Libav
wmaprodec.c
Go to the documentation of this file.
1 /*
2  * Wmapro compatible decoder
3  * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
4  * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
89 #include "libavutil/float_dsp.h"
90 #include "libavutil/intfloat.h"
91 #include "libavutil/intreadwrite.h"
92 #include "avcodec.h"
93 #include "internal.h"
94 #include "get_bits.h"
95 #include "put_bits.h"
96 #include "wmaprodata.h"
97 #include "sinewin.h"
98 #include "wma.h"
99 #include "wma_common.h"
100 
102 #define WMAPRO_MAX_CHANNELS 8
103 #define MAX_SUBFRAMES 32
104 #define MAX_BANDS 29
105 #define MAX_FRAMESIZE 32768
106 
107 #define WMAPRO_BLOCK_MIN_BITS 6
108 #define WMAPRO_BLOCK_MAX_BITS 13
109 #define WMAPRO_BLOCK_MIN_SIZE (1 << WMAPRO_BLOCK_MIN_BITS)
110 #define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS)
111 #define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1)
112 
113 
114 #define VLCBITS 9
115 #define SCALEVLCBITS 8
116 #define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
117 #define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
118 #define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
119 #define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
120 #define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
121 
122 static VLC sf_vlc;
123 static VLC sf_rl_vlc;
124 static VLC vec4_vlc;
125 static VLC vec2_vlc;
126 static VLC vec1_vlc;
127 static VLC coef_vlc[2];
128 static float sin64[33];
129 
133 typedef struct {
134  int16_t prev_block_len;
137  uint16_t subframe_len[MAX_SUBFRAMES];
138  uint16_t subframe_offset[MAX_SUBFRAMES];
140  uint16_t decoded_samples;
143  int8_t reuse_sf;
146  int saved_scale_factors[2][MAX_BANDS];
150  float* coeffs;
151  uint16_t num_vec_coeffs;
154 
158 typedef struct {
160  int8_t transform;
161  int8_t transform_band[MAX_BANDS];
162  float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
163  float* channel_data[WMAPRO_MAX_CHANNELS];
165 
169 typedef struct WMAProDecodeCtx {
170  /* generic decoder variables */
179 
180  /* frame size dependent frame information (set during initialization) */
181  uint32_t decode_flags;
185  uint16_t samples_per_frame;
186  uint16_t log2_frame_size;
187  int8_t lfe_channel;
196 
197  /* packet decode state */
207 
208  /* frame decode state */
209  uint32_t frame_num;
213  int8_t skip_frame;
215 
216  /* subframe/block decode state */
217  int16_t subframe_len;
220  int8_t num_bands;
222  int16_t* cur_sfb_offsets;
224  int8_t esc_len;
225 
228 
231 
232 
238 {
239 #define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
240 #define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
241 
242  PRINT("ed sample bit depth", s->bits_per_sample);
243  PRINT_HEX("ed decode flags", s->decode_flags);
244  PRINT("samples per frame", s->samples_per_frame);
245  PRINT("log2 frame size", s->log2_frame_size);
246  PRINT("max num subframes", s->max_num_subframes);
247  PRINT("len prefix", s->len_prefix);
248  PRINT("num channels", s->avctx->channels);
249 }
250 
257 {
258  WMAProDecodeCtx *s = avctx->priv_data;
259  int i;
260 
261  for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
262  ff_mdct_end(&s->mdct_ctx[i]);
263 
264  return 0;
265 }
266 
273 {
274  WMAProDecodeCtx *s = avctx->priv_data;
275  uint8_t *edata_ptr = avctx->extradata;
276  unsigned int channel_mask;
277  int i, bits;
278  int log2_max_num_subframes;
279  int num_possible_block_sizes;
280 
281  if (!avctx->block_align) {
282  av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
283  return AVERROR(EINVAL);
284  }
285 
286  s->avctx = avctx;
288 
290 
292 
293  if (avctx->extradata_size >= 18) {
294  s->decode_flags = AV_RL16(edata_ptr+14);
295  channel_mask = AV_RL32(edata_ptr+2);
296  s->bits_per_sample = AV_RL16(edata_ptr);
298  for (i = 0; i < avctx->extradata_size; i++)
299  av_dlog(avctx, "[%x] ", avctx->extradata[i]);
300  av_dlog(avctx, "\n");
301 
302  } else {
303  avpriv_request_sample(avctx, "Unknown extradata size");
304  return AVERROR_PATCHWELCOME;
305  }
306 
308  s->log2_frame_size = av_log2(avctx->block_align) + 4;
309 
311  s->skip_frame = 1; /* skip first frame */
312  s->packet_loss = 1;
313  s->len_prefix = (s->decode_flags & 0x40);
314 
316  bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags);
317  if (bits > WMAPRO_BLOCK_MAX_BITS) {
318  avpriv_request_sample(avctx, "14-bit block sizes");
319  return AVERROR_PATCHWELCOME;
320  }
321  s->samples_per_frame = 1 << bits;
322 
324  log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3);
325  s->max_num_subframes = 1 << log2_max_num_subframes;
326  if (s->max_num_subframes == 16 || s->max_num_subframes == 4)
327  s->max_subframe_len_bit = 1;
328  s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
329 
330  num_possible_block_sizes = log2_max_num_subframes + 1;
332  s->dynamic_range_compression = (s->decode_flags & 0x80);
333 
334  if (s->max_num_subframes > MAX_SUBFRAMES) {
335  av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
336  s->max_num_subframes);
337  return AVERROR_INVALIDDATA;
338  }
339 
341  av_log(avctx, AV_LOG_ERROR, "Invalid minimum block size %i\n",
342  s->max_num_subframes);
343  return AVERROR_INVALIDDATA;
344  }
345 
346  if (s->avctx->sample_rate <= 0) {
347  av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
348  return AVERROR_INVALIDDATA;
349  }
350 
351  if (avctx->channels < 0) {
352  av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n",
353  avctx->channels);
354  return AVERROR_INVALIDDATA;
355  } else if (avctx->channels > WMAPRO_MAX_CHANNELS) {
356  avpriv_request_sample(avctx,
357  "More than %d channels", WMAPRO_MAX_CHANNELS);
358  return AVERROR_PATCHWELCOME;
359  }
360 
362  for (i = 0; i < avctx->channels; i++)
364 
366  s->lfe_channel = -1;
367 
368  if (channel_mask & 8) {
369  unsigned int mask;
370  for (mask = 1; mask < 16; mask <<= 1) {
371  if (channel_mask & mask)
372  ++s->lfe_channel;
373  }
374  }
375 
377  scale_huffbits, 1, 1,
378  scale_huffcodes, 2, 2, 616);
379 
381  scale_rl_huffbits, 1, 1,
382  scale_rl_huffcodes, 4, 4, 1406);
383 
384  INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
385  coef0_huffbits, 1, 1,
386  coef0_huffcodes, 4, 4, 2108);
387 
388  INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
389  coef1_huffbits, 1, 1,
390  coef1_huffcodes, 4, 4, 3912);
391 
393  vec4_huffbits, 1, 1,
394  vec4_huffcodes, 2, 2, 604);
395 
397  vec2_huffbits, 1, 1,
398  vec2_huffcodes, 2, 2, 562);
399 
401  vec1_huffbits, 1, 1,
402  vec1_huffcodes, 2, 2, 562);
403 
406  for (i = 0; i < num_possible_block_sizes; i++) {
407  int subframe_len = s->samples_per_frame >> i;
408  int x;
409  int band = 1;
410 
411  s->sfb_offsets[i][0] = 0;
412 
413  for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
414  int offset = (subframe_len * 2 * critical_freq[x])
415  / s->avctx->sample_rate + 2;
416  offset &= ~3;
417  if (offset > s->sfb_offsets[i][band - 1])
418  s->sfb_offsets[i][band++] = offset;
419  }
420  s->sfb_offsets[i][band - 1] = subframe_len;
421  s->num_sfb[i] = band - 1;
422  }
423 
424 
430  for (i = 0; i < num_possible_block_sizes; i++) {
431  int b;
432  for (b = 0; b < s->num_sfb[i]; b++) {
433  int x;
434  int offset = ((s->sfb_offsets[i][b]
435  + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
436  for (x = 0; x < num_possible_block_sizes; x++) {
437  int v = 0;
438  while (s->sfb_offsets[x][v + 1] << x < offset)
439  if (++v >= MAX_BANDS)
440  return AVERROR_INVALIDDATA;
441  s->sf_offsets[i][x][b] = v;
442  }
443  }
444  }
445 
447  for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
449  1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1))
450  / (1 << (s->bits_per_sample - 1)));
451 
453  for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
454  const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
455  ff_init_ff_sine_windows(win_idx);
456  s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
457  }
458 
460  for (i = 0; i < num_possible_block_sizes; i++) {
461  int block_size = s->samples_per_frame >> i;
462  int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
463  / s->avctx->sample_rate;
464  s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
465  }
466 
468  for (i = 0; i < 33; i++)
469  sin64[i] = sin(i*M_PI / 64.0);
470 
471  if (avctx->debug & FF_DEBUG_BITSTREAM)
472  dump_context(s);
473 
474  avctx->channel_layout = channel_mask;
475 
476  return 0;
477 }
478 
485 static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
486 {
487  int frame_len_shift = 0;
488  int subframe_len;
489 
491  if (offset == s->samples_per_frame - s->min_samples_per_subframe)
492  return s->min_samples_per_subframe;
493 
495  if (s->max_subframe_len_bit) {
496  if (get_bits1(&s->gb))
497  frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
498  } else
499  frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
500 
501  subframe_len = s->samples_per_frame >> frame_len_shift;
502 
504  if (subframe_len < s->min_samples_per_subframe ||
505  subframe_len > s->samples_per_frame) {
506  av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
507  subframe_len);
508  return AVERROR_INVALIDDATA;
509  }
510  return subframe_len;
511 }
512 
534 {
535  uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };
536  uint8_t contains_subframe[WMAPRO_MAX_CHANNELS];
537  int channels_for_cur_subframe = s->avctx->channels;
538  int fixed_channel_layout = 0;
539  int min_channel_len = 0;
540  int c;
541 
542  /* Should never consume more than 3073 bits (256 iterations for the
543  * while loop when always the minimum amount of 128 samples is subtracted
544  * from missing samples in the 8 channel case).
545  * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
546  */
547 
549  for (c = 0; c < s->avctx->channels; c++)
550  s->channel[c].num_subframes = 0;
551 
552  if (s->max_num_subframes == 1 || get_bits1(&s->gb))
553  fixed_channel_layout = 1;
554 
556  do {
557  int subframe_len;
558 
560  for (c = 0; c < s->avctx->channels; c++) {
561  if (num_samples[c] == min_channel_len) {
562  if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
563  (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
564  contains_subframe[c] = 1;
565  else
566  contains_subframe[c] = get_bits1(&s->gb);
567  } else
568  contains_subframe[c] = 0;
569  }
570 
572  if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
573  return AVERROR_INVALIDDATA;
574 
576  min_channel_len += subframe_len;
577  for (c = 0; c < s->avctx->channels; c++) {
578  WMAProChannelCtx* chan = &s->channel[c];
579 
580  if (contains_subframe[c]) {
581  if (chan->num_subframes >= MAX_SUBFRAMES) {
583  "broken frame: num subframes > 31\n");
584  return AVERROR_INVALIDDATA;
585  }
586  chan->subframe_len[chan->num_subframes] = subframe_len;
587  num_samples[c] += subframe_len;
588  ++chan->num_subframes;
589  if (num_samples[c] > s->samples_per_frame) {
590  av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
591  "channel len > samples_per_frame\n");
592  return AVERROR_INVALIDDATA;
593  }
594  } else if (num_samples[c] <= min_channel_len) {
595  if (num_samples[c] < min_channel_len) {
596  channels_for_cur_subframe = 0;
597  min_channel_len = num_samples[c];
598  }
599  ++channels_for_cur_subframe;
600  }
601  }
602  } while (min_channel_len < s->samples_per_frame);
603 
604  for (c = 0; c < s->avctx->channels; c++) {
605  int i;
606  int offset = 0;
607  for (i = 0; i < s->channel[c].num_subframes; i++) {
608  av_dlog(s->avctx, "frame[%i] channel[%i] subframe[%i]"
609  " len %i\n", s->frame_num, c, i,
610  s->channel[c].subframe_len[i]);
611  s->channel[c].subframe_offset[i] = offset;
612  offset += s->channel[c].subframe_len[i];
613  }
614  }
615 
616  return 0;
617 }
618 
625  WMAProChannelGrp *chgroup)
626 {
627  int i;
628  int offset = 0;
629  int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
630  memset(chgroup->decorrelation_matrix, 0, s->avctx->channels *
631  s->avctx->channels * sizeof(*chgroup->decorrelation_matrix));
632 
633  for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
634  rotation_offset[i] = get_bits(&s->gb, 6);
635 
636  for (i = 0; i < chgroup->num_channels; i++)
637  chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
638  get_bits1(&s->gb) ? 1.0 : -1.0;
639 
640  for (i = 1; i < chgroup->num_channels; i++) {
641  int x;
642  for (x = 0; x < i; x++) {
643  int y;
644  for (y = 0; y < i + 1; y++) {
645  float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
646  float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
647  int n = rotation_offset[offset + x];
648  float sinv;
649  float cosv;
650 
651  if (n < 32) {
652  sinv = sin64[n];
653  cosv = sin64[32 - n];
654  } else {
655  sinv = sin64[64 - n];
656  cosv = -sin64[n - 32];
657  }
658 
659  chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
660  (v1 * sinv) - (v2 * cosv);
661  chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
662  (v1 * cosv) + (v2 * sinv);
663  }
664  }
665  offset += i;
666  }
667 }
668 
675 {
676  int i;
677  /* should never consume more than 1921 bits for the 8 channel case
678  * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
679  * + MAX_CHANNELS + MAX_BANDS + 1)
680  */
681 
683  s->num_chgroups = 0;
684  if (s->avctx->channels > 1) {
685  int remaining_channels = s->channels_for_cur_subframe;
686 
687  if (get_bits1(&s->gb)) {
689  "Channel transform bit");
690  return AVERROR_PATCHWELCOME;
691  }
692 
693  for (s->num_chgroups = 0; remaining_channels &&
695  WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
696  float** channel_data = chgroup->channel_data;
697  chgroup->num_channels = 0;
698  chgroup->transform = 0;
699 
701  if (remaining_channels > 2) {
702  for (i = 0; i < s->channels_for_cur_subframe; i++) {
703  int channel_idx = s->channel_indexes_for_cur_subframe[i];
704  if (!s->channel[channel_idx].grouped
705  && get_bits1(&s->gb)) {
706  ++chgroup->num_channels;
707  s->channel[channel_idx].grouped = 1;
708  *channel_data++ = s->channel[channel_idx].coeffs;
709  }
710  }
711  } else {
712  chgroup->num_channels = remaining_channels;
713  for (i = 0; i < s->channels_for_cur_subframe; i++) {
714  int channel_idx = s->channel_indexes_for_cur_subframe[i];
715  if (!s->channel[channel_idx].grouped)
716  *channel_data++ = s->channel[channel_idx].coeffs;
717  s->channel[channel_idx].grouped = 1;
718  }
719  }
720 
722  if (chgroup->num_channels == 2) {
723  if (get_bits1(&s->gb)) {
724  if (get_bits1(&s->gb)) {
726  "Unknown channel transform type");
727  return AVERROR_PATCHWELCOME;
728  }
729  } else {
730  chgroup->transform = 1;
731  if (s->avctx->channels == 2) {
732  chgroup->decorrelation_matrix[0] = 1.0;
733  chgroup->decorrelation_matrix[1] = -1.0;
734  chgroup->decorrelation_matrix[2] = 1.0;
735  chgroup->decorrelation_matrix[3] = 1.0;
736  } else {
738  chgroup->decorrelation_matrix[0] = 0.70703125;
739  chgroup->decorrelation_matrix[1] = -0.70703125;
740  chgroup->decorrelation_matrix[2] = 0.70703125;
741  chgroup->decorrelation_matrix[3] = 0.70703125;
742  }
743  }
744  } else if (chgroup->num_channels > 2) {
745  if (get_bits1(&s->gb)) {
746  chgroup->transform = 1;
747  if (get_bits1(&s->gb)) {
748  decode_decorrelation_matrix(s, chgroup);
749  } else {
751  if (chgroup->num_channels > 6) {
753  "Coupled channels > 6");
754  } else {
755  memcpy(chgroup->decorrelation_matrix,
757  chgroup->num_channels * chgroup->num_channels *
758  sizeof(*chgroup->decorrelation_matrix));
759  }
760  }
761  }
762  }
763 
765  if (chgroup->transform) {
766  if (!get_bits1(&s->gb)) {
767  int i;
769  for (i = 0; i < s->num_bands; i++) {
770  chgroup->transform_band[i] = get_bits1(&s->gb);
771  }
772  } else {
773  memset(chgroup->transform_band, 1, s->num_bands);
774  }
775  }
776  remaining_channels -= chgroup->num_channels;
777  }
778  }
779  return 0;
780 }
781 
788 static int decode_coeffs(WMAProDecodeCtx *s, int c)
789 {
790  /* Integers 0..15 as single-precision floats. The table saves a
791  costly int to float conversion, and storing the values as
792  integers allows fast sign-flipping. */
793  static const uint32_t fval_tab[16] = {
794  0x00000000, 0x3f800000, 0x40000000, 0x40400000,
795  0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
796  0x41000000, 0x41100000, 0x41200000, 0x41300000,
797  0x41400000, 0x41500000, 0x41600000, 0x41700000,
798  };
799  int vlctable;
800  VLC* vlc;
801  WMAProChannelCtx* ci = &s->channel[c];
802  int rl_mode = 0;
803  int cur_coeff = 0;
804  int num_zeros = 0;
805  const uint16_t* run;
806  const float* level;
807 
808  av_dlog(s->avctx, "decode coefficients for channel %i\n", c);
809 
810  vlctable = get_bits1(&s->gb);
811  vlc = &coef_vlc[vlctable];
812 
813  if (vlctable) {
814  run = coef1_run;
815  level = coef1_level;
816  } else {
817  run = coef0_run;
818  level = coef0_level;
819  }
820 
823  while ((s->transmit_num_vec_coeffs || !rl_mode) &&
824  (cur_coeff + 3 < ci->num_vec_coeffs)) {
825  uint32_t vals[4];
826  int i;
827  unsigned int idx;
828 
829  idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
830 
831  if (idx == HUFF_VEC4_SIZE - 1) {
832  for (i = 0; i < 4; i += 2) {
833  idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
834  if (idx == HUFF_VEC2_SIZE - 1) {
835  uint32_t v0, v1;
836  v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
837  if (v0 == HUFF_VEC1_SIZE - 1)
838  v0 += ff_wma_get_large_val(&s->gb);
839  v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
840  if (v1 == HUFF_VEC1_SIZE - 1)
841  v1 += ff_wma_get_large_val(&s->gb);
842  vals[i ] = av_float2int(v0);
843  vals[i+1] = av_float2int(v1);
844  } else {
845  vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ];
846  vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
847  }
848  }
849  } else {
850  vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ];
851  vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
852  vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
853  vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF];
854  }
855 
857  for (i = 0; i < 4; i++) {
858  if (vals[i]) {
859  uint32_t sign = get_bits1(&s->gb) - 1;
860  AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31);
861  num_zeros = 0;
862  } else {
863  ci->coeffs[cur_coeff] = 0;
866  rl_mode |= (++num_zeros > s->subframe_len >> 8);
867  }
868  ++cur_coeff;
869  }
870  }
871 
873  if (cur_coeff < s->subframe_len) {
874  memset(&ci->coeffs[cur_coeff], 0,
875  sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
876  if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
877  level, run, 1, ci->coeffs,
878  cur_coeff, s->subframe_len,
879  s->subframe_len, s->esc_len, 0))
880  return AVERROR_INVALIDDATA;
881  }
882 
883  return 0;
884 }
885 
892 {
893  int i;
894 
899  for (i = 0; i < s->channels_for_cur_subframe; i++) {
900  int c = s->channel_indexes_for_cur_subframe[i];
901  int* sf;
902  int* sf_end;
904  sf_end = s->channel[c].scale_factors + s->num_bands;
905 
911  if (s->channel[c].reuse_sf) {
912  const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
913  int b;
914  for (b = 0; b < s->num_bands; b++)
915  s->channel[c].scale_factors[b] =
916  s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
917  }
918 
919  if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
920 
921  if (!s->channel[c].reuse_sf) {
922  int val;
924  s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
925  val = 45 / s->channel[c].scale_factor_step;
926  for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
927  val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
928  *sf = val;
929  }
930  } else {
931  int i;
933  for (i = 0; i < s->num_bands; i++) {
934  int idx;
935  int skip;
936  int val;
937  int sign;
938 
939  idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
940 
941  if (!idx) {
942  uint32_t code = get_bits(&s->gb, 14);
943  val = code >> 6;
944  sign = (code & 1) - 1;
945  skip = (code & 0x3f) >> 1;
946  } else if (idx == 1) {
947  break;
948  } else {
949  skip = scale_rl_run[idx];
950  val = scale_rl_level[idx];
951  sign = get_bits1(&s->gb)-1;
952  }
953 
954  i += skip;
955  if (i >= s->num_bands) {
957  "invalid scale factor coding\n");
958  return AVERROR_INVALIDDATA;
959  }
960  s->channel[c].scale_factors[i] += (val ^ sign) - sign;
961  }
962  }
965  s->channel[c].table_idx = s->table_idx;
966  s->channel[c].reuse_sf = 1;
967  }
968 
971  for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
972  s->channel[c].max_scale_factor =
973  FFMAX(s->channel[c].max_scale_factor, *sf);
974  }
975 
976  }
977  return 0;
978 }
979 
985 {
986  int i;
987 
988  for (i = 0; i < s->num_chgroups; i++) {
989  if (s->chgroup[i].transform) {
990  float data[WMAPRO_MAX_CHANNELS];
991  const int num_channels = s->chgroup[i].num_channels;
992  float** ch_data = s->chgroup[i].channel_data;
993  float** ch_end = ch_data + num_channels;
994  const int8_t* tb = s->chgroup[i].transform_band;
995  int16_t* sfb;
996 
998  for (sfb = s->cur_sfb_offsets;
999  sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
1000  int y;
1001  if (*tb++ == 1) {
1003  for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
1004  const float* mat = s->chgroup[i].decorrelation_matrix;
1005  const float* data_end = data + num_channels;
1006  float* data_ptr = data;
1007  float** ch;
1008 
1009  for (ch = ch_data; ch < ch_end; ch++)
1010  *data_ptr++ = (*ch)[y];
1011 
1012  for (ch = ch_data; ch < ch_end; ch++) {
1013  float sum = 0;
1014  data_ptr = data;
1015  while (data_ptr < data_end)
1016  sum += *data_ptr++ * *mat++;
1017 
1018  (*ch)[y] = sum;
1019  }
1020  }
1021  } else if (s->avctx->channels == 2) {
1022  int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
1023  s->fdsp.vector_fmul_scalar(ch_data[0] + sfb[0],
1024  ch_data[0] + sfb[0],
1025  181.0 / 128, len);
1026  s->fdsp.vector_fmul_scalar(ch_data[1] + sfb[0],
1027  ch_data[1] + sfb[0],
1028  181.0 / 128, len);
1029  }
1030  }
1031  }
1032  }
1033 }
1034 
1040 {
1041  int i;
1042  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1043  int c = s->channel_indexes_for_cur_subframe[i];
1044  float* window;
1045  int winlen = s->channel[c].prev_block_len;
1046  float* start = s->channel[c].coeffs - (winlen >> 1);
1047 
1048  if (s->subframe_len < winlen) {
1049  start += (winlen - s->subframe_len) >> 1;
1050  winlen = s->subframe_len;
1051  }
1052 
1053  window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS];
1054 
1055  winlen >>= 1;
1056 
1057  s->fdsp.vector_fmul_window(start, start, start + winlen,
1058  window, winlen);
1059 
1060  s->channel[c].prev_block_len = s->subframe_len;
1061  }
1062 }
1063 
1070 {
1071  int offset = s->samples_per_frame;
1072  int subframe_len = s->samples_per_frame;
1073  int i;
1074  int total_samples = s->samples_per_frame * s->avctx->channels;
1075  int transmit_coeffs = 0;
1076  int cur_subwoofer_cutoff;
1077 
1078  s->subframe_offset = get_bits_count(&s->gb);
1079 
1084  for (i = 0; i < s->avctx->channels; i++) {
1085  s->channel[i].grouped = 0;
1086  if (offset > s->channel[i].decoded_samples) {
1087  offset = s->channel[i].decoded_samples;
1088  subframe_len =
1090  }
1091  }
1092 
1093  av_dlog(s->avctx,
1094  "processing subframe with offset %i len %i\n", offset, subframe_len);
1095 
1098  for (i = 0; i < s->avctx->channels; i++) {
1099  const int cur_subframe = s->channel[i].cur_subframe;
1101  total_samples -= s->channel[i].decoded_samples;
1102 
1104  if (offset == s->channel[i].decoded_samples &&
1105  subframe_len == s->channel[i].subframe_len[cur_subframe]) {
1106  total_samples -= s->channel[i].subframe_len[cur_subframe];
1107  s->channel[i].decoded_samples +=
1108  s->channel[i].subframe_len[cur_subframe];
1111  }
1112  }
1113 
1116  if (!total_samples)
1117  s->parsed_all_subframes = 1;
1118 
1119 
1120  av_dlog(s->avctx, "subframe is part of %i channels\n",
1122 
1124  s->table_idx = av_log2(s->samples_per_frame/subframe_len);
1125  s->num_bands = s->num_sfb[s->table_idx];
1127  cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
1128 
1130  offset += s->samples_per_frame >> 1;
1131 
1132  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1133  int c = s->channel_indexes_for_cur_subframe[i];
1134 
1135  s->channel[c].coeffs = &s->channel[c].out[offset];
1136  }
1137 
1138  s->subframe_len = subframe_len;
1139  s->esc_len = av_log2(s->subframe_len - 1) + 1;
1140 
1142  if (get_bits1(&s->gb)) {
1143  int num_fill_bits;
1144  if (!(num_fill_bits = get_bits(&s->gb, 2))) {
1145  int len = get_bits(&s->gb, 4);
1146  num_fill_bits = get_bits(&s->gb, len) + 1;
1147  }
1148 
1149  if (num_fill_bits >= 0) {
1150  if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
1151  av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
1152  return AVERROR_INVALIDDATA;
1153  }
1154 
1155  skip_bits_long(&s->gb, num_fill_bits);
1156  }
1157  }
1158 
1160  if (get_bits1(&s->gb)) {
1161  avpriv_request_sample(s->avctx, "Reserved bit");
1162  return AVERROR_PATCHWELCOME;
1163  }
1164 
1165 
1166  if (decode_channel_transform(s) < 0)
1167  return AVERROR_INVALIDDATA;
1168 
1169 
1170  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1171  int c = s->channel_indexes_for_cur_subframe[i];
1172  if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
1173  transmit_coeffs = 1;
1174  }
1175 
1176  if (transmit_coeffs) {
1177  int step;
1178  int quant_step = 90 * s->bits_per_sample >> 4;
1179 
1181  if ((s->transmit_num_vec_coeffs = get_bits1(&s->gb))) {
1182  int num_bits = av_log2((s->subframe_len + 3)/4) + 1;
1183  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1184  int c = s->channel_indexes_for_cur_subframe[i];
1185  int num_vec_coeffs = get_bits(&s->gb, num_bits) << 2;
1186  if (num_vec_coeffs + offset > FF_ARRAY_ELEMS(s->channel[c].out)) {
1187  av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs);
1188  return AVERROR_INVALIDDATA;
1189  }
1190  s->channel[c].num_vec_coeffs = num_vec_coeffs;
1191  }
1192  } else {
1193  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1194  int c = s->channel_indexes_for_cur_subframe[i];
1195  s->channel[c].num_vec_coeffs = s->subframe_len;
1196  }
1197  }
1199  step = get_sbits(&s->gb, 6);
1200  quant_step += step;
1201  if (step == -32 || step == 31) {
1202  const int sign = (step == 31) - 1;
1203  int quant = 0;
1204  while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
1205  (step = get_bits(&s->gb, 5)) == 31) {
1206  quant += 31;
1207  }
1208  quant_step += ((quant + step) ^ sign) - sign;
1209  }
1210  if (quant_step < 0) {
1211  av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
1212  }
1213 
1216  if (s->channels_for_cur_subframe == 1) {
1217  s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
1218  } else {
1219  int modifier_len = get_bits(&s->gb, 3);
1220  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1221  int c = s->channel_indexes_for_cur_subframe[i];
1222  s->channel[c].quant_step = quant_step;
1223  if (get_bits1(&s->gb)) {
1224  if (modifier_len) {
1225  s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
1226  } else
1227  ++s->channel[c].quant_step;
1228  }
1229  }
1230  }
1231 
1233  if (decode_scale_factors(s) < 0)
1234  return AVERROR_INVALIDDATA;
1235  }
1236 
1237  av_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n",
1238  get_bits_count(&s->gb) - s->subframe_offset);
1239 
1241  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1242  int c = s->channel_indexes_for_cur_subframe[i];
1243  if (s->channel[c].transmit_coefs &&
1244  get_bits_count(&s->gb) < s->num_saved_bits) {
1245  decode_coeffs(s, c);
1246  } else
1247  memset(s->channel[c].coeffs, 0,
1248  sizeof(*s->channel[c].coeffs) * subframe_len);
1249  }
1250 
1251  av_dlog(s->avctx, "BITSTREAM: subframe length was %i\n",
1252  get_bits_count(&s->gb) - s->subframe_offset);
1253 
1254  if (transmit_coeffs) {
1255  FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS];
1258  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1259  int c = s->channel_indexes_for_cur_subframe[i];
1260  const int* sf = s->channel[c].scale_factors;
1261  int b;
1262 
1263  if (c == s->lfe_channel)
1264  memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
1265  (subframe_len - cur_subwoofer_cutoff));
1266 
1268  for (b = 0; b < s->num_bands; b++) {
1269  const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
1270  const int exp = s->channel[c].quant_step -
1271  (s->channel[c].max_scale_factor - *sf++) *
1272  s->channel[c].scale_factor_step;
1273  const float quant = pow(10.0, exp / 20.0);
1274  int start = s->cur_sfb_offsets[b];
1275  s->fdsp.vector_fmul_scalar(s->tmp + start,
1276  s->channel[c].coeffs + start,
1277  quant, end - start);
1278  }
1279 
1281  mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp);
1282  }
1283  }
1284 
1286  wmapro_window(s);
1287 
1289  for (i = 0; i < s->channels_for_cur_subframe; i++) {
1290  int c = s->channel_indexes_for_cur_subframe[i];
1291  if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
1292  av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
1293  return AVERROR_INVALIDDATA;
1294  }
1295  ++s->channel[c].cur_subframe;
1296  }
1297 
1298  return 0;
1299 }
1300 
1307 static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr)
1308 {
1309  AVCodecContext *avctx = s->avctx;
1310  GetBitContext* gb = &s->gb;
1311  int more_frames = 0;
1312  int len = 0;
1313  int i, ret;
1314 
1316  if (s->len_prefix)
1317  len = get_bits(gb, s->log2_frame_size);
1318 
1319  av_dlog(s->avctx, "decoding frame with length %x\n", len);
1320 
1322  if (decode_tilehdr(s)) {
1323  s->packet_loss = 1;
1324  return 0;
1325  }
1326 
1328  if (s->avctx->channels > 1 && get_bits1(gb)) {
1329  if (get_bits1(gb)) {
1330  for (i = 0; i < avctx->channels * avctx->channels; i++)
1331  skip_bits(gb, 4);
1332  }
1333  }
1334 
1336  if (s->dynamic_range_compression) {
1337  s->drc_gain = get_bits(gb, 8);
1338  av_dlog(s->avctx, "drc_gain %i\n", s->drc_gain);
1339  }
1340 
1343  if (get_bits1(gb)) {
1344  int av_unused skip;
1345 
1347  if (get_bits1(gb)) {
1348  skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1349  av_dlog(s->avctx, "start skip: %i\n", skip);
1350  }
1351 
1353  if (get_bits1(gb)) {
1354  skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1355  av_dlog(s->avctx, "end skip: %i\n", skip);
1356  }
1357 
1358  }
1359 
1360  av_dlog(s->avctx, "BITSTREAM: frame header length was %i\n",
1361  get_bits_count(gb) - s->frame_offset);
1362 
1364  s->parsed_all_subframes = 0;
1365  for (i = 0; i < avctx->channels; i++) {
1366  s->channel[i].decoded_samples = 0;
1367  s->channel[i].cur_subframe = 0;
1368  s->channel[i].reuse_sf = 0;
1369  }
1370 
1372  while (!s->parsed_all_subframes) {
1373  if (decode_subframe(s) < 0) {
1374  s->packet_loss = 1;
1375  return 0;
1376  }
1377  }
1378 
1379  /* get output buffer */
1380  frame->nb_samples = s->samples_per_frame;
1381  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
1382  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1383  s->packet_loss = 1;
1384  return 0;
1385  }
1386 
1388  for (i = 0; i < avctx->channels; i++)
1389  memcpy(frame->extended_data[i], s->channel[i].out,
1390  s->samples_per_frame * sizeof(*s->channel[i].out));
1391 
1392  for (i = 0; i < avctx->channels; i++) {
1394  memcpy(&s->channel[i].out[0],
1395  &s->channel[i].out[s->samples_per_frame],
1396  s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
1397  }
1398 
1399  if (s->skip_frame) {
1400  s->skip_frame = 0;
1401  *got_frame_ptr = 0;
1402  av_frame_unref(frame);
1403  } else {
1404  *got_frame_ptr = 1;
1405  }
1406 
1407  if (s->len_prefix) {
1408  if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
1411  "frame[%i] would have to skip %i bits\n", s->frame_num,
1412  len - (get_bits_count(gb) - s->frame_offset) - 1);
1413  s->packet_loss = 1;
1414  return 0;
1415  }
1416 
1418  skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
1419  } else {
1420  while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) {
1421  }
1422  }
1423 
1425  more_frames = get_bits1(gb);
1426 
1427  ++s->frame_num;
1428  return more_frames;
1429 }
1430 
1438 {
1439  return s->buf_bit_size - get_bits_count(gb);
1440 }
1441 
1449 static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
1450  int append)
1451 {
1452  int buflen;
1453 
1458  if (!append) {
1459  s->frame_offset = get_bits_count(gb) & 7;
1460  s->num_saved_bits = s->frame_offset;
1462  }
1463 
1464  buflen = (s->num_saved_bits + len + 8) >> 3;
1465 
1466  if (len <= 0 || buflen > MAX_FRAMESIZE) {
1467  avpriv_request_sample(s->avctx, "Too small input buffer");
1468  s->packet_loss = 1;
1469  return;
1470  }
1471 
1472  if (len > put_bits_left(&s->pb)) {
1474  "Cannot append %d bits, only %d bits available.\n",
1475  len, put_bits_left(&s->pb));
1476  s->packet_loss = 1;
1477  return;
1478  }
1479 
1480  s->num_saved_bits += len;
1481  if (!append) {
1482  avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
1483  s->num_saved_bits);
1484  } else {
1485  int align = 8 - (get_bits_count(gb) & 7);
1486  align = FFMIN(align, len);
1487  put_bits(&s->pb, align, get_bits(gb, align));
1488  len -= align;
1489  avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
1490  }
1491  skip_bits_long(gb, len);
1492 
1493  {
1494  PutBitContext tmp = s->pb;
1495  flush_put_bits(&tmp);
1496  }
1497 
1499  skip_bits(&s->gb, s->frame_offset);
1500 }
1501 
1509 static int decode_packet(AVCodecContext *avctx, void *data,
1510  int *got_frame_ptr, AVPacket* avpkt)
1511 {
1512  WMAProDecodeCtx *s = avctx->priv_data;
1513  GetBitContext* gb = &s->pgb;
1514  const uint8_t* buf = avpkt->data;
1515  int buf_size = avpkt->size;
1516  int num_bits_prev_frame;
1517  int packet_sequence_number;
1518 
1519  *got_frame_ptr = 0;
1520 
1521  if (s->packet_done || s->packet_loss) {
1522  s->packet_done = 0;
1523 
1525  if (buf_size < avctx->block_align) {
1526  av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n",
1527  buf_size, avctx->block_align);
1528  return AVERROR_INVALIDDATA;
1529  }
1530 
1531  s->next_packet_start = buf_size - avctx->block_align;
1532  buf_size = avctx->block_align;
1533  s->buf_bit_size = buf_size << 3;
1534 
1536  init_get_bits(gb, buf, s->buf_bit_size);
1537  packet_sequence_number = get_bits(gb, 4);
1538  skip_bits(gb, 2);
1539 
1541  num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
1542  av_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
1543  num_bits_prev_frame);
1544 
1546  if (!s->packet_loss &&
1547  ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
1548  s->packet_loss = 1;
1549  av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
1550  s->packet_sequence_number, packet_sequence_number);
1551  }
1552  s->packet_sequence_number = packet_sequence_number;
1553 
1554  if (num_bits_prev_frame > 0) {
1555  int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
1556  if (num_bits_prev_frame >= remaining_packet_bits) {
1557  num_bits_prev_frame = remaining_packet_bits;
1558  s->packet_done = 1;
1559  }
1560 
1563  save_bits(s, gb, num_bits_prev_frame, 1);
1564  av_dlog(avctx, "accumulated %x bits of frame data\n",
1565  s->num_saved_bits - s->frame_offset);
1566 
1568  if (!s->packet_loss)
1569  decode_frame(s, data, got_frame_ptr);
1570  } else if (s->num_saved_bits - s->frame_offset) {
1571  av_dlog(avctx, "ignoring %x previously saved bits\n",
1572  s->num_saved_bits - s->frame_offset);
1573  }
1574 
1575  if (s->packet_loss) {
1579  s->num_saved_bits = 0;
1580  s->packet_loss = 0;
1581  }
1582 
1583  } else {
1584  int frame_size;
1585  s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
1586  init_get_bits(gb, avpkt->data, s->buf_bit_size);
1587  skip_bits(gb, s->packet_offset);
1588  if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
1589  (frame_size = show_bits(gb, s->log2_frame_size)) &&
1590  frame_size <= remaining_bits(s, gb)) {
1591  save_bits(s, gb, frame_size, 0);
1592  s->packet_done = !decode_frame(s, data, got_frame_ptr);
1593  } else if (!s->len_prefix
1594  && s->num_saved_bits > get_bits_count(&s->gb)) {
1602  s->packet_done = !decode_frame(s, data, got_frame_ptr);
1603  } else
1604  s->packet_done = 1;
1605  }
1606 
1607  if (s->packet_done && !s->packet_loss &&
1608  remaining_bits(s, gb) > 0) {
1611  save_bits(s, gb, remaining_bits(s, gb), 0);
1612  }
1613 
1614  s->packet_offset = get_bits_count(gb) & 7;
1615  if (s->packet_loss)
1616  return AVERROR_INVALIDDATA;
1617 
1618  return get_bits_count(gb) >> 3;
1619 }
1620 
1625 static void flush(AVCodecContext *avctx)
1626 {
1627  WMAProDecodeCtx *s = avctx->priv_data;
1628  int i;
1631  for (i = 0; i < avctx->channels; i++)
1632  memset(s->channel[i].out, 0, s->samples_per_frame *
1633  sizeof(*s->channel[i].out));
1634  s->packet_loss = 1;
1635 }
1636 
1637 
1642  .name = "wmapro",
1643  .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
1644  .type = AVMEDIA_TYPE_AUDIO,
1645  .id = AV_CODEC_ID_WMAPRO,
1646  .priv_data_size = sizeof(WMAProDecodeCtx),
1647  .init = decode_init,
1648  .close = decode_end,
1649  .decode = decode_packet,
1650  .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
1651  .flush = flush,
1652  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1654 };