FFmpeg  2.6.9
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
exr.c
Go to the documentation of this file.
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2009 Jimmy Christensen
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * OpenEXR decoder
25  * @author Jimmy Christensen
26  *
27  * For more information on the OpenEXR format, visit:
28  * http://openexr.com/
29  *
30  * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
31  * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
32  */
33 
34 #include <float.h>
35 #include <zlib.h>
36 
37 #include "libavutil/imgutils.h"
38 #include "libavutil/intfloat.h"
39 #include "libavutil/opt.h"
40 
41 #include "avcodec.h"
42 #include "bytestream.h"
43 #include "get_bits.h"
44 #include "internal.h"
45 #include "mathops.h"
46 #include "thread.h"
47 
48 enum ExrCompr {
58 };
59 
65 };
66 
67 typedef struct EXRChannel {
68  int xsub, ysub;
70 } EXRChannel;
71 
72 typedef struct EXRThreadData {
75 
77  int tmp_size;
78 
80  uint16_t *lut;
82 
83 typedef struct EXRContext {
84  AVClass *class;
87 
90  int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
92 
93  int w, h;
94  uint32_t xmax, xmin;
95  uint32_t ymax, ymin;
96  uint32_t xdelta, ydelta;
97  int ysize;
98 
99  uint64_t scan_line_size;
101 
103  const uint8_t *buf;
104  int buf_size;
105 
108 
110 
111  const char *layer;
112 
113  float gamma;
114  uint16_t gamma_table[65536];
115 } EXRContext;
116 
117 /* -15 stored using a single precision bias of 127 */
118 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
119 
120 /* max exponent value in single precision that will be converted
121  * to Inf or Nan when stored as a half-float */
122 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
123 
124 /* 255 is the max exponent biased value */
125 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
126 
127 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
128 
129 /**
130  * Convert a half float as a uint16_t into a full float.
131  *
132  * @param hf half float as uint16_t
133  *
134  * @return float value
135  */
136 static union av_intfloat32 exr_half2float(uint16_t hf)
137 {
138  unsigned int sign = (unsigned int) (hf >> 15);
139  unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
140  unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
141  union av_intfloat32 f;
142 
143  if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
144  // we have a half-float NaN or Inf
145  // half-float NaNs will be converted to a single precision NaN
146  // half-float Infs will be converted to a single precision Inf
147  exp = FLOAT_MAX_BIASED_EXP;
148  if (mantissa)
149  mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
150  } else if (exp == 0x0) {
151  // convert half-float zero/denorm to single precision value
152  if (mantissa) {
153  mantissa <<= 1;
155  // check for leading 1 in denorm mantissa
156  while ((mantissa & (1 << 10))) {
157  // for every leading 0, decrement single precision exponent by 1
158  // and shift half-float mantissa value to the left
159  mantissa <<= 1;
160  exp -= (1 << 23);
161  }
162  // clamp the mantissa to 10-bits
163  mantissa &= ((1 << 10) - 1);
164  // shift left to generate single-precision mantissa of 23-bits
165  mantissa <<= 13;
166  }
167  } else {
168  // shift left to generate single-precision mantissa of 23-bits
169  mantissa <<= 13;
170  // generate single precision biased exponent value
171  exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
172  }
173 
174  f.i = (sign << 31) | exp | mantissa;
175 
176  return f;
177 }
178 
179 
180 /**
181  * Convert from 32-bit float as uint32_t to uint16_t.
182  *
183  * @param v 32-bit float
184  *
185  * @return normalized 16-bit unsigned int
186  */
187 static inline uint16_t exr_flt2uint(uint32_t v)
188 {
189  unsigned int exp = v >> 23;
190  // "HACK": negative values result in exp< 0, so clipping them to 0
191  // is also handled by this condition, avoids explicit check for sign bit.
192  if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
193  return 0;
194  if (exp >= 127)
195  return 0xffff;
196  v &= 0x007fffff;
197  return (v + (1 << 23)) >> (127 + 7 - exp);
198 }
199 
200 /**
201  * Convert from 16-bit float as uint16_t to uint16_t.
202  *
203  * @param v 16-bit float
204  *
205  * @return normalized 16-bit unsigned int
206  */
207 static inline uint16_t exr_halflt2uint(uint16_t v)
208 {
209  unsigned exp = 14 - (v >> 10);
210  if (exp >= 14) {
211  if (exp == 14)
212  return (v >> 9) & 1;
213  else
214  return (v & 0x8000) ? 0 : 0xffff;
215  }
216  v <<= 6;
217  return (v + (1 << 16)) >> (exp + 1);
218 }
219 
220 static void predictor(uint8_t *src, int size)
221 {
222  uint8_t *t = src + 1;
223  uint8_t *stop = src + size;
224 
225  while (t < stop) {
226  int d = (int) t[-1] + (int) t[0] - 128;
227  t[0] = d;
228  ++t;
229  }
230 }
231 
232 static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
233 {
234  const int8_t *t1 = src;
235  const int8_t *t2 = src + (size + 1) / 2;
236  int8_t *s = dst;
237  int8_t *stop = s + size;
238 
239  while (1) {
240  if (s < stop)
241  *(s++) = *(t1++);
242  else
243  break;
244 
245  if (s < stop)
246  *(s++) = *(t2++);
247  else
248  break;
249  }
250 }
251 
252 static int zip_uncompress(const uint8_t *src, int compressed_size,
253  int uncompressed_size, EXRThreadData *td)
254 {
255  unsigned long dest_len = uncompressed_size;
256 
257  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
258  dest_len != uncompressed_size)
259  return AVERROR_INVALIDDATA;
260 
261  predictor(td->tmp, uncompressed_size);
262  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
263 
264  return 0;
265 }
266 
267 static int rle_uncompress(const uint8_t *src, int compressed_size,
268  int uncompressed_size, EXRThreadData *td)
269 {
270  uint8_t *d = td->tmp;
271  const int8_t *s = src;
272  int ssize = compressed_size;
273  int dsize = uncompressed_size;
274  uint8_t *dend = d + dsize;
275  int count;
276 
277  while (ssize > 0) {
278  count = *s++;
279 
280  if (count < 0) {
281  count = -count;
282 
283  if ((dsize -= count) < 0 ||
284  (ssize -= count + 1) < 0)
285  return AVERROR_INVALIDDATA;
286 
287  while (count--)
288  *d++ = *s++;
289  } else {
290  count++;
291 
292  if ((dsize -= count) < 0 ||
293  (ssize -= 2) < 0)
294  return AVERROR_INVALIDDATA;
295 
296  while (count--)
297  *d++ = *s;
298 
299  s++;
300  }
301  }
302 
303  if (dend != d)
304  return AVERROR_INVALIDDATA;
305 
306  predictor(td->tmp, uncompressed_size);
307  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
308 
309  return 0;
310 }
311 
312 #define USHORT_RANGE (1 << 16)
313 #define BITMAP_SIZE (1 << 13)
314 
315 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
316 {
317  int i, k = 0;
318 
319  for (i = 0; i < USHORT_RANGE; i++)
320  if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
321  lut[k++] = i;
322 
323  i = k - 1;
324 
325  memset(lut + k, 0, (USHORT_RANGE - k) * 2);
326 
327  return i;
328 }
329 
330 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
331 {
332  int i;
333 
334  for (i = 0; i < dsize; ++i)
335  dst[i] = lut[dst[i]];
336 }
337 
338 #define HUF_ENCBITS 16 // literal (value) bit length
339 #define HUF_DECBITS 14 // decoding bit size (>= 8)
340 
341 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
342 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
343 #define HUF_DECMASK (HUF_DECSIZE - 1)
344 
345 typedef struct HufDec {
346  int len;
347  int lit;
348  int *p;
349 } HufDec;
350 
351 static void huf_canonical_code_table(uint64_t *hcode)
352 {
353  uint64_t c, n[59] = { 0 };
354  int i;
355 
356  for (i = 0; i < HUF_ENCSIZE; ++i)
357  n[hcode[i]] += 1;
358 
359  c = 0;
360  for (i = 58; i > 0; --i) {
361  uint64_t nc = ((c + n[i]) >> 1);
362  n[i] = c;
363  c = nc;
364  }
365 
366  for (i = 0; i < HUF_ENCSIZE; ++i) {
367  int l = hcode[i];
368 
369  if (l > 0)
370  hcode[i] = l | (n[l]++ << 6);
371  }
372 }
373 
374 #define SHORT_ZEROCODE_RUN 59
375 #define LONG_ZEROCODE_RUN 63
376 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
377 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
378 
380  int32_t im, int32_t iM, uint64_t *hcode)
381 {
382  GetBitContext gbit;
383  int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
384  if (ret < 0)
385  return ret;
386 
387  for (; im <= iM; im++) {
388  uint64_t l = hcode[im] = get_bits(&gbit, 6);
389 
390  if (l == LONG_ZEROCODE_RUN) {
391  int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
392 
393  if (im + zerun > iM + 1)
394  return AVERROR_INVALIDDATA;
395 
396  while (zerun--)
397  hcode[im++] = 0;
398 
399  im--;
400  } else if (l >= SHORT_ZEROCODE_RUN) {
401  int zerun = l - SHORT_ZEROCODE_RUN + 2;
402 
403  if (im + zerun > iM + 1)
404  return AVERROR_INVALIDDATA;
405 
406  while (zerun--)
407  hcode[im++] = 0;
408 
409  im--;
410  }
411  }
412 
413  bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
415 
416  return 0;
417 }
418 
419 static int huf_build_dec_table(const uint64_t *hcode, int im,
420  int iM, HufDec *hdecod)
421 {
422  for (; im <= iM; im++) {
423  uint64_t c = hcode[im] >> 6;
424  int i, l = hcode[im] & 63;
425 
426  if (c >> l)
427  return AVERROR_INVALIDDATA;
428 
429  if (l > HUF_DECBITS) {
430  HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
431  if (pl->len)
432  return AVERROR_INVALIDDATA;
433 
434  pl->lit++;
435 
436  pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
437  if (!pl->p)
438  return AVERROR(ENOMEM);
439 
440  pl->p[pl->lit - 1] = im;
441  } else if (l) {
442  HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
443 
444  for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
445  if (pl->len || pl->p)
446  return AVERROR_INVALIDDATA;
447  pl->len = l;
448  pl->lit = im;
449  }
450  }
451  }
452 
453  return 0;
454 }
455 
456 #define get_char(c, lc, gb) \
457 { \
458  c = (c << 8) | bytestream2_get_byte(gb); \
459  lc += 8; \
460 }
461 
462 #define get_code(po, rlc, c, lc, gb, out, oe, outb) \
463 { \
464  if (po == rlc) { \
465  if (lc < 8) \
466  get_char(c, lc, gb); \
467  lc -= 8; \
468  \
469  cs = c >> lc; \
470  \
471  if (out + cs > oe || out == outb) \
472  return AVERROR_INVALIDDATA; \
473  \
474  s = out[-1]; \
475  \
476  while (cs-- > 0) \
477  *out++ = s; \
478  } else if (out < oe) { \
479  *out++ = po; \
480  } else { \
481  return AVERROR_INVALIDDATA; \
482  } \
483 }
484 
485 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
486  GetByteContext *gb, int nbits,
487  int rlc, int no, uint16_t *out)
488 {
489  uint64_t c = 0;
490  uint16_t *outb = out;
491  uint16_t *oe = out + no;
492  const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
493  uint8_t cs, s;
494  int i, lc = 0;
495 
496  while (gb->buffer < ie) {
497  get_char(c, lc, gb);
498 
499  while (lc >= HUF_DECBITS) {
500  const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
501 
502  if (pl.len) {
503  lc -= pl.len;
504  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
505  } else {
506  int j;
507 
508  if (!pl.p)
509  return AVERROR_INVALIDDATA;
510 
511  for (j = 0; j < pl.lit; j++) {
512  int l = hcode[pl.p[j]] & 63;
513 
514  while (lc < l && bytestream2_get_bytes_left(gb) > 0)
515  get_char(c, lc, gb);
516 
517  if (lc >= l) {
518  if ((hcode[pl.p[j]] >> 6) ==
519  ((c >> (lc - l)) & ((1LL << l) - 1))) {
520  lc -= l;
521  get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
522  break;
523  }
524  }
525  }
526 
527  if (j == pl.lit)
528  return AVERROR_INVALIDDATA;
529  }
530  }
531  }
532 
533  i = (8 - nbits) & 7;
534  c >>= i;
535  lc -= i;
536 
537  while (lc > 0) {
538  const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
539 
540  if (pl.len) {
541  lc -= pl.len;
542  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
543  } else {
544  return AVERROR_INVALIDDATA;
545  }
546  }
547 
548  if (out - outb != no)
549  return AVERROR_INVALIDDATA;
550  return 0;
551 }
552 
554  uint16_t *dst, int dst_size)
555 {
556  int32_t src_size, im, iM;
557  uint32_t nBits;
558  uint64_t *freq;
559  HufDec *hdec;
560  int ret, i;
561 
562  src_size = bytestream2_get_le32(gb);
563  im = bytestream2_get_le32(gb);
564  iM = bytestream2_get_le32(gb);
565  bytestream2_skip(gb, 4);
566  nBits = bytestream2_get_le32(gb);
567  if (im < 0 || im >= HUF_ENCSIZE ||
568  iM < 0 || iM >= HUF_ENCSIZE ||
569  src_size < 0)
570  return AVERROR_INVALIDDATA;
571 
572  bytestream2_skip(gb, 4);
573 
574  freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
575  hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
576  if (!freq || !hdec) {
577  ret = AVERROR(ENOMEM);
578  goto fail;
579  }
580 
581  if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
582  goto fail;
583 
584  if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
585  ret = AVERROR_INVALIDDATA;
586  goto fail;
587  }
588 
589  if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
590  goto fail;
591  ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
592 
593 fail:
594  for (i = 0; i < HUF_DECSIZE; i++)
595  if (hdec)
596  av_freep(&hdec[i].p);
597 
598  av_free(freq);
599  av_free(hdec);
600 
601  return ret;
602 }
603 
604 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
605 {
606  int16_t ls = l;
607  int16_t hs = h;
608  int hi = hs;
609  int ai = ls + (hi & 1) + (hi >> 1);
610  int16_t as = ai;
611  int16_t bs = ai - hi;
612 
613  *a = as;
614  *b = bs;
615 }
616 
617 #define NBITS 16
618 #define A_OFFSET (1 << (NBITS - 1))
619 #define MOD_MASK ((1 << NBITS) - 1)
620 
621 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
622 {
623  int m = l;
624  int d = h;
625  int bb = (m - (d >> 1)) & MOD_MASK;
626  int aa = (d + bb - A_OFFSET) & MOD_MASK;
627  *b = bb;
628  *a = aa;
629 }
630 
631 static void wav_decode(uint16_t *in, int nx, int ox,
632  int ny, int oy, uint16_t mx)
633 {
634  int w14 = (mx < (1 << 14));
635  int n = (nx > ny) ? ny : nx;
636  int p = 1;
637  int p2;
638 
639  while (p <= n)
640  p <<= 1;
641 
642  p >>= 1;
643  p2 = p;
644  p >>= 1;
645 
646  while (p >= 1) {
647  uint16_t *py = in;
648  uint16_t *ey = in + oy * (ny - p2);
649  uint16_t i00, i01, i10, i11;
650  int oy1 = oy * p;
651  int oy2 = oy * p2;
652  int ox1 = ox * p;
653  int ox2 = ox * p2;
654 
655  for (; py <= ey; py += oy2) {
656  uint16_t *px = py;
657  uint16_t *ex = py + ox * (nx - p2);
658 
659  for (; px <= ex; px += ox2) {
660  uint16_t *p01 = px + ox1;
661  uint16_t *p10 = px + oy1;
662  uint16_t *p11 = p10 + ox1;
663 
664  if (w14) {
665  wdec14(*px, *p10, &i00, &i10);
666  wdec14(*p01, *p11, &i01, &i11);
667  wdec14(i00, i01, px, p01);
668  wdec14(i10, i11, p10, p11);
669  } else {
670  wdec16(*px, *p10, &i00, &i10);
671  wdec16(*p01, *p11, &i01, &i11);
672  wdec16(i00, i01, px, p01);
673  wdec16(i10, i11, p10, p11);
674  }
675  }
676 
677  if (nx & p) {
678  uint16_t *p10 = px + oy1;
679 
680  if (w14)
681  wdec14(*px, *p10, &i00, p10);
682  else
683  wdec16(*px, *p10, &i00, p10);
684 
685  *px = i00;
686  }
687  }
688 
689  if (ny & p) {
690  uint16_t *px = py;
691  uint16_t *ex = py + ox * (nx - p2);
692 
693  for (; px <= ex; px += ox2) {
694  uint16_t *p01 = px + ox1;
695 
696  if (w14)
697  wdec14(*px, *p01, &i00, p01);
698  else
699  wdec16(*px, *p01, &i00, p01);
700 
701  *px = i00;
702  }
703  }
704 
705  p2 = p;
706  p >>= 1;
707  }
708 }
709 
710 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
711  int dsize, EXRThreadData *td)
712 {
713  GetByteContext gb;
714  uint16_t maxval, min_non_zero, max_non_zero;
715  uint16_t *ptr;
716  uint16_t *tmp = (uint16_t *)td->tmp;
717  uint8_t *out;
718  int ret, i, j;
719 
720  if (!td->bitmap)
722  if (!td->lut)
723  td->lut = av_malloc(1 << 17);
724  if (!td->bitmap || !td->lut) {
725  av_freep(&td->bitmap);
726  av_freep(&td->lut);
727  return AVERROR(ENOMEM);
728  }
729 
730  bytestream2_init(&gb, src, ssize);
731  min_non_zero = bytestream2_get_le16(&gb);
732  max_non_zero = bytestream2_get_le16(&gb);
733 
734  if (max_non_zero >= BITMAP_SIZE)
735  return AVERROR_INVALIDDATA;
736 
737  memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
738  if (min_non_zero <= max_non_zero)
739  bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
740  max_non_zero - min_non_zero + 1);
741  memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
742 
743  maxval = reverse_lut(td->bitmap, td->lut);
744 
745  ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
746  if (ret)
747  return ret;
748 
749  ptr = tmp;
750  for (i = 0; i < s->nb_channels; i++) {
751  EXRChannel *channel = &s->channels[i];
752  int size = channel->pixel_type;
753 
754  for (j = 0; j < size; j++)
755  wav_decode(ptr + j, s->xdelta, size, s->ysize,
756  s->xdelta * size, maxval);
757  ptr += s->xdelta * s->ysize * size;
758  }
759 
760  apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
761 
762  out = td->uncompressed_data;
763  for (i = 0; i < s->ysize; i++)
764  for (j = 0; j < s->nb_channels; j++) {
765  uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
766  memcpy(out, in, s->xdelta * 2);
767  out += s->xdelta * 2;
768  }
769 
770  return 0;
771 }
772 
774  int compressed_size, int uncompressed_size,
775  EXRThreadData *td)
776 {
777  unsigned long dest_len = uncompressed_size;
778  const uint8_t *in = td->tmp;
779  uint8_t *out;
780  int c, i, j;
781 
782  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
783  dest_len != uncompressed_size)
784  return AVERROR_INVALIDDATA;
785 
786  out = td->uncompressed_data;
787  for (i = 0; i < s->ysize; i++)
788  for (c = 0; c < s->nb_channels; c++) {
789  EXRChannel *channel = &s->channels[c];
790  const uint8_t *ptr[4];
791  uint32_t pixel = 0;
792 
793  switch (channel->pixel_type) {
794  case EXR_FLOAT:
795  ptr[0] = in;
796  ptr[1] = ptr[0] + s->xdelta;
797  ptr[2] = ptr[1] + s->xdelta;
798  in = ptr[2] + s->xdelta;
799 
800  for (j = 0; j < s->xdelta; ++j) {
801  uint32_t diff = (*(ptr[0]++) << 24) |
802  (*(ptr[1]++) << 16) |
803  (*(ptr[2]++) << 8);
804  pixel += diff;
805  bytestream_put_le32(&out, pixel);
806  }
807  break;
808  case EXR_HALF:
809  ptr[0] = in;
810  ptr[1] = ptr[0] + s->xdelta;
811  in = ptr[1] + s->xdelta;
812  for (j = 0; j < s->xdelta; j++) {
813  uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
814 
815  pixel += diff;
816  bytestream_put_le16(&out, pixel);
817  }
818  break;
819  default:
820  return AVERROR_INVALIDDATA;
821  }
822  }
823 
824  return 0;
825 }
826 
827 static int decode_block(AVCodecContext *avctx, void *tdata,
828  int jobnr, int threadnr)
829 {
830  EXRContext *s = avctx->priv_data;
831  AVFrame *const p = s->picture;
832  EXRThreadData *td = &s->thread_data[threadnr];
833  const uint8_t *channel_buffer[4] = { 0 };
834  const uint8_t *buf = s->buf;
835  uint64_t line_offset, uncompressed_size;
836  uint32_t xdelta = s->xdelta;
837  uint16_t *ptr_x;
838  uint8_t *ptr;
839  uint32_t data_size, line;
840  const uint8_t *src;
841  int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
842  int bxmin = s->xmin * 2 * s->desc->nb_components;
843  int i, x, buf_size = s->buf_size;
844  float one_gamma = 1.0f / s->gamma;
845  int ret;
846 
847  line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
848  // Check if the buffer has the required bytes needed from the offset
849  if (line_offset > buf_size - 8)
850  return AVERROR_INVALIDDATA;
851 
852  src = buf + line_offset + 8;
853  line = AV_RL32(src - 8);
854  if (line < s->ymin || line > s->ymax)
855  return AVERROR_INVALIDDATA;
856 
857  data_size = AV_RL32(src - 4);
858  if (data_size <= 0 || data_size > buf_size)
859  return AVERROR_INVALIDDATA;
860 
861  s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
862  uncompressed_size = s->scan_line_size * s->ysize;
863  if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
864  line_offset > buf_size - uncompressed_size)) ||
865  (s->compression != EXR_RAW && (data_size > uncompressed_size ||
866  line_offset > buf_size - data_size))) {
867  return AVERROR_INVALIDDATA;
868  }
869 
870  if (data_size < uncompressed_size) {
872  &td->uncompressed_size, uncompressed_size);
873  av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
874  if (!td->uncompressed_data || !td->tmp)
875  return AVERROR(ENOMEM);
876 
877  ret = AVERROR_INVALIDDATA;
878  switch (s->compression) {
879  case EXR_ZIP1:
880  case EXR_ZIP16:
881  ret = zip_uncompress(src, data_size, uncompressed_size, td);
882  break;
883  case EXR_PIZ:
884  ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
885  break;
886  case EXR_PXR24:
887  ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
888  break;
889  case EXR_RLE:
890  ret = rle_uncompress(src, data_size, uncompressed_size, td);
891  }
892  if (ret < 0) {
893  av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
894  return ret;
895  }
896  src = td->uncompressed_data;
897  }
898 
899  channel_buffer[0] = src + xdelta * s->channel_offsets[0];
900  channel_buffer[1] = src + xdelta * s->channel_offsets[1];
901  channel_buffer[2] = src + xdelta * s->channel_offsets[2];
902  if (s->channel_offsets[3] >= 0)
903  channel_buffer[3] = src + xdelta * s->channel_offsets[3];
904 
905  ptr = p->data[0] + line * p->linesize[0];
906  for (i = 0;
907  i < s->scan_lines_per_block && line + i <= s->ymax;
908  i++, ptr += p->linesize[0]) {
909  const uint8_t *r, *g, *b, *a;
910 
911  r = channel_buffer[0];
912  g = channel_buffer[1];
913  b = channel_buffer[2];
914  if (channel_buffer[3])
915  a = channel_buffer[3];
916 
917  ptr_x = (uint16_t *) ptr;
918 
919  // Zero out the start if xmin is not 0
920  memset(ptr_x, 0, bxmin);
921  ptr_x += s->xmin * s->desc->nb_components;
922  if (s->pixel_type == EXR_FLOAT) {
923  // 32-bit
924  for (x = 0; x < xdelta; x++) {
925  union av_intfloat32 t;
926  t.i = bytestream_get_le32(&r);
927  if (t.f > 0.0f) /* avoid negative values */
928  t.f = powf(t.f, one_gamma);
929  *ptr_x++ = exr_flt2uint(t.i);
930 
931  t.i = bytestream_get_le32(&g);
932  if (t.f > 0.0f)
933  t.f = powf(t.f, one_gamma);
934  *ptr_x++ = exr_flt2uint(t.i);
935 
936  t.i = bytestream_get_le32(&b);
937  if (t.f > 0.0f)
938  t.f = powf(t.f, one_gamma);
939  *ptr_x++ = exr_flt2uint(t.i);
940  if (channel_buffer[3])
941  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
942  }
943  } else {
944  // 16-bit
945  for (x = 0; x < xdelta; x++) {
946  *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)];
947  *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)];
948  *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)];
949  if (channel_buffer[3])
950  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
951  }
952  }
953 
954  // Zero out the end if xmax+1 is not w
955  memset(ptr_x, 0, axmax);
956 
957  channel_buffer[0] += s->scan_line_size;
958  channel_buffer[1] += s->scan_line_size;
959  channel_buffer[2] += s->scan_line_size;
960  if (channel_buffer[3])
961  channel_buffer[3] += s->scan_line_size;
962  }
963 
964  return 0;
965 }
966 
967 /**
968  * Check if the variable name corresponds to its data type.
969  *
970  * @param s the EXRContext
971  * @param value_name name of the variable to check
972  * @param value_type type of the variable to check
973  * @param minimum_length minimum length of the variable data
974  *
975  * @return bytes to read containing variable data
976  * -1 if variable is not found
977  * 0 if buffer ended prematurely
978  */
980  const char *value_name,
981  const char *value_type,
982  unsigned int minimum_length)
983 {
984  int var_size = -1;
985 
986  if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
987  !strcmp(s->gb.buffer, value_name)) {
988  // found value_name, jump to value_type (null terminated strings)
989  s->gb.buffer += strlen(value_name) + 1;
990  if (!strcmp(s->gb.buffer, value_type)) {
991  s->gb.buffer += strlen(value_type) + 1;
992  var_size = bytestream2_get_le32(&s->gb);
993  // don't go read past boundaries
994  if (var_size > bytestream2_get_bytes_left(&s->gb))
995  var_size = 0;
996  } else {
997  // value_type not found, reset the buffer
998  s->gb.buffer -= strlen(value_name) + 1;
1000  "Unknown data type %s for header variable %s.\n",
1001  value_type, value_name);
1002  }
1003  }
1004 
1005  return var_size;
1006 }
1007 
1009 {
1010  int current_channel_offset = 0;
1011  int magic_number, version, flags, i;
1012 
1013  s->xmin = ~0;
1014  s->xmax = ~0;
1015  s->ymin = ~0;
1016  s->ymax = ~0;
1017  s->xdelta = ~0;
1018  s->ydelta = ~0;
1019  s->channel_offsets[0] = -1;
1020  s->channel_offsets[1] = -1;
1021  s->channel_offsets[2] = -1;
1022  s->channel_offsets[3] = -1;
1023  s->pixel_type = EXR_UNKNOWN;
1024  s->compression = EXR_UNKN;
1025  s->nb_channels = 0;
1026  s->w = 0;
1027  s->h = 0;
1028 
1029  if (bytestream2_get_bytes_left(&s->gb) < 10) {
1030  av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1031  return AVERROR_INVALIDDATA;
1032  }
1033 
1034  magic_number = bytestream2_get_le32(&s->gb);
1035  if (magic_number != 20000630) {
1036  /* As per documentation of OpenEXR, it is supposed to be
1037  * int 20000630 little-endian */
1038  av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1039  return AVERROR_INVALIDDATA;
1040  }
1041 
1042  version = bytestream2_get_byte(&s->gb);
1043  if (version != 2) {
1044  avpriv_report_missing_feature(s->avctx, "Version %d", version);
1045  return AVERROR_PATCHWELCOME;
1046  }
1047 
1048  flags = bytestream2_get_le24(&s->gb);
1049  if (flags & 0x02) {
1050  avpriv_report_missing_feature(s->avctx, "Tile support");
1051  return AVERROR_PATCHWELCOME;
1052  }
1053 
1054  // Parse the header
1055  while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1056  int var_size;
1057  if ((var_size = check_header_variable(s, "channels",
1058  "chlist", 38)) >= 0) {
1059  GetByteContext ch_gb;
1060  if (!var_size)
1061  return AVERROR_INVALIDDATA;
1062 
1063  bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1064 
1065  while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1066  EXRChannel *channel;
1067  enum ExrPixelType current_pixel_type;
1068  int channel_index = -1;
1069  int xsub, ysub;
1070 
1071  if (strcmp(s->layer, "") != 0) {
1072  if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1073  ch_gb.buffer += strlen(s->layer);
1074  if (*ch_gb.buffer == '.')
1075  ch_gb.buffer++; /* skip dot if not given */
1076  av_log(s->avctx, AV_LOG_INFO,
1077  "Layer %s.%s matched.\n", s->layer, ch_gb.buffer);
1078  }
1079  }
1080 
1081  if (!strcmp(ch_gb.buffer, "R") ||
1082  !strcmp(ch_gb.buffer, "X") ||
1083  !strcmp(ch_gb.buffer, "U"))
1084  channel_index = 0;
1085  else if (!strcmp(ch_gb.buffer, "G") ||
1086  !strcmp(ch_gb.buffer, "Y") ||
1087  !strcmp(ch_gb.buffer, "V"))
1088  channel_index = 1;
1089  else if (!strcmp(ch_gb.buffer, "B") ||
1090  !strcmp(ch_gb.buffer, "Z") ||
1091  !strcmp(ch_gb.buffer, "W"))
1092  channel_index = 2;
1093  else if (!strcmp(ch_gb.buffer, "A"))
1094  channel_index = 3;
1095  else
1097  "Unsupported channel %.256s.\n", ch_gb.buffer);
1098 
1099  /* skip until you get a 0 */
1100  while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1101  bytestream2_get_byte(&ch_gb))
1102  continue;
1103 
1104  if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1105  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1106  return AVERROR_INVALIDDATA;
1107  }
1108 
1109  current_pixel_type = bytestream2_get_le32(&ch_gb);
1110  if (current_pixel_type >= EXR_UNKNOWN) {
1112  "Pixel type %d.\n",
1113  current_pixel_type);
1114  return AVERROR_PATCHWELCOME;
1115  }
1116 
1117  bytestream2_skip(&ch_gb, 4);
1118  xsub = bytestream2_get_le32(&ch_gb);
1119  ysub = bytestream2_get_le32(&ch_gb);
1120  if (xsub != 1 || ysub != 1) {
1122  "Subsampling %dx%d",
1123  xsub, ysub);
1124  return AVERROR_PATCHWELCOME;
1125  }
1126 
1127  if (channel_index >= 0) {
1128  if (s->pixel_type != EXR_UNKNOWN &&
1129  s->pixel_type != current_pixel_type) {
1131  "RGB channels not of the same depth.\n");
1132  return AVERROR_INVALIDDATA;
1133  }
1134  s->pixel_type = current_pixel_type;
1135  s->channel_offsets[channel_index] = current_channel_offset;
1136  }
1137 
1138  s->channels = av_realloc(s->channels,
1139  ++s->nb_channels * sizeof(EXRChannel));
1140  if (!s->channels)
1141  return AVERROR(ENOMEM);
1142  channel = &s->channels[s->nb_channels - 1];
1143  channel->pixel_type = current_pixel_type;
1144  channel->xsub = xsub;
1145  channel->ysub = ysub;
1146 
1147  current_channel_offset += 1 << current_pixel_type;
1148  }
1149 
1150  /* Check if all channels are set with an offset or if the channels
1151  * are causing an overflow */
1152  if (FFMIN3(s->channel_offsets[0],
1153  s->channel_offsets[1],
1154  s->channel_offsets[2]) < 0) {
1155  if (s->channel_offsets[0] < 0)
1156  av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1157  if (s->channel_offsets[1] < 0)
1158  av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1159  if (s->channel_offsets[2] < 0)
1160  av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1161  return AVERROR_INVALIDDATA;
1162  }
1163 
1164  // skip one last byte and update main gb
1165  s->gb.buffer = ch_gb.buffer + 1;
1166  continue;
1167  } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1168  31)) >= 0) {
1169  if (!var_size)
1170  return AVERROR_INVALIDDATA;
1171 
1172  s->xmin = bytestream2_get_le32(&s->gb);
1173  s->ymin = bytestream2_get_le32(&s->gb);
1174  s->xmax = bytestream2_get_le32(&s->gb);
1175  s->ymax = bytestream2_get_le32(&s->gb);
1176  s->xdelta = (s->xmax - s->xmin) + 1;
1177  s->ydelta = (s->ymax - s->ymin) + 1;
1178 
1179  continue;
1180  } else if ((var_size = check_header_variable(s, "displayWindow",
1181  "box2i", 34)) >= 0) {
1182  if (!var_size)
1183  return AVERROR_INVALIDDATA;
1184 
1185  bytestream2_skip(&s->gb, 8);
1186  s->w = bytestream2_get_le32(&s->gb) + 1;
1187  s->h = bytestream2_get_le32(&s->gb) + 1;
1188 
1189  continue;
1190  } else if ((var_size = check_header_variable(s, "lineOrder",
1191  "lineOrder", 25)) >= 0) {
1192  int line_order;
1193  if (!var_size)
1194  return AVERROR_INVALIDDATA;
1195 
1196  line_order = bytestream2_get_byte(&s->gb);
1197  av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1198  if (line_order > 2) {
1199  av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1200  return AVERROR_INVALIDDATA;
1201  }
1202 
1203  continue;
1204  } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1205  "float", 31)) >= 0) {
1206  if (!var_size)
1207  return AVERROR_INVALIDDATA;
1208 
1209  ff_set_sar(s->avctx,
1210  av_d2q(av_int2float(bytestream2_get_le32(&s->gb)), 255));
1211 
1212  continue;
1213  } else if ((var_size = check_header_variable(s, "compression",
1214  "compression", 29)) >= 0) {
1215  if (!var_size)
1216  return AVERROR_INVALIDDATA;
1217 
1218  if (s->compression == EXR_UNKN)
1219  s->compression = bytestream2_get_byte(&s->gb);
1220  else
1222  "Found more than one compression attribute.\n");
1223 
1224  continue;
1225  }
1226 
1227  // Check if there are enough bytes for a header
1228  if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1229  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1230  return AVERROR_INVALIDDATA;
1231  }
1232 
1233  // Process unknown variables
1234  for (i = 0; i < 2; i++) // value_name and value_type
1235  while (bytestream2_get_byte(&s->gb) != 0);
1236 
1237  // Skip variable length
1238  bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1239  }
1240 
1241  if (s->compression == EXR_UNKN) {
1242  av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1243  return AVERROR_INVALIDDATA;
1244  }
1245  s->scan_line_size = s->xdelta * current_channel_offset;
1246 
1247  if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1248  av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1249  return AVERROR_INVALIDDATA;
1250  }
1251 
1252  // aaand we are done
1253  bytestream2_skip(&s->gb, 1);
1254  return 0;
1255 }
1256 
1257 static int decode_frame(AVCodecContext *avctx, void *data,
1258  int *got_frame, AVPacket *avpkt)
1259 {
1260  EXRContext *s = avctx->priv_data;
1261  ThreadFrame frame = { .f = data };
1262  AVFrame *picture = data;
1263  uint8_t *ptr;
1264 
1265  int y, ret;
1266  int out_line_size;
1267  int scan_line_blocks;
1268 
1269  bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1270 
1271  if ((ret = decode_header(s)) < 0)
1272  return ret;
1273 
1274  switch (s->pixel_type) {
1275  case EXR_FLOAT:
1276  case EXR_HALF:
1277  if (s->channel_offsets[3] >= 0)
1278  avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1279  else
1280  avctx->pix_fmt = AV_PIX_FMT_RGB48;
1281  break;
1282  case EXR_UINT:
1283  avpriv_request_sample(avctx, "32-bit unsigned int");
1284  return AVERROR_PATCHWELCOME;
1285  default:
1286  av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1287  return AVERROR_INVALIDDATA;
1288  }
1289 
1290  switch (s->compression) {
1291  case EXR_RAW:
1292  case EXR_RLE:
1293  case EXR_ZIP1:
1294  s->scan_lines_per_block = 1;
1295  break;
1296  case EXR_PXR24:
1297  case EXR_ZIP16:
1298  s->scan_lines_per_block = 16;
1299  break;
1300  case EXR_PIZ:
1301  s->scan_lines_per_block = 32;
1302  break;
1303  default:
1304  avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1305  return AVERROR_PATCHWELCOME;
1306  }
1307 
1308  /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1309  * the actual image size. */
1310  if (s->xmin > s->xmax ||
1311  s->ymin > s->ymax ||
1312  s->xdelta != s->xmax - s->xmin + 1 ||
1313  s->xmax >= s->w ||
1314  s->ymax >= s->h) {
1315  av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1316  return AVERROR_INVALIDDATA;
1317  }
1318 
1319  if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1320  return ret;
1321 
1322  s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1323  if (!s->desc)
1324  return AVERROR_INVALIDDATA;
1325  out_line_size = avctx->width * 2 * s->desc->nb_components;
1326  scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1328 
1329  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1330  return ret;
1331 
1332  if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8)
1333  return AVERROR_INVALIDDATA;
1334 
1335  // save pointer we are going to use in decode_block
1336  s->buf = avpkt->data;
1337  s->buf_size = avpkt->size;
1338  ptr = picture->data[0];
1339 
1340  // Zero out the start if ymin is not 0
1341  for (y = 0; y < s->ymin; y++) {
1342  memset(ptr, 0, out_line_size);
1343  ptr += picture->linesize[0];
1344  }
1345 
1346  s->picture = picture;
1347  avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
1348 
1349  // Zero out the end if ymax+1 is not h
1350  for (y = s->ymax + 1; y < avctx->height; y++) {
1351  memset(ptr, 0, out_line_size);
1352  ptr += picture->linesize[0];
1353  }
1354 
1355  picture->pict_type = AV_PICTURE_TYPE_I;
1356  *got_frame = 1;
1357 
1358  return avpkt->size;
1359 }
1360 
1362 {
1363  EXRContext *s = avctx->priv_data;
1364  uint32_t i;
1365  union av_intfloat32 t;
1366  float one_gamma = 1.0f / s->gamma;
1367 
1368  s->avctx = avctx;
1369 
1370  if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1371  for (i = 0; i < 65536; ++i)
1372  s->gamma_table[i] = exr_halflt2uint(i);
1373  } else {
1374  for (i = 0; i < 65536; ++i) {
1375  t = exr_half2float(i);
1376  /* If negative value we reuse half value */
1377  if (t.f <= 0.0f) {
1378  s->gamma_table[i] = exr_halflt2uint(i);
1379  } else {
1380  t.f = powf(t.f, one_gamma);
1381  s->gamma_table[i] = exr_flt2uint(t.i);
1382  }
1383  }
1384  }
1385 
1386  // allocate thread data, used for non EXR_RAW compreesion types
1388  if (!s->thread_data)
1389  return AVERROR_INVALIDDATA;
1390 
1391  return 0;
1392 }
1393 
1395 { EXRContext *s = avctx->priv_data;
1396 
1397  // allocate thread data, used for non EXR_RAW compreesion types
1399  if (!s->thread_data)
1400  return AVERROR_INVALIDDATA;
1401 
1402  return 0;
1403 }
1404 
1406 {
1407  EXRContext *s = avctx->priv_data;
1408  int i;
1409  for (i = 0; i < avctx->thread_count; i++) {
1410  EXRThreadData *td = &s->thread_data[i];
1412  av_freep(&td->tmp);
1413  av_freep(&td->bitmap);
1414  av_freep(&td->lut);
1415  }
1416 
1417  av_freep(&s->thread_data);
1418  av_freep(&s->channels);
1419 
1420  return 0;
1421 }
1422 
1423 #define OFFSET(x) offsetof(EXRContext, x)
1424 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1425 static const AVOption options[] = {
1426  { "layer", "Set the decoding layer", OFFSET(layer),
1427  AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1428  { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1429  AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1430  { NULL },
1431 };
1432 
1433 static const AVClass exr_class = {
1434  .class_name = "EXR",
1435  .item_name = av_default_item_name,
1436  .option = options,
1437  .version = LIBAVUTIL_VERSION_INT,
1438 };
1439 
1441  .name = "exr",
1442  .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1443  .type = AVMEDIA_TYPE_VIDEO,
1444  .id = AV_CODEC_ID_EXR,
1445  .priv_data_size = sizeof(EXRContext),
1446  .init = decode_init,
1448  .close = decode_end,
1449  .decode = decode_frame,
1450  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS |
1452  .priv_class = &exr_class,
1453 };