D. It can also be compiled and used on some UNIX systems (it has been successfully tested on SunOS and Solaris systems from SunSoft, and on Linux).

All the definitions are in the file "sword/include/common/common.h". You can include this file just adding #include "common/common.h", as the sword/include directory should be in your include search path.

Before using some functions of this kit you must initialize it. Similarly, when you have finished using its functions, you must close it. Here is a tiny example of initializing/closing the common kit :

#include "common/common.h"

int main(int argc, char *argv[])

{ // Initialize common kit

 InitCommon(argv[0]);

 // Using common kit

 // ...

 // Close common kit

 DoneCommon();

 return 0 ;

}

2.1.2. Basic data types

2.1.2.1. Logical boolean data type

Many C or C++ developers use int data type for boolean storage. This is a big mistake because it produce a confusion in the source code between what is boolean and what is not.

The boolean data type is no more than an integer but, using this notation, you will avoid this confusion. Moreover, two special values are defined for this data type : FALSE (internally==0) and TRUE (internally==1).

2.1.2.2. Numerical integer data types

2.1.2.2.1. byte

An unsigned char (8 bit integer, from 0 to 255).

2.1.2.2.2. word

An unsigned int (16 bit integer, from 0 to 65536 for the 16 bit TurboC version, and 32 bit integer, from 0 to 4294967296 for the 32 bit version).

(Warning : S·W·O·R·D can be used with both 16 bit and 32 bit compilers, so you never can rely on the size of int and word types. Use them for temporary variables, but never for disk storage or portable use.

2.1.2.2.3. int16, int32

Same as int, but with the specified number of bits, whatever the compiler is.

2.1.2.2.4. word16, word32

Same as word, but with the specified number of bits,	whatever the compiler is.

2.1.2.3. Simple string type

PChar is defined as a pointer to a char. It can be used as a very simple string type.

2.2. Drivers kit

2.3. Mecanism kit

In this kit, you will find almost all the objects that are necessary for the basic mecanisms : linked lists, objects streams, events management, object selections... There is no graphics at all in this kit, and you even can reuse those objects to build a completely different event-based object system (in text mode, on another hardware platform, with a completely different look...).

Chapter 3 : Objects reference

The goal of this chapter is to provide a reference for all objects. Sorted in alphabetical order, all objects (the object, its data members and its functions) are described. Any data or function not present is the description is used internally only and must not be accessed without a perfect knowledge of the whole library.

� INCLURETEXTE "D:\\sword\\docs\\mecanism\\ATOM.DOC" �TAtom� EX "TAtom" �

declared in 	: /sword/include/mecanism/atom.h

defined in	: /sword/src/mecanism/atom.cc

TAtom is the basic class for all the S·W·O·R·D objects. it implements linked lists and objects stream.

Data members

TAtom *_Father� EX "TAtom:_Father" �, *_Son� EX "TAtom:_Son" �, *_Previous� EX "TAtom:_Previous" �, *_Next� EX "TAtom:_Next" �

Pointers to objects linked to this one.

char *Ident� EX "TAtom:Ident" �

Points to a unique string that identify the object. This member must be set in the Defaults() function of each object. It is part of the objects stream mecanism.

In TAtom object, this member is set to IdentTAtom string which contains "TAtom".

short Register� EX "TAtom:Register" �

Contain a number that uniquely identify the object. This member must be set in the Defaults() function of each object. It is part of the objects stream mecanism.

In TAtom object, this member is set to the value of RegTAtom which is initialized during object registration.

Usefull Functions

TAtom()� EX "TAtom:Constructor" �, ~TAtom()� EX "TAtom:Destructor" �

These functions do nothing except calling Defaults(), Init() and Done(), as explained in § 1.1.1.

Defaults()� EX "TAtom:Defaults" �

Initialize the linked-list datas so that the object is alone (no parent, no son, no next, no previous objects).

Done()� EX "TAtom:Done" �

The destructor of function of TAtom unlinks the object from linked lists, calling UnLink and destroys all sons.

Link(A)� EX "TAtom:Link" �, LinkBefore(A)� EX "TAtom:LinkBefore" �

Add the object A to a linked list. The Link() function adds the object at the end of the linked list whereas the LinkBefore() function adds then object at the begining of the linked list.

First()� EX "TAtom:First" �, Last()� EX "TAtom:Last" �

Return the first or the last son of the object.

Overridable Functions

UnLink()� EX "TAtom:UnLink" �� EX "UnLink:TAtom" �

Destroy the links with parent, next and previous objects. Sons of the object remains linked.

Override this function to provide additional computation before or after unlinking the object.

Insert(A)� EX "TAtom:Insert" �� EX "Insert:TAtom" �, InsertBefore(A)� EX "TAtom:InsertBefore" �� EX "InsertBefore:TAtom" �

Insert the object A in the linked lists of the sons. Insert will insert the object after the last son already present, whereas InsertBefore will insert the object before the first son already present.

Override this function to provide additional computation before or after linking the object.

�

� INCLURETEXTE "D:\\sword\\docs\\gadgets\\button.doc" �TButton� EX "TButton" �

declared in	: /sword/include/gadgets/button.h

defined in	: /sword/src/gadgets/button.cc

TButton is a square push-down button that the user can press. The programmer must override the DrawInside() function to draw any legend, text, image... in the button.

When the user push the button, the Action() member function is called. The default processing is to post a command.

An empty button looks like :

� INCLUREIMAGE "D:\\sword\\docs\\gadgets\\buttn_up.gif" * FUSIONFORMAT \d ��� (up)	� INCLUREIMAGE "D:\\sword\\docs\\gadgets\\buttn_dn.gif" * FUSIONFORMAT \d ��� (down)

Usefull functions

TButton(int X ,int Y, int L, int H, long _Command, int _ScanCode, int _Options);� EX "TButton:Constructor" �

The constructor of TButton object allow to create one empty button.

X,Y,L,H define the position of the button inside its parent object.

_Command will be emitted when the user click on the button.

_ScanCode is the key code for a shortcut. If no shortcut is associated with the button, just set _ScanCode=0.

_Options can be any association of the following bits :

boDisabled	The button is currently disabled. The user cannot push it.

boImmediate	The action will be performed when the push the button, not when the user release it.

boRepetition	The action will be repeated at a fixed rate if the user keep the button pushed.

boNoCase	The shortcut is not case sensitive.

boShiftedScanCode	The shortcut is valid only if one shift key is pressed at the same time.

Overridable Functions

virtual void DrawInside(int Depl);� EX "TButton:DrawInside" �

Override this function to draw any text, image... inside the button. The Depl is a deplacement in pixel that you must apply to your x and y coordinates. When the button is pushed (down), the drawings will be a little be moved to the lower-right.

virtual void Action(void);� EX "TButton:Action" �

Override this function to perform another action than sending the _Command command.

�

� INCLURETEXTE "D:\\sword\\docs\\gadgets\\dialog.doc" �TDialog� EX "TDialog" �

declared in	: /sword/include/gadgets/dialog.h

defined in	: /sword/src/gadgets/dialog.cc

TDialog is a special kind of standard window which is used to implement dialog. It cannot be resized. A dialog looks like (the buttons have to be inserted after the dialog) :

� INCLUREIMAGE "D:\\sword\\docs\\gadgets\\dialog.gif" * FUSIONFORMAT \d ���

Usefull functions

TDialog(int X, int Y, int L, int H, char *Title);� EX "TDialog:Constructor" �

The constructor of TDialog object allow to create one dialog.

X,Y,L,H define the position of the window on the screen : its surrounding rectangle.

Title is the title of the window. The TStdWindow object make a copy of this string.

boolean doQuitDialog(void);� EX "TDialog:doQuitDialog" �

This function is connected to all the commands that close the dialog. The default closing commands are cmCancel, cmOK, cmYes, cmNo.

If you define a button with another command and you want it to close the dialog without any other action, you just have to connect your cmUserCommand command to this function by adding an entry in the user-events functions table :

	ENTRY(cmUserCommand,doQuitDialog)

�

� INCLURETEXTE "D:\\sword\\docs\\drivers\\DISK.DOC" �TDisk� EX "TDisk" �

declared in	: /sword/include/mecanism/disk.h

defined in	: /sword/src/mecanism/disk.cc

TDisk is a class that encapsulates the disk file input/output operations.

Data members

FILE *FileHandle� EX "TDisk:FileHandle" �

Handle of the disk file that is encapsulated by the object. This member must not be used directly.

int LastRead� EX "TDisk:LastRead" �

Number of bytes read from the file or written to the file during the last disk access.

Usefull Functions

TDisk(char *Name, int Acces)� EX "TDisk:Constructor" �

The constructor opens or creates a disk file. The Name is a complete file name. If you don't provides a complete path name, the file will only be searched in the current directory.

Acces defines how the file will be opened. It can be any combinaison of following bits :

stCreate�0x0001�The file will be created��stOpen�0x0002�The file will be opened��stTextMode�0x0004�Open/Create as text file (default is binary file).��~TDisk()� EX "TDisk:Destructor" �

The destructor closes the disk file.

void Read(void *Buffer, int Size)� EX "TDisk:Read" �

Reads datas from the disk file to the memory pointed by Buffer. Size bytes are read from the file if there is no error. The LastRead data member keep the number of bytes read from the file. If an error occured, you can check if LastRead equals Size. If not, you reached the end of the file. Otherwise, there was another error.

void Write(void *Buffer, int Size)� EX "TDisk:Write" �

Writes data to the disk file from the memory pointed by Buffer. Size bytes are written to the file if there is no error. The LastRead data member keep the number of bytes written to the file. If an error occured, you can check if LastRead equals Size. If not, there was not enough spaceon the disk. Otherwise, there was another error.

void ReadLn(char *Buffer, int MaxLength)� EX "TDisk:ReadLn" �

Reads a text line from a file (that has been opened or created with the stTextMode bit set). The end of a line is defined by a character 10, or a couple of characters 10, 13, or by an end of file. If the end of the file was reached, the global error variable Error is set to erDiskAccess_EOF. MaxLength is the number of bytes available in the Buffer. The line read does not contain the end of line char(s), but finish with a null character.

void WriteLn(char *Buffer)� EX "TDisk:WriteLn" �

Writes a text line to a file (that has been opened or created with the stTextMode bit set). A end of line is added (couple of chars 10, 13).

void Seek(long Depl, char Mode)� EX "TDisk:Seek" �

Move the current file pointer of Depl. The way the pointer is moved depends on the Mode, which can be one of the following :

stBegining�0x0000�Absolute move from the begining of the file��stCurrent�0x0001�Relative move from the current position��stEnd�0x0002�Absolute move from the end of the file��

You can use Seek to create a file and set its size to N bytes without writing in it :

file=new TDisk(filename,stCreate);

file->Seek(N,stBegining);

long Position(void)� EX "TDisk:Position" �

Returns the current file pointer position. It always refers to the begining of the file. The first byte is at position 0.

Example

Here is a little example on using TDisk object. It shows how you can open and read an existing binary file containing an image in rawdata format (one byte per pixel, 256 grey levels, no header) :

FILE : /sword/docs/chap3/disk.cc

TDisk *file;

char *fname;

byte Image[320][200];

// Opens the file

fname="IMAGE.RAW";

file=new TDisk(fname,stOpen);

if ((file==NULL)||(Error!=0))

{ fprintf(stderr,"Error opening file");

 exit(1);

}

// Reads the image

file->Read(Image,320*200);

if (Error!=0)

{ fprintf(stderr,"Error reading file");

 exit(1);

}

// Close the file

delete file;

�

� INCLURETEXTE "D:\\sword\\docs\\gadgets\\stdbutt.doc" �TStdButton� EX "TStdButton" �

declared in	: /sword/include/gadgets/button.h

defined in	: /sword/src/gadgets/button.cc

TStdButton is a standard button : A button with a text and/or a little picture in it.

An standard button looks like :

� INCLUREIMAGE "D:\\sword\\docs\\gadgets\\stdbut.gif" * FUSIONFORMAT \d ���

Usefull functions

TStdButton(int X, int Y, int L, int H, long _Command, int _ScanCode, int _Options, char* _Text, TMapping *_Mapp=NULL);� EX "TStdButton:Constructor" �

The constructor of TStdButton object allow to create one standard button.

X,Y,L,H,_Command,_ScanCode,_Options are the same parameters that for the TButton object.

_Text	: One text to show in the button. If no text has to be displayed, just set _Text=NULL. It is possible to set a shortcut letter for the button by putting a '&' escape character before the letter.

_Mapp	: One image to show in the button, on the right of the text. If no image has to be displayed, just set _Mapp=NULL.

Example

This line of code create an 'apply' button. Using the keyboard, this button can be pushed with both shortcuts Alt-A (anywhere in a dialog or window) and A (when the currently selected object does not need the keyboard). When the user push that button, the cmApply command is emitted.

TStdButton *ApplyButton;

ApplyButton=new TStdButton(10,10,80,23,cmApply,ScanAltA,0,"&Apply",NULL);

�

� INCLURETEXTE "D:\\sword\\docs\\gadgets\\stdwin.doc" �TStdWindow� EX "TStdWindow" �

declared in	: /sword/include/gadgets/stdwin.h

defined in	: /sword/src/gadgets/stdwin.cc

TStdWindow is a standard window with a border, a title bar, and optionally resizing corners and a close box. Will all its options ON, a standard window looks like :

� INCLUREIMAGE "D:\\sword\\docs\\gadgets\\window.gif" * FUSIONFORMAT \d ���

(Warning : A Window can only be inserted in the desktop.

Usefull functions

TStdWindow(int X, int Y, int L, int H, char *Title, int Options);� EX "TStdWindow:Constructor" �

The constructor of TStdWindow object allow to create one standard window.

X,Y,L,H define the position of the window on the screen : its surrounding rectangle.

Title is the title of the window. The TStdWindow object make a copy of this string.

Options can be any association of following bits :

opWinSizeable	The window will have resizing corners

opWinCloseBox	The window will have a close box

opWinMinimizeBox	The window will have a minimize box (not yet implemented)

opWinMaximizeBox	The window will have a maximize box (not yet implemented)

virtual void ChangeSize(int CornerNo, TPoint mWhere);� EX "TStdWindow:ChangeSize" �

This function is called when the window has to be resized. Internally it is called when the user drag one corner to change the window's size. It is possible to call it at any time to resize any standard window.

CornerNo tells which corner will be moved. It can be 1 (upper-left corner), 2 (upper-right corner), 3 (lower-right corner), 4 (lower-left corner).

mWhere contain the new position of the specified corner on the screen.

�

Chapter 4 : Frequently Asked Questions

Here are some answers to the most frequently asked questions about S·W·O·R·D :

4.1. What is SWORD

¿?	Q:	Is SWORD just another text-mode interface, like Turbo Vision ?

A:	Definitively not. SWORD is a fully Graphical user interface. Some programming concepts in SWORD came from old Turbo Vision, but now this version goes far beyond this old text interface.

4.2. Using SWORD

¿?	Q:	When I launch any SWORD application, I get the error message "Environment variable SWORDPATH missing".

A:	You must set the environment variable SWORDPATH under your command line to point to basic SWORD directory. Under DOS, type SET SWORDPATH=C:\SWORD, for example. Of course, you are encouraged to put this line in your autoexec.bat file, even though it is not required.

4.3. Compilation troubles

¿?	Q:	I use DJgpp V1 or TurboC, and I get strange error message at linking stage.

A:	There is a bug in LibGrx V1.03 distribution, and the libgrx.a file is corrupted. Recompile mouse.c in LibGrx and replace your new mouse.o in libgrx.a. (This is a DJgpp V1 FAQ). The libgrx.a file that comes with S·W·O·R·D package should be correct.

¿?	Q:	When I try to compile using make, I get an error "*** No rule to make target depend.inc"

A:	depend.inc is a required file. Every makefile use it to store information about file dependencies. If no depend.inc file exists in the current directory, create one empty, simply typing : touch depend.inc.

INDEX

� INDEX \e "	" \h "A" \c "2" ��C

ChangeSystemColor	18

Color system	18

ChangeSystemColor	18

GetRGBColor	18

D

Debug	19

G

GetRGBColor	18

I

Insert

TAtom	26

InsertBefore

TAtom	26

T

TAtom	25

_Father	25

_Next	25

_Previous	25

_Son	25

Constructor	25

Defaults	26

Destructor	25

Done	26

First	26

Ident	25

Insert	26

InsertBefore	26

Last	26

Link	26

LinkBefore	26

Register	25

UnLink	26

TButton	26

Action	27

Constructor	27

DrawInside	27

TDialog	27

Constructor	28

doQuitDialog	28

TDisk	28

Constructor	28

Destructor	29

FileHandle	28

LastRead	28

Position	29

Read	29

ReadLn	29

Seek	29

Write	29

WriteLn	29

TStdButton	30

Constructor	30

TStdWindow	31

ChangeSize	31

Constructor	31

U

UnLink

TAtom	26

��

� Unfortunatly, this tool doesn't exist yet.

		

S·W·O·R·D Programmer’s manual		- � PAGE �26� -

Father

Object 3c

Object 2c

Next

Previous

Previous

Next

Object 2b

Object 3b

Next

Father

Object 1

Object 2

Object 3

Son

Father

Father

Son

Gadgets kit

TGroupBox

TButton

TZone

TStdButton

TItemBox

TCheckBox

TRadioBox

TEditLine

TEditReal

TEditInteger

TGauge

TWindow

TStdWindow

TDialog

TLift

TMenu

TMenuChoice

TScroller

TTextScroller

TStaticText

Graphics kit

TDither

TDesktop

TMappingObject

TShell

TZone

TObject

TAtom

TWindow

TScreenSaver

TFont

TScrZone

TScreenBitmap

TMapping

TSysIcone

TBitField

TRect

TPoint

TClipBoard_TextLine

TClipBoard

Mecanism kit

TObject

TAtom

TDisk

Drivers kit

Image toolbox

TZone

TDesktop

TBkgDesktop

TScreenBitmap

TImage

TScroller

TImageScroller

TWindow

TStdWindow

TImageViewer

Tools kit

TToolWindow

TStdWindow

TApp

TShell

Tools kit

Gadgets kit

Graphics kit

Mecanism kit

Drivers kit

Common kit

Lib GRX

C/C++ compiler

SWORD Application

Toolbox 2 :

Math

Toolbox 1 :

Image

