Acta Mathematica Academiae Paedagogicae Nyiregyhdziensis
17 (2001), 141-149

www.emis.de/journals

WREATH PRODUCTS IN THE UNIT GROUP OF MODULAR
GROUP ALGEBRAS OF 2-GROUPS OF MAXIMAL CLASS

ALEXANDER B. KONOVALOV

ABSTRACT. We study the unit group of the modular group algebra KG, where
G is a 2-group of maximal class. We prove that the unit group of KG possesses
a section isomorphic to the wreath product of a group of order two with the
commutator subgroup of the group G.

1. INTRODUCTION

Let p be a prime number, G be a finite p-group and K be a field of characteristic
p. Denote by A = Ak (G) the augmentation ideal of the modular group algebra
KG. The group of normalized units U(G) = U(KG) consists of all elements of the
type 1 + z, where z € A. Our further notation follows [20].

Define Lie-powers KGI" and KG™ in KG: KG!" is two-sided ideal, gene-
rated by all (left-normed) Lie-products [z1,29, -+ ,2,],2; € KG, and KG™ is
defined inductively: KGM) = KG, KG"tY is the associative ideal generated by
[KG™, KG). Clearly, for every n KG™ D KG[M, but equality need not hold.

For modular group algebras of finite p-groups KGUS' 1) = 0 [24]. Then in our
case finite lower and upper Lie nilpotency indices are defined:

tr.(G) = min{n : KG" =0}, t9(@) = min{n : KG™ = 0}.

It is known that t1,(G) = tZ(G) for group algebras over the field of characteristic
zero [19], and for the case of characteristic p > 3 their coincidence was proved by
A. Bhandari and I. B. S. Passi [3].

Consider the following normal series in U(G):

UG)=1+A21+A(G) 21+ A%G") 21+ AMC(G),

where t(G’) is the nilpotency index of the augmentation ideal of KG”.

An obvious question is whether does exist a refinement for this normal series.
There were two conjectures relevant to the question above.

The first one, as it was stated in [20], is attributed to A. A. Bovdi and consists
in the equality clU(G) = ¢(G’), i.e. this normal series doesn’t have a refinement.
In particular, C. Baginski [1] proved that clU(G) = p if |G’| = p (in case of
cyclic commutator subgroup t(G’) = |G’|). A. Mann and A. Shalev proved that
clU(G) < t(G') for groups of class two [16].
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The second conjecture was suggested by S. A. Jennings [13] in a more general
context, and in our case it means that clU(G) = t1(G) — 1. Here N. Gupta and
F. Levin proved inequality < in [11].

The first conjecture was more attractive and challenging, since methods for the
systematic computation of the nilpotency index of the augmentation ideal ¢(G")
were more known than such ones for the calculation of the lower Lie nilpotency
index (for key facts see, for example, [12], [15], [18], [21], [24]).

Moreover, A. Shalev [20] proved that these two conjectures are incompatible in
general case, although ¢(G’) = t;,(G) — 1 for some particular families of groups,
including 2-groups of maximal class. Later using computer Coleman managed to
find counterexample to Bovdi’s conjecture (cf. [25]), and the final effort in this
direction was made by X. Du [10] in his proof of Jennings conjecture.

Study of the structure of the unit group of group algebra and its nilpotency class
raised a number of questions of independent interest, in particular, about involving
of different types of wreath products in the unit group (as a subgroup or as a
section).

In [9] D. Coleman and D. Passman proved that for non-abelian finite p-group
G a wreath product of two groups of order p is involved into U(KG). Later this
result was generalized by A. Bovdi in [4]. Among other related results it is worth
to mention [16], [17], [23].

It is also an interesting question whether U(KG) possesses a given wreath pro-
duct as a subgroup or only as a section, i.e. as a factor-group of a certain subgroup
of U(KG). Baginski in [1] described all p-groups, for which U(KG) does not con-
tain a subgroup isomorphic to the wreath product of two groups of order p for the
case of odd p, and the case of p = 2 was investigated in [7].

The question whether U(G) possesses a section isomorphic to the wreath product
of a cyclic group C,, of order p and the commutator subgroup of G was stated by
A. Shalev in [20]. Since the nilpotency class of the wreath product C, ! H is equal
to t(H) - the nilpotency index of the augmentation ideal of K H [8], this question
was very useful for the investigation of the first conjecture. In [22] positive answer
was given by A. Shalev for the case of odd p and a cyclic commutator subgroup of
G.

The present paper is aimed to extend the last result on 2-groups of maximal class,
proving that if G is such a group then the unit group of K'G possesses a section
isomorphic to the wreath product of a group of order two with the commutator
subgroup of the group G. We prove the following main result.

Theorem 1. Let K be a field of characteristic two, G be a 2-group of mazimal
class. Then the wreath product Co Y G’ of a cyclic group of order two and the
commutator subgroup of G is involved in U(KQG).

2. PRELIMINARIES

We consider 2-groups of maximal class, namely, the dihedral, semidihedral and
generalized quaternion groups, which we denote by D,,S, and @, respectively.
They are given by following representations [2]:

271.71

D, = {a,bla — 1,02 =1,b""ab=a"V),
Sn = (abla® " =102 =1,b"ab= a7,

Q. = (a,b|aQn71 =1,b% = aznfz,b_lab =a ),

where n > 3 (We shall consider D3 and Ss3 as identical groups).
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We may assume that K is a field of two elements, since in the case of an arbitrary
field of characteristic two we may consider its simple subfield and corresponding
subalgebra in K G, where G is one of the groups D,,, S, or @,.

Denote for z = deG ag - g, g € K by Suppa the set {g € G|ay # 0}. Since
K is a field of two elements, z € 1 + A < |Suppz| =2k + 1,k € N.

Next, for every element g in G there exists unique representation in the form
a’l’, where 0 < 4 < 27710 < j < 2. Then for every 2 € KG there exists unique
representation in the form x = x1 4+ x2b, where x; = a™ + - - - + a™*. We shall call
1,2 components of x. Clearly, x1 + x2b=y1 + y2b = x; = y;,1 =1, 2.

The mapping = — & = b~ 'xb, which we shall call conjugation, is an automor-
phism of order 2 of the group algebra KG. An element z such that z = z will be
called self-conjugated.

Using this notions, it is easy to obtain the rule of multiplication of elements from
K G, which is formulated in the next lemma.

Lemma 1. Let fi + fob,hy + hob € KG. Then

(f1 + fab) (R + hab) = (frh1 + f2ho) + (f2h1 + fiha)b,

where o = 1 for D,, and S,,, o = b% for Q,,.

We proceed with a pair of technical results.
Lemma 2. An element z € KG commute with b € G if and only if z is self-
conjugated.
Lemma 3. If z and y are self-conjugated, then ry = yx.

In the next lemma we find the inverse element for an element from U(KG).
Lemma 4. Let f = f1 + fob € U(KG). Then f~' = (fi + fob)R™', where
R= fifi + fafoa, and o =1 for D,,, Sp, o = b? for Q.

Proof. Clearly, R is a self-conjugated element of K (a) of augmentation 1, hence R
is a central unit in AG. Then the lemma follows since

(f1+ f2b)(f1 + f2b) = (f1 + f2b)(f1 + f2b) = R.

Now we formulate another technical lemma, which is easy to prove by straight-
forward calculations using previous lemma.

Lemma 5. Let f,h € U(G),f = fi + fobyh = hy + hob, and h = h is self-
conjugated. Let R and o be as in the lemma 4. Then f~'hf = t; + tyb, where
t1=hi + ha(fifo+ fife)aR™ 1ty = ho(f7 + fa)R™L.

Let us consider the mapping ¢(x1 + x2b) = x1%1 + 2To, where « was defined
in the Lemma 5. It is easy to verify that such mapping is homomorphism from
U(KG) to U(K(a)) and, clearly, for every z its image ¢(z) is self-conjugated. Such
mapping ¢ : U(KG) — U(K(a)) we will call norm. We will also say that the norm
of an element z is equal to ¢(x).

3. DIHEDRAL AND SEMIDIHEDRAL GROUP

Now let G be the dihedral or semidihedral group. Note that in Lemma 5 the
first component of f~!hf is always self-conjugated. In general, the second one need
not have the same property, but it is self-conjugated in the case when f; + fo =1,
where f = f1 + f2b. It is easy to check that the set

H(KG) = {hl + hob € U(KG)‘hl + ho = 1}

is a subgroup of U(KG).
Now we define the mapping ¢ : H(KG) — U(K{(a)) as a restriction of ¢(x) on
H(KQ). For convenience we also call it norm.
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Lemma 6. ker¢ = Cy(b) = {h € H(KG)|hb = bh}.

The proof follows from the Lemma 2 and the equality 1 (h) = 1 + hy + hy for
he H(KG).
Lemma 7. Cg(b) is elementary abelian group.

Proof. Cg(b) is abelian by the lemma 3. Now, h? = f2 + f2 + (fifa + fif2)b =
[P+ f2=1+f2+ f2 =1, and we are done.

Note that for elements f,h € Cy(b) we may obtain more simple rule of their
multiplication: (f1 + f2b)(h1 + hab) = (1 + f1 + h1) + (f1 + h1)b.

Now we consider a subgroup in G generated by b € G and A = a + (1 + a)b.
Note that A € H(KG). First we calculate the norm of A : ¢¥(A) =1+ a+a. Since
a?" =1, we have ¢)(4)>" " =1. Then A2"~ commute with b, and 42" =1 by
the Lemma 7. Smaller powers of A have non-trivial norm, so they do not commute
with b. Clearly, order of A is equal to 2"~2 or 2"~!. In the following lemma we
will show that actually only the second case is possible.

Lemma 8. Let A =a+ (1+ a)b. Then the order of A is equal to 2"~ *.

Proof. We will show that the case of 2°~2 is impossible since Supp A2~ # 1. We
will use formula (8) from [6], which describes 2¥-th powers of an element z € U(G):

2k k

k—1
Tt = LC% + ($2E2)2k71b2k + Z($2‘%2)2171($1 + fl)zk_TbT + xg(:rl + Lfl)2k_1b.
i=1

Let us show that the second component of A2""" is non-trivial. Let us denote
it by t2(A2" ") = t5. By the cited above formula, to = (1 +a)(a+a)?"  ~!, where
@ = a~! for the dihedral group, and @ = a=1*2" " for the semidihedral group.

Now we consider the case of the dihedral group. We have
to = (1 + a)(a + a—l)gn—2_1 _ (1 + a)(a‘l(l n a2))2n—2_1
= (14 a)a® 1+ a2 = (02 4 a2 ) (14 a2)2 T

Note that if X = (x),22" =1, then (1 +2)?" "' = 3 y = X, where for a set X
yeX

we denote by X the sum of all its elements [2]. Thus, we have

(1+a>)* T =1ta®ta +-+a® 2={a?) =G
Then L L -
tz=(a®> T +a® ) (a?) = a(a?) + (a?) = (a),
and for the case of the dihedral group the lemma is proved.
Now we will consider the semidihedral group. We have

to=(1+a)(a+a® ~H = (1+a)(a(l+a> 72!
_ (a2n72_1 + aQn—Z)(l + a2n72_2)2n72_1,

and the rest part of the proof is similar. Note that from ¢y (Azn_z) = (a) we can

immediately conclude that its first component is 1 + (a), since A € H(G).
To construct a section isomorphic to the desired wreath product, first we take
n—2_
elements b, b4, bAz, e ,bA2 '

all elements b4" are self-conjugated, since A € H(K(@), and they commute each
with other by the Lemma 3. So, we get the next lemma.

Lemma 9. (b,b4,b4° ... A

Now we can obtain elements bAk7 using the Lemma 5.

. For every k we have (bAk)2 = 1. By the Lemma 5

n—2_
’ 1) is elementary abelian subgroup.
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Lemma 10. Let A=a+ (1+a)h, R=v¢(A)=1+4+a+a. Then
bV =14+ RF+ R,  k=1,2,...,2"2

Proof. First we obtain b4 by Lemma 5 with hy =0,he =1, f1 = a, fo =14+ a. We
get

b = (a(1+a)+a(l+a)R '+ (@*>+ (1+a)®>)R™'D
=(a+ta+a®+a )R '+ (1 +a*+a*)R b
=(R+RH)R '+ R*R ' =1+ R+ Rb.

Now let b4" = 1+ RF + RFb. Using the same method for hy = 1+ R¥, hy = R*, we
get b2 =14 RFH1 4 RFH1p as required.

Lemma 11. There exists following direct decomposition:

42721

b vA b b )= () x (b1 x (A7) x o AT
Proof. We need to verify that the product of the form b% (b4)i -~-(bAk)ik, where
k=2""2—-1 14, € {0,1} and not all i,, are equal to zero, is not equal to 1 € G.
Clearly, multiplication by b only permute components. So, we may consider only
products without b and proof that they are not equal to 1 or b.

Note that b4" are self-conjugated and lies in H(KG). From this follows the rule
of their multiplication:

(1+ RF + RFb)(1 4+ R™ + R™b) =1+ R* + R™ + (R* + R™)b.
The product of more than two elements is calculated by the same way:
(b (A7) () = 1+ i R+ iR+ + i, R* + (it R+ iaR2 + -+ ix R¥)b.

Put v = iyR 4+ iaR*> + --- + i1,R* and R = 1+ r, where » = a + a@. Then
v could be written in the form v = pu + 77t + .-+ + 7% where p € {0,1} and
j1 < jo < -+ < jr =ig. Since ((14—(1)2%72 =0, r is nilpotent and its smaller powers
are linearly independent, so 771 4- - - +7J& £ 0. From the other side, it is easy to see
that the support of r7s does not contain 1, so 79t 4 - - +rJ* = 1. Hence v ¢ {0, 1},
and the support of the product (b4)™ (b4 )iz ... (bAk)ik contains elements different
from 1 and b, which proves the lemma.

Now we are ready to finish the proof of Theorem 1 for the dihedral and semi-
dihedral groups. It was shown that U(KG) contains the semi-direct product F
of (b) x (b4) x (b4%) x -+ x (bAQn 271) and (A). As was proved above, the order
of Ais 277! and its 27 2-th power commutes with b. From this follows that the

factorgroup F/ <A2n72> is isomorphic to Cy ! G, as required.

4. GENERALIZED QUATERNION GROUP

Now let G be the generalized quaternion group. First we need to calculate
clU(G). In fact, we need to know only ¢ (G), since clU(G) = t,(G) —1 [10].
Note that Theorem 2 is already known (see Theorem 4.3 in [5]), but we provide an
independent proof for the generalized quaternion group.

Theorem 2. Let G be the generalized quaternion group. Then clU(G) = |G’|.

Proof. First, clU(G) < |G| by [26]. Now we prove that t1(G) > |G'| + 1. To do
this, we will construct non-trivial Lie-product of the length 2"=2 = |G'|.
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Consider Lie-product [b,a,- - ,a] which we denote by [b, k - A]. Clearly, [b,a] =
——

k
(a+a1)b, and (a + a~ 1) is central in KG. It is easy to prove by induction that
[b,k - a] = (a+ a~')*b, therefore the commutator

b,(2"2 1) ] =a® (1 +a2)¥ Th=0a2" T {a2)b = a(a®)b

does not vanish.
From the Theorem 2 it follows that t1,(G) = t(G) since

dU(G) =t,(G) -1 <tH(G) -1 <G,

confirming conjecture about equality of the lower and upper Lie nilpotency indices
(cf. [3]). From this we conclude that G and U(KG) have the same exponent,
using the theorem from [24] about coincidence of their exponents in the case when
th(G) <1+ (p—1)p° !, where p® = exp G and p is the characteristic of the field
K. Note that these two statements regarding Lie nilpotency indices and exponent
are also true for all 2-groups of maximal class. Using the technique described here
we also may show that modular group algebras of 2-groups of maximal class are
Lie centrally metabelian.

For a unit A of KG we denote by (b, k - A) the commutator (b, A,--- , A). Now
—_———
k

we need a pair of technical lemmas.

Lemma 12. Let A € UKG), A2 " = 1,b € G, bAbY = bX b2 for every i, 7,
where b4 = A7'DA*. Then for every k € N (b, k- A)> =1.

Proof. We use induction by k. By straightforward calculation, (b, A)? = 1. Now, let

(b,k-A) =X, X2 =1. Then (X,A) = XX*. Since elements b4",i € N commute
each with other, X and X also commute, and (X X4)% = 1.

Lemma 13. Let A € U(KG),AQW1 = 1,b € G,bAbY = v b2 for every i, j,
where b4 = A~'bA*. Then for every k,m € N
(b, A, A AT = (b A, -, A).
——— ———
k k+2m

Proof. We use induction by m. First, (b, k-A, A) = (b, (k+1)-A). Let the statement
holds for some m. Consider the commutator

(b k- A, AP = (b, k- A, A7)0, k- A, AP, A7,

since (z,yz) = (x,y)(z, 2)(x,y, z). By the Lemma 12 the square of the first com-
mutator is 1, while the second is equal to (b, (k +2m+1) - A).

This gives possibility to proof the next property of U(KG).
Lemma 14. Let A € UKG), A2 " = 1,b € G, bAbY = bA b2 for every i, 7,
where bA" = AbA'. Then A2"" commute with b.

Proof. We will show using induction by m that the group commutator (b, A2m) =
(b, A, -, A), so (b, Aznfz) = (b, A, ,A) =1, since clU(G) = 2"~ 2.

T 7:2_/

First, (b, A%) = (b, A)*(b, A, A) = (b, A, A) by the Lemma 12. Let (b, A2") =
(b,2™ - A). Then (b, A2""") = (b, A2")2(b, A2", A2") = (b, A2", A2") by the
Lemma 12. Using induction hypothesis and Lemma 13, we get

(b, A2" AZ") = (b,2™ - A, A%7) = (b2 - A).
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Let us take an element A = a2" 1 4 (1 + )b, where a® = 1. Calculating
A~'hA for self-conjugated h by the Lemma 5, we get a self-conjugated element
again. The norm of A is p(A) =1+ a2 "+ 442" "~1 so order of p(A) is 272,
and from this we conclude that the order of A is great or equal to 2"~2. From
the other side, it is not greater then 2”1, since G and U(KG) have the same
exponent. Moreover, if A2"~ # 1, then A2~ commute with b by lemma 14, and
it is necessary to know whether its lower powers commute with b. As in the previous
section, in the following lemma we will exactly calculate the order of A.

Lemma 15. Let A =a®" "*!+ (14 a)b. Then the order of A is equal to 2"~

Proof. The proof is similar to the proof of the lemma 8 We will show that
Supp A" # 1, calculating the second component tg(AQWZ) = ty. Using the
same formula from [6], we have:

t2 — ( )(a2n 3+1 a_2n—3_1>2n—2_1 _ (1 + a)(a_?n73_1<1 + a2n—2+2))2n—2_1
=(1+ a)(a - )2"7 L1+ a2"*2+2)2”*2—1
=(1+a)a” +1(1 +a?" +2)2"*2_1
(0472” 3+1 a 2n— +2)(1 + a2n_2+2)2n_2*1’

Then, (1 + a2" "+2)2" 7’1 = (42) = G'. From this
ty= (a4 a7 ) (@) = a{a?) + (o) = (a),

and the lemma is proved.

Now we calculate elements 4",k = 1,2,...,2"2, using Lemma 5.

Lemma 16. Let A = a2 "*1 4 (1+a)h, R=p(A) =1+a>" T 4+a2" L
Then

k—1
v =55 (0*R) + (PR)*b, k=1,2,...,2" 2,
i=—1

gn—3_1 n a/2n73+2 n a_2n73_2

where 3 = a? "t 4 a

Proof. Remember that for @, in Lemma 5 f~'hf = t; + t2b, where
t1=hy+ha(fifo+ fif2)V*R7Y, ta = ho(f7 + f30°)R™1.

First we obtain the second component. For A = fi + fab we have ff + f30° =

(a2 " 1)24 (14a)2a®" " = b2(1+a®+a~2) = b>R2. Then the second component

of b4 is B®’R2R~! = b?>R. Now it is easy to prove by induction that the second

component of b4" is (b?)*R¥. From this immediately follows that A* k < 272,

doesn’t commute with b, since ord R = 2"~ 2.
Now we will calculate the first Component First, for the element A expression
of the form fi fo + f1 fo is equal to a2" t1(1 +q) —|—a‘2" ll4a ) =a2 4
21y g +2 4 2" 2 which we will denote by 3. Using the formula at
the beginning of the proof for hy = 0, hy = 1 we conclude that the first component
of b4 is equal to BV2R~1. Now let the first component of bAk, where k < 2772 — 1,

on— 3

is equal to 3 Z (b?R)?. Taking into consideration its previously calculated second
i=—1

component, we obtain that the first component of pA" s equal to

621)2 )"+ BV’ R)*V* R 521)2

i=—1 i=—1
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Now we are ready to construct the subgroup, whose factorgroup is isomorphic
to the desired wreath product. Let us consider the subgroup Fy in U(G) :

-2_

Fl = <ba bAabsz"' 7bA2n ><A>7

2n—3

where b € G, A = a
commutes with b. Further, the subgroup (b, b*, bAz, ceey

the intersection of subgroups (b), (b4),--- ,(bAQn 271> is (b?). Moreover, the order
of Ais2n 1

Let us take Fy as a factorgroup of the group Fj as follows:

Fy = F/(0?)(A777).

It is clear, that cl Fp < 2772 = clU(G). If we will show that actually we have
equality cl Fy = 2"~2 = cl(C2 1 G"), then from this it will follow that Fy = Co1 G'.

Let M = C31 G’ and cl F, = 2" 2 = cl M. Let us assume that Fy 2% M. Then
there exists such normal subgroup N < M, that M/N 2 F,, since there exists a
homomorphism M — Fs, which is induced by mapping of generators of M into F5.
Since |Z(M)| =2, N<M, then NN Z(M) # 0, so Z(M) C N. In this case the
nilpotency class cl F5 should be less then cl M, and we will get a contradiction.

To obtain the lower bound for the nilpotency class cl F» we will show that the
commutator (b, A...A) in U(G) does not belong to the subgroup (b2)(A2" "), so

1+ (1 + a)b, A?""" is the minimal power of A which
bAQ”L

Zat)
) is abelian, and

2n-2_1
its image in Fy is nontrivial. By the lemma 13 (b,A... A) = (b,A... A, A2"73) =
N—— S~——
2n-2_1 2n=8_1
(b,A.. A A A7) = o = (b A A2 A% .. A" A2"77) and we obtain
——
2n—4_1
more simple commutator of the length n — 1. Further, (b, A) = b= 6% = bb?, then
(b, A, A%) = bbApA’bA” | and, by induction,

(o, A7A27 T 7A2n_3) = bbAbA2 ce. bAZTF b (bAil) Azn—z'

It remains to show that (bA~1)2" " does not contained in (b2)(A%" "). Note that
(bA1)~1 = AR, (Ab*)?" = (Ab)>" .
By the Lemma 15 the second component of A" s equal to @. Note that it is

2n—2

not changed under multiplication of A2 by 2. The same method could be used
for calculation of (4b)2" . We have

Ab = (14 a)b* + a?' "ty = (a

n—2 n—2 n—3
2 + CL2 +1) T a2 +1b.

Then by the formula from [6] the second component of (Ab)2" " is equal to

a2n73+1(a2n72+1 I a2n72_1)2n72_1 _ a/2n73+1(a2n72_1(1 I a2))2n72_1
_ a,2n73+1 (a2n72_1)2n72_1(1 i a2)2n72_1 _ a2n73+2® _ W

Thus, support of the second component of (Ab)an2 does not coincide with the
support of the second component of (A)2"~ and does not changes under multi-
plication of (Ab)2""" by b2. From this we conclude that (Ab)2" " & (b2)(A2" ).
This proves that the commutator (b, A ... A) also does not lies there. That is why
cl By =272 = cl(Cy1 G'), and F» =2 Cy 1 G, so the theorem is proved.
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