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ON RICCI CURVATURE OF C-TOTALLY REAL
SUBMANIFOLDS IN SASAKIAN SPACE FORMS

LIU XIMIN

ABSTRACT. Let M™ be a Riemannian n-manifold. Denote by S(p) and Ric(p)
the Ricci tensor and the maximum Ricci curvature on M™, respectively. In this
paper we prove that every C-totally real submanifolds of a Sasakian space form
M?m+1(c) satisfies S < (w + %HQ)Q7 where H? and g are the square
mean curvature function and metric tensor on M", respectively. The equality
holds identically if and only if either M™ is totally geodesic submanifold or
n = 2 and M™ is totally umbilical submanifold. Also we show that if a C-
totally real submanifold M™ of M?"*1(c) satisfies Ric = w + 72—2H2
identically, then it is minimal.

1. INTRODUCTION

Let M™ be a Riemannian n-manifold isometrically immersed in a Riemannian m-
manifold M™(c) of constant sectional curvature c. Denote by g, R and h the metric
tensor, Riemannian curvature tensor and the second fundamental form of M™,
respectively. Then the mean curvature vector H of M™ is given by H = % trace h.
The Ricci tensor S and the scalar curvature p at a point p € M"™ are given by
S(X,Y) =>", < R(e;,X)Y,e; > and p = >, S(e;,e;), respectively, where
{e1,...,e,} is an orthonormal basis of the tangent space T,M™. A submanifold
M™ is called totally umbilical if h, H and g satisfy h(X,Y) = g(X,Y)H for X, Y
tangent to M™.

The equation of Gauss for the submanifold M™ is given by

(1) g(R(X,Y)Z, W) = c(g(X, W)g(Y, Z) — g(X, Z)g(Y,W))
+9(M(X, W), h(Y, 2)) — g(h(X, Z), h(Y, W),
where X,Y, Z,W € TM". From (1) we have
(2) p=n(n—1)c+n?H? — |h|?
where |h|? is the squared norm of the second fundamental form. From (2) we have
p<n(n—1)c+n’H?

with equality holding identically if and only if M™ is totally geodesic.
Let Ric(p) denote the maximum Ricci curvature function on M™ defined by

Ric(p) = max{S(u,u)|u € Tle”, peE M"Y},
where TZ}M” ={veT,M"| <v,v>=1}
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In [3], Chen proves that there exists a basic inequality on Ricci tensor S for any
submanifold M™ in M™(c), i.e.

(3) S < ((n—Ve+ - H)g,

with the equality holding if and only if either M™ is a totally geodesic submanifold
or n = 2 and M" is a totally umbilical submanifold. And in [4], Chen proves
that every isotropic submanifold M™ in a complex space form M™(4c) satisfies
Ric < (n—1)c+ "TQH 2. and every Lagrangian submanifold of a complex space form
satisfying the equality case identically is a minimal submanifold. In the present
paper, we would like to extend the above results to the C-totally real submanifolds
of a Sasakian space form, namely, we prove that every C-totally real submanifolds
of a Sasakian space form M?™*+1(c) satisfies S < (w + "TZHQ)g, and the
equality holds identically if and only if either M™ is totally geodesic submanifold
or n = 2 and M" is totally umbilical submanifold. Also we show that if a C-
totally real submanifold M™ of a Sasakian space form M?"*1(c) satisfies Ric =

W + ”g—fH 2 identically, then it is minimal.

2. PRELIMINARIES

Let M?™*! be an odd dimensional Riemannian manifold with metric g. Let ¢
be a (1,1)-tensor field, £ a vector field, and 1 a 1-form on M?™*! such that

X =X +n(X)¢, ¢£=0, n(¢X)=0, n(€) =1,
9(0X,¢Y) = g(X,Y) = n(X)n(Y), n(X)=g(X,£).

If, in addition, dn(X,Y) = g(¢X,Y), for all vector fields X,Y on M?7m+!
then M?m+! is said to have a contact metric structure (¢,&,n,g), and M?m+!
is called a contact metric manifold. If moreover the structure is normal, that is
if [9X, Y]+ ¢?*[X,Y] — ¢[X, Y] — ¢[¢pX,Y] = —2dn(X,Y)&, then the contact
metric structure is called a Sasakian structure (normal contact metric structure)
and M?™*! is called a Sasakian manifold. For more details and background, see
the standard references [1] and [8].

A plane section o in T, M?™+1 of a Sasakian manifold M?™*! is called a ¢-section
if it is spanned by X and ¢ X, where X is a unit tangent vector field orthogonal to &.
The sectional curvature K (o) with respect to a ¢-section o is called a ¢-sectional
curvature. If a Sasakian manifold AM/?™+! has constant ¢-sectional curvature c,
M?m+1 i called a Sasakian space form and is denoted by M?™+1(c).

The curvature tensor R of a Sasakian space form M?"+1(¢) is given by [8]:

R(X,v)z = <3

(9(V,2)X - g(X,2)Y)

+ S @)Y — (Y )(2)X +g(X, (¥ )

—9(Y, Z)n(X)E + g(oY, 2)¢X — g(¢X, Z)¢Y — 29(¢X,Y )9 Z),

for any tangent vector fields X,Y, Z to M?™+1(c).

An n-dimensional submanifold M™ of a Sasakian space form M?™+1(c) is called
a C-totally real submanifold of M?™*1(c) if £ is a normal vector field on M™. A
direct consequence of this definition is that ¢(TM™) C T+M™, which means that
M™ is an anti-invariant submanifold of M?™*1(c). So we have n < m.
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The Gauss equation implies that

4) R(X,Y,Z,W)= i(0+3) (9(Y. 2)g(X, W) — (X, Z)g(Y, W)
+ g(WX, W), h(Y, Z)) = g(h(X, Z), h(Y, W),

for all vector fields X,Y, Z, W tangent to M", where h denotes the second funda-
mental form and R the curvature tensor of M™.

Let A denote the shape operator on M™ in M?™*!(c). Then A is related to the
second fundamental form h by

() g(h(X,Y),a) = g(AaX,Y),

where « is a normal vector field on M™.
For C-totally real submanifold in M?™¥1(c), we also have (for example, see [7])

(6) Agy X = —oh(X,Y) = AgxY, Ac=0.
(7) 9(h(X,Y),0Z) = g(W(X, Z), ¢Y ).

3. RiccCl TENSOR OF C-TOTALLY REAL SUBMANIFOLDS

We will need the following algebraic lemma due to Chen [2].

Lemma 3.1. Let ay,...,an,c be n+1 (n>2) real numbers such that
n 2 n
(8) (Zai) :(n—l)(Za?—ﬁ—c).
i=1 i=1
Then 2ayas > ¢, with equality holding if and only if a1 +as = a3 =+ = an,.

For a C-totally real submanifold M™ of M?™+1(c), we have

Theorem 3.1. If M™ is a C-totally real summanifold of M*>™*1(c), then the Ricci
tensor of M™ satisfies
(n—1(c+3) n?_,
~— 4+ —H

1 + - H)9,
and the equality holds identically if and only if either M™ is totally geodesic or
n =2 and M™ is totally umbilical.

9) S<(

Proof. From Gauss equation (4), we have

(10) p= W+n2H2— |h2.

Put § =p— w — ”;HQ. Then from (10) we obtain
(11) n?H? = 2(5 + |h|?).
Let L be a linear (n — 1)-subspace of T,M™, p € M", and

{e1,..., €am, €2m41 =&}
an orthonormal basis such that

(1) e1,...,e, are tangent to M™, (2) eq,...,e,—1 € L and
(3) if H(p) # 0, e,41 is in the direction of the mean curvature vector at p.

Put a; = hZH, t=1,...,n. Then from (11) we get

n 2m+1 n

(12) (Zaiy :2{5+§:a?+2(h%+1)2+ Z Z(hfg)Q}

i=1 i r=n+2i,j=1
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Equation (12) is equivalent to

(23:@) _2{6+Za + 3 (R

i=1 i#£]
2m-+1 n
2
+ 3 Y- Y e
r=n+2i,j=1 2<i#j<n—1

where a3 = ay, Go = as + -+ + ap_ 17a3—an
By Lemma 3.1 we know that if (Zl 14:)? = 2(c+ Zz ,a2), then 2a,ax > ¢
with equality holding if and only if @1 + a2 = as. Hence from (13) we can get

2m+1 n
i S aazea Y05 > Y
1<i#j<n-—1 i<j r=n+2i,j=1
which gives
_ 2
(15) n(n 1)(C+3)+%H22
2m—+1 n
D SRR S R MW
1<i#j<n—1 1<j r=n+21,j=1
Using Gauss equation we have
2m+1 n
(IS DERTINE) SUTS D MDA
1<i#j<n—1 1<j r=n+2i,5=1
n—1)(n—2)(c+ 3)
:2S(en,en)—|—( I 1 I +2Kzn (ht1)2
2m—+1 n—1 n—1 2
3 [enr et () |
r=n-+2 =1 j=1

From (15) and (16) we have

-1 n2
(17) (n zl(c+3) ZHQ > S(en,en +22 hn—i—l
<n
2m—+1 n n—1
+ 3 [ m R
r=n+2 i=1 j=1
So we have
-1 2
(18) w + n_H2 > S(en, en)

4 4
with equality holding if and only if

(19) h’jn =0, hin =0, Z h =hm
forl<j<n—-1,1<i<nandn+2<r<2m+1 and, since Lemma 3.1 states

that 2a;as = c if and only if @, + a2 = as, we also have A% = Z;:ll h?;'l. Since
en can be any unit tangent vector of M™, then (18) implies inequality (9).
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If the equality sign case of (9) holds identically. Then we have
hitt=0  (1<i#j<n),
hi; =0 (1<ij<nn+2<r<2m+1),
W =R Y k=0 (n+2<r<2m+1).
ki ki

If\ = h?fl(l < i <n), we find Zk# M = Ai(1 <4 < n) and, since the matrix
A = (a,g')) with al(.;') = 1 — 20;; is regular for n # 2 and has kernel R(1,1) for
n = 2, we conclude that M™ is either totally geodesic or n = 2 and M™ is totally

umbilical.
The converse is easy to prove. This completes the proof of Theorem 3.1. (]

(20)

4. MINIMALITY OF C'-TOTALLY REAL SUBMANIFOLDS

Theorem 4.1. If M™ is a n-dimensional C-totally real submanifold in a Sasakian

space form M*"F1(c), then
-1 3 2
(- 1(c+3)
4 4
If M™ satisfies the equality case of (21) identically, then M™ is minimal.
Clearly Theorem 4.1. follows immediately from the following Lemma.

(21) Ric < H*.

Lemma 4.1. If M™ is a n-dimensional totally real submanifold in a Sasakian
space form M*™F1(c), then we have (21). If a C-totally real submanifold M™ in
M?m+1(c) satisfies the equality case of (21) at a point p, then the mean curvature
vector H at p is perpendicular to ¢(T,M").

Proof. Inequality (21) is an immediate consequence of inequality (9).

Now let us assume that M" is a C-totally real submanifold of M?™*+1(¢) which
satisfies the equality sign of (21) at a point p € M™. Without loss of the generality
we may choose an orthonormal basis {é1,...,&,} of T,M™ such that Ric(p) =
S(€n, én). From the proof of Theorem 3.1, we get

n—1

(22) W, =0, Y hi=hd, i=1..,n-lis=n+1,...,2m+1,
i=1

where h;; denote the coefficients of the second fundamental form with respect to
the orthonormal basis {é1,...,¢&,} and {€,+1,...,Emt+1 = &}

If for all tangent vectors u, v and w at p, g(h(u,v), ¢w) = 0, there is nothing to
prove. So we assume that this is not the case. We define a function f, by

(23) fp: TI}M” — R: v fp(v) = g(h(v,v), ¢v).

Since TZ}M ™ is a compact set, there exists a vector v € TI}M ™ such that f,
attains an absolute maximum at v. Then f,(v) > 0 and g(h(v,v), pw) = 0 for all w
perpendicular to v. So from (5), we know that v is an eigenvector of Ag,. Choose
a frame {eq, ea,..., ey} of T,M™ such that e; = v and e; be an eigenvector of Ay,
with eigenvalue A;. The function f;, i > 2, defined by f;(t) = fy(costes + sintes)
has relative maximum at ¢ = 0, so f//(0) < 0. This will lead to the inequality
A1 > 2);. Since Ay > 0, we have

(24) N # M, A > 2), i>2.

Thus, the eigenspace of Age, with eigenvalue A; is 1-dimensional.

From (22) we know that €, is a common eigenvector for all shape operators at
p. On the other hand, we have e; # +&, since otherwise, from (22) and Ay, €, =
tApe,1 = £Age, €5 = £Ne;Le, (1 =2,...,n), we obtain \; = 0, i = 2,...,n;
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and hence Ay = 0 by (22), which is a contradiction. Consequently, without loss of
generality we may assume e; = €1,...,€, = €.

By (6), Age, €1 = Age,en = Ane,. Comparing this with (22) we obtain A, = 0.
Thus, by applying (22) once more, we get A\; + -+ + A,—1 = A, = 0. Therefore,
trace Age, = 0.

For each i = 2,...,n, we have

hz# = Q(Azbeiem en) = g(A¢enei7en) = h?’r?

Hence, by applying (22) again, we get h”* = 0. Combining this with (22) yields

trace Age, = 0. So we have trace Ayx = 0 for any X € T, M™. Therefore, we
conclude that the mean curvature vector at p is perpendicular to ¢(T,M™). O

Remark 4.1. From the proof of Lemma 4.1 we know that if M™ is a C-totally real
submanifold of M?"*1(c) satisfying
(25) o ] Gk A e
4 4

then M™ is minimal and Ay, = 0 for any unit tangent vector satisfying S(v,v) =
Ric. Thus, by (6) we have Agxv = 0. Hence, we obtain h(v, X) = 0 for any X
tangent to M™ and any v satisfying S(v,v) = Ric. Conversely, if M™ is a minimal
C-totally real submanifold of M?"*1(c) such that for each p € M™ there exists a
unit vector v € T, M™ such that h(v, X) = 0 for all X € T,M", then it satisfies
(25) identically.

For each p € M™, the kernel of the second fundamental form is defined by

(26) D(p) = {Y € T,M"|h(X,Y) = 0,¥X € T,M"}.

From the above discussion, we conclude that M™ is a minimal C-totally real sub-
manifold of M?™*1(c) satisfying (25) at p if and only if dimD(p) is at least 1-
dimensional.

Following the same argument as in [4], we can prove

Theorem 4.2. Let M™ be a minimal C-totally real submanifold of M?"*1(c). Then

(1) M™ satisfies (25) at a point p if and only if dim D(p) > 1.

(2) If the dimension of D(p) is positive constant d, then D is a completely integral
distribution and M™ is d-ruled, i.e., for each point p € M™, M"™ contains a d-
dimensional totally geodesic submanifold N of M?"*1(c) passing through p.

(3) A ruled minimal C-totally real submanifold M™ of M*"*1(c) satisfies (24)
identically if and only if, for each ruling N in M"™, the normal bundle T+M™
restricted to N is a parallel normal subbundle of the normal bundle TN along N.
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