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BEST APPROXIMATION BY VILENKIN-LIKE SYSTEMS

G. GÁT

Abstract. In this paper we give a common generalization of the Walsh,
Vilenkin system, the character system of the group of 2-adic (m-adic) inte-

gers, the product system of normalized coordinate functions of continuous
irreducible unitary representations of the coordinate groups of noncommuta-
tive Vilenkin groups, the UDMD product systems (defined by F. Schipp) and

some other systems. We introduce the notion of the modulus of continuity
on Vilenkin spaces, the concept of the best approximation by Vilenkin-like

polynomials. We prove a Jackson type theorem.

Denote by N the set of natural numbers, P the set of positive integers, respec-
tively. Denote m := (mk : k ∈ N) a sequence of positive integers such that mk ≥ 2,
k ∈ N and Gmk a set of cardinality mk. Suppose that each (coordinate) set has
the discrete topology and measure µk which maps every singleton of Gmk to 1

mk
(µk(Gmk) = 1), k ∈ N. Let Gm be the compact set formed by the complete direct
product of Gmk with the product of the topologies and measures (µ). Thus each
x ∈ Gm is a sequence x := (x0, x1, . . .), where xk ∈ Gmk , k ∈ N. Gm is called
a Vilenkin space. Gm is a compact totally disconnected space, with normalized
regular Borel measure µ, µ(Gm) = 1. A base for the neighborhoods of Gm can be
given as follows

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}

for x ∈ Gm, n ∈ P.
I := {In(x) : n ∈ N, x ∈ Gm}

is the set of intervals on Gm.
Denote by Lp(Gm) the usual Lebesgue spaces (‖.‖p the corresponding norms)

(1 ≤ p ≤ ∞), An the σ algebra generated by the sets In(x) (x ∈ Gm) and En the
conditional expectation operator with respect to An (n ∈ N).

If the sequence m is bounded, then we call Gm a bounded Vilenkin space. If this
is not the case then we call it an unbounded Vilenkin space.

Let M0 := 1 and Mk+1 := mkMk, for k ∈ N be the so-called generalized powers.
Then every n ∈ N can be uniquely expressed as n =

∑∞
k=0 nkMk, 0 ≤ nk < mk,

nk ∈ N. This allows one to say that the sequence (n0, n1, . . .) is the expansion of n
with respect to m. We often use the following notations. Let |n| := max{k ∈ N :
nk 6= 0} (that is, M|n| ≤ n < M|n|+1) and n(k) =

∑∞
j=k njMj . Next we introduce

on Gm an orthonormal system we call Vilenkin-like system.
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The complex valued functions which we call the generalized Rademacher func-
tions rnk : Gm → C have these properties:

i. rnk is Ak+1 measurable (i.e. rnk (x) depends only on x0, . . . , xk (x ∈ Gm)),
r0
k = 1 for all k, n ∈ N.

ii. If Mk is a divisor of n and l and if n(k+1) = l(k+1) (k, l, n ∈ N), then

Ek(rnk r̄
l
k) =

{
1 if nk = lk,

0 if nk 6= lk

(z̄ is the complex conjugate of z).
iii. If Mk+1 is a divisor of n, then

mk−1∑
j=0

|rjMk+n
k (x)|2 = mk

for all x ∈ Gm.
iv. There exists a δ > 1 for which ‖rnk‖∞ ≤

√
mk/δ.

Define the Vilenkin-like system ψ = (ψn : n ∈ N) as follows.

ψn :=
∞∏
k=0

rn
(k)

k , n ∈ N.

(Since r0
k = 1, then ψn =

∏|n|
k=0 r

n(k)

k ).
Example A, the Vilenkin and the Walsh system. Let Gmk := Zmk be the
mk-th (2 ≤ mk ∈ N) discrete cyclic group (k ∈ N). That is Zmk can be represented
by the set {0, 1, . . . ,mk − 1}, where the group operation is the mod mk addition
and every subset is open. The group operation on Gm (+) is the coordinate-wise
addition. Gm is called a Vilenkin group. The Vilenkin group for which mk = 2 for
all k ∈ N is the Walsh-Paley group. In this case let rnk (x) := (exp(2πıxk/mk))nk ,
where ı :=

√
−1, x ∈ Gm. The system ψ := (ψn : n ∈ N) is the Vilenkin system,

where ψn :=
∏∞
k=0 r

n(k)

k =
∏∞
k=0 r

nkMk

k . In the case of the Vilenkin group, mk = 2
for all k ∈ N, we get the Walsh-Paley system. Since |rnk | = 1, iii and iv are trivial
and so are i and ii. For more on Vilenkin and Walsh system and group see e.g.
[SWS, AVD].
Example B, the group of 2-adic (m-adic) integers. LetGmk := {0, 1, . . . ,mk−
1} for all k ∈ N. Define on Gm the following (commutative) addition: Let
x, y ∈ Gm. Then x+y = z ∈ Gm is defined in a recursive way. x0 +y0 = t0m0 +z0,
where (of course) z0 ∈ {0, 1, . . . ,m0 − 1} and t0 ∈ N. Suppose that z0, . . . , zk and
t0, . . . , tk have been defined. Then write xk+1 +yk+1 +tk = tk+1mk+1 +zk+1, where
zk+1 ∈ {0, 1, . . . ,mk+1 − 1} and tk+1 ∈ N. Then Gm is called the group of m-adic
integers (if mk = 2 for all k ∈ N, then 2-adic integers). In this case let

rnk (x) :=
(

exp
(

2πı
( xk
mk

+
xk−1

mkmk−1
+ . . .+

x0

mkmk−1 . . .m0

)))nk
.

Let ψn :=
∏∞
k=0 r

n(k)

k =
∏∞
k=0 r

nkMk

k . Then the system ψ := (ψn : n ∈ N) is the
character system of the group of m-adic (if mk = 2 for each k ∈ N then 2-adic)
integers. Since |rnk | = 1, i, iii and iv are trivial. ii is also easy to see and well-known
[SW2, p. 91]. For more on the group of m-adic (if mk = 2 for each k ∈ N then
2-adic) integers see e.g. [HR, SW2, T].
Example C, noncommutative Vilenkin groups. Let σ be an equivalence class
of continuous irreducible unitary representations of a compact group G. Denote
by Σ the set of all such σ. Σ is called the dual object of G. The dimension of a
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representation U (σ), σ ∈ Σ, is denoted by dσ and let

u
(σ)
i,j (x) := 〈U (σ)

x ξi, ξj〉 i, j ∈ {1, . . . , dσ}

be the coordinate functions for U (σ), where ξ1, . . . , ξdσ is an orthonormal basis in the
representation space of U (σ). (For the notations see [HR, vol 2, p. 3].) According
to the Weyl-Peter’s theorem (see e.g. [HR, vol 2, p. 24]), the system of functions√
dσu

(σ)
i,j , σ ∈ Σ, i, j ∈ {1, . . . , dσ} is an orthonormal base for L2(G). If G is a finite

group, then Σ is finite too. If Σ := {σ1, . . . , σs}, then |G| = d2
σ1

+ · · ·+ d2
σs .

Let Gmk be a finite group with order mk, k ∈ N. Let {rsMk

k : 0 ≤ s < mk} be
the set of all normalized coordinate functions of the group Gmk and suppose that
r0
k ≡ 1. Thus for every 0 ≤ s < mk there exist a σ ∈ Σk, i, j ∈ {1, . . . , dσ} such

that
rsMk

k =
√
dσu

(σ)
i,j (x) (x ∈ Gmk),

rnk := rnkMk

k . Let ψ be the product system of rjk, namely

ψn(x) :=
∞∏
k=0

rn
(k)

k (xk) (x ∈ Gm),

where n is of the form n =
∑∞
k=0 nkMk and x = (x0, x1, . . .). In [GT, Gát4] it is

proved that the system ψ satisfies the properties i, ii, iii. If supkmk <∞, then iv
is satisfied [Gát4]. For more on this system and noncommutative Vilenkin groups
see [GT, Gát2, Gát4].
Example D, a system in the field of number theory. Let

rnk (x) := exp

2πı
∞∑
j=k

nj
Mj+1

k∑
i=0

xiMi


for k, n ∈ N and x ∈ Gm. Let ψn :=

∏∞
k=0 r

n(k)

k , n ∈ N.
Then, ψ := (ψn : n ∈ N) is a Vilenkin-like system (introduced in [Gát3]) which is

a useful tool in the approximation theory of limit periodic, almost even arithmetical
functions [Gát3]. This system (on Vilenkin groups) was a new tool in order to inves-
tigate limit periodic arithmetical functions. For the definition of these arithmetical
functions see also the book of Mauclaire [Mau, p. 25].
Example E, the UDMD product system. The notion of the UDMD product
system is introduced by F. Schipp [SW2, p. 88] on the Walsh-Paley group. Let
functions αk : Gm → C satisfy: |αk| = 1 and αk is Ak measurable. Let rnk (x) :=
(−1)xknkαk(x). i is trivial and since |rnk | = 1 , so are iii and iv. To prove ii is simple.
Let ψn :=

∏∞
k=0 r

n(k)

k =
∏∞
k=0 r

nkMk

k (n ∈ N). The system ψ := (ψn : n ∈ N) is
called an UDMD product system. For more on UDMD product systems see [SW,
SW2].
Example F, the universal contractive projections. Let φn : Gm → C (n ∈ N)
be measurable functions with |φn| = 1 (n ∈ N) and φ0 = 1. The notion of
universal contractive projection system (UCP) is introduced by F. Schipp [Sch4]
as follows. Let f ∈ L1(Gm) and Pn(s)f := φn(s)Es(fφ̄n(s)) for n, s ∈ N. Then
let [Sch4] Pn(s) = Pn(s)Pn(s+j) = Pn(s+j)Pn(s) for all j ∈ N. Moreover, if n(s)

and k(t) are incomparable, that is, there are no j ∈ N such that n(s+j) = k(t) or
k(t+j) = n(s), then let Pn(s)Pk(t) = Pk(t)Pn(s) = 0. In [Gát4] it is proved that the

system (φn : n ∈ N) is also a Vilenkin-like system.

For f ∈ L1(Gm) we define the Fourier coefficients and partial sums by

f̂(k) :=
∫
Gm

fψkdµ (k ∈ N),



164 G. GÁT

Snf :=
n−1∑
k=0

f̂(k)ψk (n ∈ P, S0f := 0).

The Dirichlet kernels:

Dn(y, x) :=
n−1∑
k=0

ψk(y)ψk(x) (n ∈ P, D0 := 0).

It is clear that
Snf(y) =

∫
Gm

f(x)Dn(y, x)dµ(x).

Denote by

σnf =
1
n

n−1∑
k=0

Skf (n ∈ P, σ0f := 0)

Proposition 1 (Gát4). The Vilenkin-like system ψ is orthonormal.
The Dirichlet kernels play a prominent role in the convergence of Fourier series.

The following two lemmas will be useful in this regard. They can be find in [Gát4].
Lemma 2. Let Mn+1|k, y ∈ In(x) (n, k ∈ N, x, y ∈ Gm). Then

mn−1∑
j=0

rk+jMn
n (y)r̄k+jMn

n (x) =

{
0, if y /∈ In+1(x),
mn, if y ∈ In+1(x).

Lemma 3.

DMn(y, x) =

{
Mn, if y ∈ In(x),
0, if y /∈ In(x).

Define the maximal operator S∗f := supn∈N |SMn
f |.

Proposition 4 (Gát4). The operator S∗ is of type (p, p) for all 1 < p ≤ ∞ and of
weak type (1, 1).

Set Pn := {
∑n−1
k=0 bkψk : b0, . . . , bn−1 ∈ C} (n ∈ P) the set of polynomials the

degree of which is less then n, P := ∪∞n=1Pn the set of polynomials (with respect
to the system ψ). P is dense in C(Gm) (the set of functions continuous on Gm)
[Gát4] and we also have that the set of polynomials is dense in Lp(Gm) (1 ≤ p <∞)
[Gát4].

Then by the usual density argument (see e.g. [SWS, p. 81]) we have
Proposition 5 (Gát4). SMn

f → f a.e. for each f ∈ L1(Gm). �

It is simple to prove the convergence theorem above (that is, Proposition 5) with
respect to convergence in norm. We mean convergence in the Lp-norm (1 < p <∞
and with respect to the supremum norm for continuous functions as well. The
situation with respect to the whole sequence of the partial sums of the Fourier
series changes. For Vilenkin systems (also on unbounded Gm groups) it is known
(see e.g. [Sch2]) that f ∈ Lp(Gm) (1 < p < ∞) implies that Snf → f in the
Lp norm and on bounded Vilenkin groups Snf → f almost everywhere (see e.g.
[Sch3]) for 1 < p < ∞. On the other hand, this is not the case on nonabelian
Vilenkin groups ([GT, Gát2, Gát4]). It seems to be interesting to try to give a
control sequence for the norm of the difference of a function and the Mnth partial
seum of the Fourier series of the function. In the Walsh, Vilenkin and even in
the nonabelian Vilenkin case this control sequence is the sequence of modulus of
continuity. The problem is that we do not have a group or any other operation
on Gm and consequently the natural way to define the sequence of modulus of
continuity does not work. However, we do define it in the following way. In the
sequel let λi : Gmi → Gmi be an 1− 1 function for i ∈ N. Set λ := (λ0, λ1, . . .) ∈ Λ

Λn := {λ : λi(xi) = xi for xi ∈ Gmi , i < n}
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for n ∈ P. For any λ ∈ Λ and x ∈ Gm set λ(x) := (λ0(x0), λ1(x1), . . .).
Definition 6. Let 1 < p <∞, f ∈ Lp(Gm) and n ∈ P. The nth Lp(Gm) modulus
of continuity of function f is

ω(p)
n (f) := sup

λ∈Λn

‖f(.)− f(λ(.))‖p.

Definition 7. Let f ∈ C(Gm) and n ∈ P. The nth C(Gm) modulus of continuity
of function f is

ωn(f) := sup
λ∈Λn

‖f(.)− f(λ(.))‖∞.

For functions in Lp and n ∈ P set

E(p)
n (f) := inf

P∈PMn
‖P − f‖p

and for continuous functions set

En(f) := inf
P∈PMn

‖P − f‖∞

the best approximation by Vilenkin-like polynomials. It is obvious that sequences
ω

(p)
n (f) (for functions in Lp) and ωn(f) (for continuous functions) are decreasing.

We prove that they converge to zero. We prove even more, namely:
Theorem 8. Let 1 < p <∞, f ∈ Lp(Gm) and n ∈ P. Then

1
2
ω(p)
n (f) ≤ ‖SMnf − f‖p ≤ ω(p)

n (f).

and
1
2
ω(p)
n (f) ≤ E(p)

n (f) ≤ ω(p)
n (f).

Theorem 8 with respect to the Walsh-Paley system is the result of Watari [SWS]
and with respect to the Vilenkin system is the result of Efimov [AVD]. With respect
to the trigonometric system the fourth inequality is a Jackson type inequality. The
other three inequalities have no trigonometric analogue.

Proof. Let P ∈ PMn
be a polynomial and λ ∈ Λn. Then we prove

P ◦ λ = P.

Let j ∈ {0, 1, . . . ,Mn − 1}. Then ψj :=
∏∞
k=0 r

j(k)

k and r0
k = 1 implies

ψj :=
n−1∏
k=0

rj
(k)

k .

That is, since rj
(k)

k is Ak+1 measurable (i.e. rj
(k)

k (x) depends only on x0, . . . , xk
(x ∈ Gm)) we get that for any x ∈ Gm

rj
(k)

k (x) = rj
(k)

k (λ(x))

for k ≤ n− 1 (recall that λi(xi) = xi fo xi ∈ Gmi , i < n). Consequently,

ψj(x) = ψj(λ(x)).

And since for any complex numbers c0, c1, . . . , cn−1 we have
n−1∑
j=0

ψj(x) =
n−1∑
j=0

ψj(λ(x)),

then
P (x) = P (λ(x)).
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Thus,

‖f − f ◦ λ‖p ≤ ‖f − P‖p + ‖P − P ◦ λ‖p + ‖P ◦ λ− f ◦ λ‖p
= 2‖f − P‖p

for all P ∈ PMn
which gives

‖f − f ◦ λ‖p ≤ 2E(p)
n (f).

That is,

ω(p)
n (f) = sup

λ∈Λn

‖f(.)− f(λ(.))‖p ≤ 2E(p)
n (f).

Since SMn
f ∈ PMn

then we also proved

1
2
ω(p)
n (f) ≤ ‖SMn

f − f‖p.

The inequalities on the left sides of Theorem 8 are proved. The rest is to prove

‖SMn
f − f‖p ≤ ω(p)

n (f).

We prove this for polynomials, first. Let P ∈ PMN
for some n < N ∈ N. This gives

(in the same way as above) that P (x) depends only on x0, . . . , xN−1. Therefore, the
notation P (x) = P (x0, . . . , xN−1) can be used. Let λ̃i : G2

mi → Gmi for n ≤ i ∈ N
be functions such as that for all yi ∈ Gmi the function λ̃i(yi, .) : Gmi → Gmi and
for all xi ∈ Gmi the function λ̃i(., xi) : Gmi → Gmi is an 1−1 function (n ≤ i ∈ N).
Set

λ̃(y, x) := (x0, . . . , xn−1, λ̃n(yn, xn), λ̃n+1(yn+1, xn+1), . . .) ∈ Gm.

Then we have

SMn
P (x) = Mn

∫
In(x)

P (t)dµ(t)

= Mn

∫
In(x)

P (λ̃(y, x))dµ(y)

=
Mn

MN

∑
yn∈Gmn

. . .
∑

yN−1∈GmN−1

P (x0, x1, . . . , xn−1, λ̃n(yn, xn), . . . , λ̃N−1(yN−1, xN−1)).
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Consequently,

‖SMnP − P‖pp =
∫
Gm

∣∣∣∣∣Mn

∫
In(x)

P (t)− P (x)dµ(t)

∣∣∣∣∣
p

dµ(x)

=
1
MN

∑
x0∈GM0

. . .
∑

xN−1∈GmN−1∣∣∣∣∣Mn

MN

∑
yn∈Gmn

. . .
∑

yN−1∈GmN−1

P (x0, x1, . . . , xn−1, λ̃n(yn, xn), . . . , λ̃N−1(yN−1, xN−1))

− P (x0, . . . , xn−1, . . . , xN−1)

∣∣∣∣∣
p

≤ Mn

M2
N

∑
x0∈GM0

. . .
∑

xN−1∈GmN−1∑
yn∈Gmn

. . .
∑

yN−1∈GmN−1

∣∣∣∣∣P (x0, x1, . . . , xn−1, λ̃n(yn, xn), . . . , λ̃N−1(yN−1, xN−1))

− P (x0, . . . , xn−1, . . . , xN−1)

∣∣∣∣∣
p

=
Mn

MN

∑
yn∈Gmn

. . .
∑

yN−1∈GmN−1

1
MN

∑
x0∈GM0

. . .
∑

xN−1∈GmN−1

∣∣∣∣∣P (x0, x1, . . . , xn−1, λ̃n(yn, xn), . . . , λ̃N−1(yN−1, xN−1))

− P (x0, . . . , xn−1, . . . , xN−1)

∣∣∣∣∣
p

=
Mn

MN

∑
yn∈Gmn

. . .
∑

yN−1∈GmN−1

‖P (λ̃(y, .)− P (.))‖pp.

Since for each fixed y ∈ Gm we have that λ̃(y, .) ∈ Λn, then it follows

‖SMn
P − P‖p ≤ ω(p)

n (P ).

That is, the theorem for polynomials is proved. Let f ∈ Lp and ε > 0. Since the set
of polynomials is dense in Lp then it follows that there exists a polynomial P ∈ P
such as that ‖f − P‖p < ε. By proposition 4 we have

‖SMn
f − f‖p

≤ ‖SMn
f − SMn

P‖p + ‖SMn
P − P‖p + ‖P − f‖p

≤ c‖f − P‖p + ω(p)
n (P ).

On the other hand,

ω(p)
n (P )

= sup
λ∈Λn

‖P (.)− P (λ(.))‖p

≤ sup
λ∈Λn

‖P (.)− f(.)‖p + sup
λ∈Λn

‖f(.)− f(λ(.))‖p + sup
λ∈Λn

‖f(λ(.))− P (λ(.))‖p

≤ 2‖f − P‖p + ω(p)
n (f).
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Finally, by the above written
‖SMnf − f‖p
≤ c‖f − P‖p + ω(p)

n (f)

≤ cε+ ω(p)
n (f)

for each ε > 0. That is the proof of theorem 8 is complete. �

Finally, we remark (the proof is left to the reader)
Theorem 9. Let f ∈ C(Gm) and n ∈ P. Then

1
2
ω(p)
n (f) ≤ ‖SMnf − f‖∞ ≤ ωn(f).

and
1
2
ωn(f) ≤ En(f) ≤ ωn(f).
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