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STATIONARY SOLUTIONS, BLOW UP AND CONVERGENCE
TO STATIONARY SOLUTIONS FOR SEMILINEAR PARABOLIC
EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

M. CHIPOT, M. FILA ANnD P. QUITTNER

1. Introduction

Consider the problem

%utzmaup x [ t=>0
ou _
5 =
ux,0) =u,(x) =0 x CQ,

(1.1) ud x [AD, t>0

with p,q> 1, a> 0, Q — bounded domain in RN, u, & 0.

If a =0 then it follows from [F] that any solution blows up in finite time. The
starting point of our investigations was the question whether the damping term in
the equation can prevent blow up if a > 0.

For N =1 we give the following complete answer:

() fp<2qg—1orp=29—1, a<q then there are initial data for which
blow up occurs.

(i) f p>29—1o0rp=2q—1, a=> q then any solution exists globally and
stays uniformly bounded.

(iii) If p =2g—1, a = q then any solution exists globally but it is not uniformly

bounded. More precisely, any solution tends pointwise (as t —» oo) to the
unique function v which satisfies

Vax — Q2971 =0 in Q
V = o0 on 0Q.

For N > 1 and Q a ball we also show that (i), (ii) hold. For general domains the
answer is far from being complete. We show global existence and boundedness
only for
N+1 N —q(N —2)
<——, p>
N-—-1 N+1—q(N—1)

(g+1) -1
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and blow up of solutions starting from initial functions with negative energy for
p <q. For p<gq and g subcritical (g < N/(N —2) if N > 2) we give also another
su [cieht condition for blow up. Namely, u blows up provided uo = v, u, 8 v, v

is any positive stationary solution. Positive stationary solutions exist if p < q or
_ 199

p=gq,a=>aq .= Q- If p = q, q is subcritical and a < aq then any solution

blows up.

If Q is a ball and p,q,a are as in (i) then we prove blow up of solutions which
emanate from radial subsolutions that are su [ciehtly large on 0Q.

For N =1 and p,q, a as in (i), a su [cieht condition for blow up is that u, lies
above an arbitrary maximal stationary solution. If g < p < 2q — 1 then we shall
see below that for any interval Q there exists a, = a,(Q,p,q) > 0 such that for
a < a, the maximal stationary solution is 0, which means that any solution blows
up.

For N = 1 we also show that for suitable initial functions blow up occurs only
on the boundary of the interval Q.

Since we are interested in all possible types of behavior of solutions, we are led to
the question if there are global unbounded solutions for p,q,a as in (i). For N =1
or p < q, q subcritical, the answer is no. Therefore, there are only two possibilities
in this case: blow up in finite time or global existence and boundedness. The
latter possibility means that the w-limit set is nonempty and consists of stationary
solutions.

Let us now give a sketch of our results concerning the stationary solutions. For
N =1 (Q = (—1,1)) our description of the set of (positive) stationary solutions is
almost complete.

Denote the set of positive stationary solutions by E and the subset of symmetric
positive stationary solutions by Es. For fixed | > 0 we distinguish five cases:

(i) If p>2g9—1then
cardE =1, E = Eg for any a > 0.
(i) If p=2g—1 then
E=[Cfbr0<a=q,
cardE =1, E=Es fora>q.
(iii) 1f g <p <2q—1 then there are 0 < a, < a; such that
E=0[br0<ac< a,
cardE =1, E = E5 for a = a,,
cardE =2, E =Es forag <a < ay,
cardE =4, cardE is even, cardEs = 2 for a > aj.
If, in addition,p<4orp>4,q=p—1— p%z then
cardE =4 for a > aj.

(iv) If p =g then there is an a; > 0 such that

E=[Cbr0<a<1/l,

cardE =1, E=Es for 1/l <a<ay,

cardE =3, cardEs =1 for a > a;.
(v) If p<q then there is an a; > 0 such that

cardE=1, E=Esfor0O<a<a,
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cardE =3, cardEs =1 for a > a;.

Our results are summarized in the following bifurcation diagrams:

u(l; a) u(l; a) u(l; a)
a,=0 Ial a 0 a, =11 all a 0 a{o a{l a
Fig.1l: p<q Fig.2: p=q Fig.3: 2g—1>p=>q
u(l; a) ! u(l; a)
0 a = q a a, =0 a
Fig4d: p=29—1 Fig5: p>2q—1

In higher space dimension we have also some existence, nonexistence and mul-
tiplicity results for the stationary problem on general domains and more precise
results for the radially symmetric problem on a ball. These results confirm that
several facts indicated in Figures 1-5 hold also for N > 1. See Theorems 2.1, 2.2
for more details.

We mentioned above that for N = 1 a su [cieht condition for blow up is that
U, lies above an arbitrary maximal stationary solution. This leads to the question
how are the stationary solutions ordered. We show that for N = 1 any positive
stationary solution is maximal except for the case q < p < 2q—1, a > a,, when
there isav [Hs such thatv<w foranyw CH,w&v. Anyw [CH,wgv is
maximal.
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To give a description of the local semiflow generated by the problem (1.1) we
determine the stability properties of stationary solutions. For N = 1 we show
that positive stationary solutions which do not correspond to a = a, or a = a;
are hyperbolic, i.e. zero is not an eigenvalue of the linearization (if g <p<2q—1
then also the smaller solution corresponding to a = a; is hyperbolic). Then we
compute the Morse indices of the hyperbolic stationary solutions. This will be
used to draw the picture of the flow, more precisely, to find orbits which connect
the stationary solutions.

For N =1, p<q, a> ay the flow is depicted in the following figure.

N, w7

\fz \71 ¢ V3

Figure 6. The flowfor N =1, p<q, a> a;.

In Figure 6, the function v; is the symmetric positive stationary solution, v,
and vz are nonsymmetric stationary solutions. The zero solution is stable, the
unstable manifolds of v», vz are one-dimensional, the unstable manifold of vy is
two-dimensional. Any positive stationary solution is connected by an orbit to 0,
v, is connected to v, and vs.

Moreover, if N = 1, p < q, then for any u, there is a A, > 0 such that the
solution u(t, Au,) starting from Au, tends to 0 in WH2(Q) as t — oo if A < Ag;
u(t, AoUo) tends to a positive stationary solution; while u(t, Aug) blows up in finite
time if A > A,.

A weaker result is proved in a more general situation. Denote the set of initial
nonnegative data for which the solutions exist globally by G. Then G is star-
shaped with respect to zero and closed in C* = {v CW?(Q);v = 0ae. }
provided N >1, p<qg<(N+1)/(N—1)orp=qg<min(2,(N +2)/N).

The paper is organized as follows. Section 2 contains results on the N-di-
mensional stationary problem. The bifurcation diagrams for the 1-dimensional
stationary problem are established in Section 3. In Section 3 also the Morse
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indices of the stationary solutions for N = 1 are computed. In Section 4 we give
su [cieht conditions for blow up and global existence. In Section 5 we establish
the connecting orbits and study the behavior of u(t, Auy), A > 0.

2. Stationary solutions for N=1

Throughout this section® we shall suppose that Q RN is a bounded domain

+
with the smooth boundary 0Q, a > 0 and p,q > 1 are subcritical, i.e. p < E—_;
and q < NN— > if N > 2. Then we have the compact imbedding of the Sobolev

space W12(Q) into LP*1(Q) and the trace operator Tr : W12(Q) - L9*(9Q) is
also compact.
We shall look for (weak) solutions of the problem

1 . _
Cu=FaluPu in Q

2.1
1) % =|utu onaQ

By standard LP regularity theory (see e.g. [Al, Theorem 3.2]) we get that any
solution of (2.1) is in C(Q) n C?(Q). Moreover, the maximum principle (see
[GT, Theorem 3.5, Lemma 3.4]) implies that any nonnegative solution u & 0 of
(2.1) is positive in Q. In what follows, by [0Q| we denote the (N-1)-dimensional
measure of 0Q, by |Q| we mean the N-dimensional measure of Q. Finally, we put

|0Q 172
ag = —— and cq = |Q| .
12

The main result of this section are the following two theorems.

Theorem 2.1.

() Letp=gandleta=>a, where a, :=0if p<qgand a, :=aq if p=q.
Then there exists a positive solution of (2.1). The zero solution is sta-
ble, any positive solution is unstable (both from above and from below) in
W12(Q) in the Lyapunov sense. The graphs of any two positive solutions
intersect.

(i) Let p=gqand a < aqg. Then (2.1) does not have positive solutions. The
zero solution is unstable.

(iii) Let p > g. Then the zero solution is unstable and there exists a, []d, o)
such that (2.1) has a positive stable solution for a > a, and (2.1) does not

have positive solutions for 0 <a < a,.
Lol 1 Lekn/@-n)

(iv) Letgq<p<2g—landputl = 5 . Ifa >0 is su Lciehtly
large, then there exists a [(d,ac) such that (2.1) has at least two positive
solutions.

lexcept of Remark 2.6 where supercritical p, q are considered
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—q(N —2)
N +1—qg(N—-1)°
Then p>29—1and a, =0, i.e. (2.1) has a positive stable solution for
any a > 0.

(V) 2 Letq < E 1 and p+ 1> (q+ 1)q5 'where -+

Theorem 2.2. Let Q be a ball in RN.

() If p<qgorp=gqanda>agq, then there exists a positive symmetric solu-

tion of (2.1). This solution is unique among positive symmetric functions.

(i) If g <p < 2q—1 then there exists a3 > 0 such that (2.1) has a symmetric
positive solution i Cal= a3. If a > a3, then (2.1) has et least 2 symmetric
positive solutions.

(iii) Letp =2q—1. If a > q then (2.1) has a symmetric positive stable solution.
If a < g then (2.1) does not have symmetric positive solutions.

(iv) If p > 2g—1 then there exists a symmetric positive stable solution of (2.1)
for any a > 0.

We shall use the variational formulation of (2.1), i.e. we shall look for critical
points of the C? functional

®: X 5 R:uB I(u)+aP(u)—Q(u),

where
X =W?2(Q) is endowed with the scalar product
1 L1

M, v=F [0 Tvdk + uvdx,

1 Q Q
1

Tw =3 | Cuck)|?dx,

1Q -

- _ = p+1
P(u) b+ 1 [u@E)|P™*dx and
u)y= —— u(x)|9*+1ds.

QW =5 el

[
Hence [WI21:= [, ul3= 21(u) + 2K(u), where K(u) = u(x)zdx By F,
P, Q and K we denote the Fréchet derivatives of @, P, Q and K, respectively.

Notice that K, P and Q are compact C! operators in X and the problem (2.1) is
equivalent to the problem

}

(2.2) F(u) =0,

where F =F5;: X - X:uB u—K(u)+aP(@u) —Q(u).

If u is an isolated solution of (2.2), we shall denote by d(u) or d,(u) the local
Leray-Schauder degree of F at u with respect to 0, i.e. d(u) = deg(F, 0, B¢(u))
for € su Cciehtly small (where B¢(u) = {v [X; VI u= €}).

2¢f. also Remark 2.5(i)
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If C is a closed convex set in X, we denpte by PC the orthogeial projection in
X onto C and we put F€(u) =u—P¢ K(u) —aP (u) + Q(u) i.e. the solutions
of F€(u) = 0 correspond to the solutions of the variational inequality

(2.3) u 4: B(u),é—ul=0 for any ¢ [

which are the critical points of ® with respect to C. If C = C* = {u [X;
u=0 a.e.}, then we write briefly F* instead of FC" and we denote by d*(u) the
local Leray—Schauder degree of F* at u with respect to 0. We call u a subsolution
of (2.2) if ®Xu)¢p < 0 for any ¢ [O*. Analogously we define a supersolution of
2.2).

Following [H2], we call an operator T : X - X E-regular, if there exists a
finite sequence {E; in:+01 of real Banach spaces such that E = Eq [[ By [1. [1
En LEh+1 = X and T induces continuous operators T; [CQ(E;, Ej—1) for i =
1,...,n+ 1. The LP regularity for (2.1) implies that the operators K, P and Q
are WL (Q)-regular for any r = 2. Moreover, one can easily prove the following
Lemma (cf. [H2, Lemma 2]).

Lemma 2.1. Let Tj : X - X be E-regular operators for j =1,...,m and let
the corresponding E; spaces in the definition of E—regularity be independent of j.

Let {O(E)}ﬁ‘;l be a sequence of real numbers converging to a® for j = 1,...,m.
Let vk X, vk - v [H in X and let vy = akagTj(Vk). Then v [CH and
j=1

j
vk —» vin E.

In the following two lemmas we study solutions which are close to zero.

Lemma 2.2. Letp,q>1be fixed, o >A=a=0 (k=1,2,...), Fa (ux) =
0, 0 8 k3 0. Then one of the following assertions is true
(i) p<gq, ak - 0, ax > 0 for k large enough.
(i) p=40, ak - aq.

[uk|

M , —— o Cg in X n C(Q).
oreover ok Co in X n C(Q)

. u .
Proof. Putting vk = %ﬂ{ve may suppose that vk converges weakly in X to

some element v [X (otherwise we choose a suitable subsequence). Dividing the
equation Fa, (ux) =0 by [uk e obtain

(2.4) Vi = Kvi — akP (vi) Mk PT* + Q(vic) [k [T,

Passing to the limit in (2.4) and using the compactness of K we get vk - v =
Kv (strong convergence), M3 1, which implies v = *cq. Lemma 2.1 and
the imbedding W"(Q) Q(Q) for r > N imply vx - v in C(Q), hence v >
0 (or vk < 0) for k large enough. Without loss of generality we may suppose
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Vk > 0. Integrating the equation [l k= axuf, over Q and multiplying the resulting
equation by [k ¥ we get

L 1
(2:5) a VEIXTPTY = vidS - 90| |0]™2,
Q 90
which impliesp=<gq,ax>0,ax - 0Oifp<gandax - ag if p=q. 1

Remark 2.1. By Theorem 2.1(ii) it will follow that ax = ag for k large enough
in the case of Lemma 2.2(ii). If Q is a ball, then using (2.5) one can even prove

ak > ag, since [(u}) > 0.
Lemma 2.3.
(i) fp<qgqanda=>=o0orifp=4qanda>aqg, then u =0 is a strict local
minimum of ®, d(0) = 1.
(i) fa=0orp=qgqand0<a<ag orif p>qanda=0, then d(0) = —1.

Proof. (i) We shall argue by contradiction. Suppose there exist 0 & ux — 0 (in
X) such that ®(ux) < 0. Since @ is bounded on bounded sets and weakly lower
semicontinuous, there exists 0 & uy such that ®(uy) = mmzj?/k ®(v) =< 0. Hence,

there exists a Lagrange multiplier Ax = 0 such that F (ux) + Axux =0, i.e.

2.6 =1 I:IK P + -
(2.6) Uk—m uk — aP (uk) + Q(uk) -

Uk 1 C .
IE(EIIII1+)\|( - W [0, 1]. Dividing (2.6) by
[uk [Cdnd passing to the limit we get vk —» v = uKv, VT = 1, which yields p =1,

[v| = cq. By Lemma 2.1 we get v — v in C(Q). Now

2. = aP () —~ Q) [T,

We may suppose that vy =

2.7

where the right-hand side converges to aP(v) for g > p or to aP(v) — Q(v) for
p = g. Since in both cases the limit is positive, we have a contradiction. Hence
u =0 is a (strict) local minimizer for ® and by [A2] d(0) = 1.

(i) Using the homotopies H'(u) = F(u), t 4, 1], and Hg(u) = u — Q(u) —
(1 + o)Ku, a D, a,], we obtain d(0) = deg(Hq,0,Bs(u)) = —1, since the
operator H5(0) is regular and has exactly one negative eigenvalue for a > 0 small.
We have to verify H'(u) 8 0 and Hg(u) 8 0 for [T = € small and o = 0 small.
The condition H(u) 8 0 and Hq(u) £ 0 follows from Lemma 2.2. Hence suppose

. Uk
Ha (ux) = 0for 0 B ux - 0and ax > 0, ox — 0. Putting vx = ﬁlzY\/e

get similarly as in Lemma 2.2 vk — vV = *cq in X n C(Q) and we may assume

vk > 0 for k large. Then [d= —okux < 0, % = uﬂ > 0, which yields a

contradiction. 1
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Remark 2.2 It can be shown that in the situation of Lemma 2.3(ii) the critical
point u = 0 is of mountain—pass type in the sense of [H1].

Lemma 2.4. Let0 =u=<=U< M < oo, where u and U are a subsolution and
a supersolution of (2.2), respectively. Then there exists a solution u of (2.2) with
Usu<u.

Moreover, if u, 0 [CQ*(Q) n C?(Q) are not local minimizers of ® with respect
toC:={vI[X;u<svs<u}andu<TuinQ, then there exists a solution u lying
strictly between u and U and being a local minimizer of ®.

Proof. In the first part of the proof we shall proceed similarly as in [St, The-
orem 1.2.4.]. The set C is convex and (weakly) closed and ® : C - R is lower
bounded and weakly lower semicontinuous, hence there exists u [CQ such that
®(u) = Vmégjqa(v). Consequently, u solves (2.3).

Choose ¢ CTIH(Q), € > 0 and put

Ve = min{u, max{u, u + ep}} = u+¢ep — ¢ + . [l

where ¢ = max{0,u+¢&dp —TU} =0 and ¢ = —min{0,u+¢ep —u} = 0. We have
0 < [@Xu), ve — u=E e@xu), 3 @%u), &3 @%u), ¢ Lo that

1 1
(2.8) [@Xu), = < [@u), 3 @u), g 1.

Since U is a supersolution, we have
@u), ¢° (2= [@u) — @0, 670
(| (|
= (Ul u) (ke —u)+a(uP —oP)(u+ep—1) dx
S -

Q
- W=t (u+ep—1)ds
DDF O 1
= LF1u) ChFa(uP—uP)d dx—e  |[uf—1Y|P|dS,

Q re

where QF or I'® are the sets of all x [Qlor x [CdN, for which u(x)+&dp(x) = u(x) >
u(x), respectively. Since |Q¢| - Oand ¥ — Oase — 0, we get [@u), &= o().
Analogously we get [@u), ¢k o(g), hence (2.8) implies [@u), pF= 0 for all
¢ CAHQ), so that d{u) = 0.

Suppose now the additional assumptions on u and T and let u be as above.

Then [ % auP, g—: = 0% Putting w = T — u one obtains w & 0, w = 0,
W ¥ a(i® — uP) < cw, where ¢ = apMP~1. By [GT, Theorem 3.5] w > 0 in
Q. If w(Xo) = 0 for some X, [dR, then [GT, Lemma 3.4] implies g—vr\:(xo) <0.

ow L
However, %(xo) =1u%(X,) — u9(xo) = 0, a contradiction. Hence, w=u—u>0

in Q. Similarly one gets also u —u >0 in Q.
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Now suppose that u is not local minimum of ®. Similarly as in the proof of
Lemma 2.3 we find ux — u such that ®(u) > d(uyx) = IIerligllkqa(v), F(uk) +
u

Ak (ug — u) =0 for some A = 0. The last equation is equivalent to

-1 _ k
Uk—l_'_—)\k(K aP+Q)(uk)+l+)\k

u,

which together with Lemma 2.1 implies ux — u in C(Q). However, this is a
contradiction with ®(ux) < ®(u) = TiQUGD(V). 1
usv=

Lemma 2.5. Any solution of the variational inequality (2.3) with C = C*
solves also the problem (2.2).

Proof. Proof is based on the same arguments as the first part of the proof of
Lemma 2.4. Choosing ¢ [CI(Q) and putting ve = max{0, u + £} one gets

0< %E‘ﬂu),vg —ul== @Yu), 3 o(1),

hence ®u) = 0. 1

Lemma 2.6. If u Cd" is an isolated solution of (2.2), then the degree d*(u)
is well defined. If N =1 and u 8 0, then d*(u) = d(u). Moreover, except for the
case p =(, a = ag, we have (for any N)

(i) d*(0)=1if d(0)=1,
(ii) d*(0) =0 if d(0) = —1.

Proof. If u Q™ is an isolated solution of (2.2) then u is an isolated solution
of (2.3) by Lemma 2.5. If N = 1, then u lies in the interior of C* [XI, hence
F* =F in a neighbourhood of u.

Ifp<ganda=>0orp=gqanda> aq, then 0 is a strict local minimum of ® by
Lemma 2.3, hence it is a (strict) local minimum of ® with respect to C*. Now [Q2]
implies d*(0) = 1. Now it is su [cieht to show d*(0) = 0 for a = 0, since then (ii)
follows from the homotopy invariance property of the degree. Hence syppose a = 0.
Then we may use the homotopies HE (u) = u—P* (1+a)Ku+tQ(u) , o L]0, 0],
t [0, 1], to derive d*(0) = deg(Hg, .0, Be(0)) = deg(H, .0, B¢(0)) = 0, where
the last equality follows from [Q1, Theorem 2(i)]. The admissibility of HE follows
from the fact the the solutions of HE(u) = 0 correspond to the solutions of the

inequality u =0, — LU= au, g—z = tud. 1

Proof of Theorem 2.1(i). Suppose p < ganda > 0or p =g and a > ag.
Then 0 is a strict local minimum of ® by Lemma 2.3(i). Choosing u > 0 such
that aP(u) < Q(u) we simply get ®(tu) < 0 for t > 0 su [ciehtly large. Put
®*(u) = ®(u) for u CT+, d*(u) = +oo for u L TI*. We show that the functional
®* fulfils the Palais—-Smale condition introduced by Szulkin [Sz], hence by the
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corresponding mountain—pass theorem [Sz, Theorem 3.2] there exists a nontrivial
solution u of the variational inequality (2.3) with C =C™*. By Lemma 25 uis a
positive solution of (2.2).

Thus suppose ux [T, g 1 0, d(ux) - d and

(2.9) [@uy), v — uc [ — V1 ug for any v CO*.
Put wy := P *(ux — F (ux)), then
(2.10) [k — F(uk) —wk,Wx —v(Z=0 foranyv CO".

To prove the relative compactness of the sequence {ux} it is su [cieht to show its
boundedness, since then {w} is relatively compact and putting v = wy in (2.9),
V = Uk in (2.10) and adding the resulting inequalities one simply gets [k —wy [
€k. Now using (2.9) with v = 2uy we get for k su Lciehtly large

(2.11)

(@+1)(d+1)+ex [k = (g+1)O(uk) — [@(uk), uk [F (q— 1)1 (uk) +a(q—p)P (ux).

If g > p, then the right-hand side in (2.11) can be estimated below by c [k [Z1for
some ¢ > 0, hence the assertion follows. gt p = g and suppose [Uk[3 co. Using
the decomposition ux = ¢, +u,5Where  ufdt = 0 and cy is constant, (2.11) and
[N, Theorem 7.1] yield [WE% M 1(ub)*% o(ck) for some M > 0, which implies
U/ Ok 3 cq. Therefore,

®(uk) _ ot
(7 3P ()~ Qea) = S8

(alQl —10Ql) =0,

which gives a contradiction with the assumption ®(uyx) - d.
To see that any positive solution u is unstable (both from above and from below)
notice that

(2.12)  @%u)(u,u) = q[@Yu), ulF (1 — )21 (u) +ap — q)(p + 1)P(u) <0

and suppose e.g. that u is stable from above. Choosing € > 0 we may find 6 > 0
such that the solution us of (1.1) starting from (1 + d)u fulfils 51 (t)— ulL< € for
any t > 0. Moreover, choosing 6 su [ciehtly small we have ® us(0) < ®(u) and
due to the compactness and monotonicity of the flow (see Proposition 5.1) we get
us(t) - Ts ast —» +oo, where Us is a stationary solution fulfilling 0§ — ulC= ¢,
Uy =3 U gagd @ (U5) < ®(u); the last inequality follows from the fact that the quction
® usz() is nonincreasing. The maximum principle implies Uz > u in Q and
Lemma 2.4 together with (2.12) (used both for u and for Uz) yield a contradiction.
The last argument shows also the nonexistence of two positive solutions ug, us
with u; < us. 1

Remarks 2.3. Let us briefly mention some other possibilities how to prove
Theorem 2.1(i).
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(i) One can use the standard mountain—pass theorem for the functional @ to
get a critical point u which is either a local minimum or of mountain—pass type
(see [H1, Theorem]). If u changes sign in Q, one gets similarly as in (2.12)
oTu)(w,w) < 0 for any 0 & w [span{u*,u~} (where u*(x) = max{u(x), 0},
u~ (x) = —min{u(x), 0}) and using this information it is not di [cult to show that
u is neither local minimum nor of mountain—pass type.

(i) If one is able to prove suitable apriori estimates for the positive solutions of
(2.2), then one can use the degree theory: if [UI_< R for any solution u of (2.2)
with 0 <=a <A, then

0 = di (0) = deg(Fg", 0, Br(0)) = deg(F,, 0, Br(0)) & dX(0) = 1,

hence there exists a nontrivial solution for a = A.
The apriori estimates can be easily found e.g. for symmetric solutions on a ball (see
the proof of Theorem 2.2). For a general domain we have the following assertion:

Letp<gandletq < H if N > 2. Then for any A > 0 there exists R > 0 such

that any positive solution u of (2.2) with 0 < a < A fulfils [ul' < R. Moreover, the
solutions tend to zero if a — 0+.

Proof. Denote by [CLdor ||| - ||| the norm in L"(Q) or L"(0Q), respectively.
By R we denote various constants, which may vary from step to step.
We have %k R(I(u) + Q(u)) +n for any u X, where n > 0 and R = R().
If u is a solution, then obviously 21 (u) < (q + 1)Q(u). Choosing € > 0 such that

the trace operator Tr : X - L"(0Q), where r = ql—:i, is continuos, we obtain
using Holder inequality
—n + [k RQ(U) < RI|JullFS[Iulll§™ " = ROOET|||ull|§ "%,
hence
(2.13) [UI® 0™+ RI|ulllg =",

where n® - 0asn - 0. Now [{ud) = 0, hence [|uP|]1 < R|[|uP|||z, where R
does not depend on u. Using this inequality, Holder inequality and the equation
U= auP integrated over Q, we obtain

[lullg = RIIulll} = RIllulll = Rallullg,
hence [|ul|, < Ra@=P and |||u][|lq < Ra@~P). Now (2.13) implies [ R and
[l 0ifa - O+, 1

Let us also note that using the degree theory and Lemmas 2.3, 2.6 one can
easily prove (without apriori estimates) the following assertion:

([ 0)(2 > 0)([NILAD, 8))([all(&,, 8 + €))([LILX)

(2.14) . . .
u is a positive solution of (2.1) and [T = n).
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(iii) In Section 4 we show that under the assumptions of Theorem 2.1(i) there
exists a positive bounded initial condition ug, for which the solution of the par-
abolic problem (1.1) blows up in a finite time, and that any global solution of
(1.1) with bounded initial condition is globally bounded. Since zero is a stable
stationary solution, we may use Theorem 5.1 to show the existence of a (0, 1)
such that the solution with the initial condition au, tends to a positive stationary
solution as time tends to infinity. However, this dynamical proof of the existence
of stationary solution has (similarly as in the case (ii)) one disadvantage: we have
to impose some additional assumptions on p and g (see Theorem 5.1).

Proof of Theorem 2.1(ii). Letp = q, a < aq, and suppose there exists a positive
solution u of (2.2). Choose @ [(d,aq). Then u is a supersolution for the operator
Fz, 0 is a solution of Fz(v) = 0 and neither u nor 0 is a minimizer of ® = ®z with
respect to C = {v [X; 0 <v < u}. By Lemma 2.4 the equation Fz(v) = 0 has
a solution T [, which is a local minimizer of ®5. However, this a contradiction
with the estimate (2.12). 1

Proof of Theorem 2.1(iii). Let p > q, a > 0. If there exists a positive solution
u of (2.2) and @ > a, then similarly as in the proof of Theorem 2.1(ii) we get
a positive solution T of Fz(v) = 0, which is a local minimizer of ®z and fulfils
0 < T < uin Q. Hence to prove the assertion (iii), it is su [cieht to prove the
existence of a positive solution for some a > 0.

Choose p [[(1,q), @> 0 and let T be a positive solution of (2.1) with p and a
replaced by p and &, respectively (its existence follows from Theorem 2.1(i)). It is
easily seen that U is a supersolution for our problem if a is su Lciehtly large, since
then ali® > ali®. Hence Lemma 2.4 yields the assertion. 1

Proof of Theorem 2.1(iv). Choose b > 0 and put
Np(u) = 1 (u) +bP(u), M ={u A; Q(u) =1}.

Due to the compactness of the trace operator Tr : X - L9%1(0Q), the set M

is weakly closed. The C! functional A, : X — R is convex and coercive, hence

there exists uy such that Ay(up) = ireéﬂ/\b(u). We may suppose 0 & u, =0
u

(otherwise we put T, = |up|). The minimizer uy fulfils the equation

As{up) = vsQuy),
where

_ [A{up), us 1 21 (up) + b(p + 1)P (up)

(2.15) Vo= [Qup), up [ q+1

>0

is the corresponding Lagrange multiplier. Putting t, = vél(q_l) and u = tpu, one

can easily show that u is a positive solution of (2.2) with

b

(2.16) a= s

— bvb_(p_l)/(q_l) =: f(b),
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where the function ¥ depends not only on b but also on uy.
It is easily seen that the function g : b B Ap(up) is continuous (and does not
depend on uy, of course). Moreover, (2.15) implies

(2.17) 29(b) = (q + Dvp = (p + 1)g(b),
so that (2.16) yields the estimate

|%|+ 1 Lel1y7(a—1) |%|+ 1 el /a1
2

h() > f(b) > + = h(b),

(2.18) 1

(| 1) /(q—
where h(b) :=b g(b) e/ is continuous. Now (2.18) and the continuity of
h will imply our assertion if we show X lim f(b) = +oc0 and I F Hu, [} oo

for the corresponding solutions, since the solutions that we found in the proof of
(iii) were bounded (in L* and, consequently, in X). Hence, suppose b — +oo. If

— q+1)
we put vp(X) = d max{0,1— bdist(x,0Q)}, where d = WLQll , We have
Q(vp) =1, hence
V_
(2.19) g(b) < Np(vp) <c b,
where ¢ is some constant independent of b. This implies
h(b) = b(c\/B)—(p—l)/(q—l) =gph@a—P~1/(20-2) | oo

hegee by (2.18) also f(b) - oo. Now (2.15), (2.17) and (2.19) imply P(up) =
¢/ b, so that u, — 0in L?(Q). Now choose & < 1 such that the trace operator
Tr : W&2(Q) - L9*1(0Q) is continuous. Using an interpolation inequality we
obtain

(2.20) 1= Q(up) < clp (I =< cup 5+ [y (Fr D™D,
where [“1[g} and [[z1is the norm in W&2(Q) and L?(Q), respectively. Since
[u) 1> 0, (2.20) implies [U) [ oo, 1

Remark 2.4. If we could choose u, such that f(b) became continuous, then
this would imply in the case of Theorem 2.1(iv) the existence of two positive
solutions for any a large. If one could prove Palais-Smale condition in this case,
this would also lead to the proof of two positive solutions for a large. Another way
how to prove this existence is to prove corresponding apriori estimates and to use
the degree theory — this will be done for the symmetric solutions on the ball.

In the proof of Theorem 2.1(v) we will need the following lemma from [FK].

Lemma 2.7. Let g,q~be as in Theorem 2.1(v), let € > 0 and r > g~ Then
there exists a constant ¢ = c(g, r) such that
L1 m=k
(2.21) [ul9*ldS < em®Hc  |ul%"dx
0Q Q
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for any u [CX.

Proof. Proof is based on the continuity of the trace operator Tr : W92.9+1(Q) _,
L9*1(0Q), on an interpolation inequality and the continuity of the imbedding

X [WW2z:9+1(Q) for suitable z,6 [(0,1). A detailed proof can be found in [FK]. 1

Proof of Theorem 2.1(v). Let a > 0 be fixed. Our assumptions imply p+1 >

(q + 1)r for suitable r > g~ Choosing € > 0 and using Lemma 2.7 and Hdlder

inequality we obtain for any u X (and suitable ¢ > 0 varying from step to step)
1

@Q(u),u=F=  |u|9*ldS
00

L1 =N rz, Sl [Fi+1)
<e |fAx+c  JuPtldx P +c  |uPtldx P
| ] Q

<e |[OAdx+ea |ufP*ldx+c
Q Q
=el— Ku+aP(u),ulZc

which implies a uniform apriori bound for the solutions t [[0,1], u A" of the
inequality

(2.22) [M— Ku+aP(u) —tQ(u),v—ul=0 nacar.

| (|
Consequently, denoting He(u) =u—P* Ku—aP (u) +tQ(u) we get
(2.23) deg(F™,0, B¢(0)) = deg(H1, 0, B(0)) = deg(Ho, 0, B¢(0)) = 1,

where the last equality follows from [Q2, Corollary 1], since the functional A,(u) =
I (u)+aP (u) corresponding to Hg is coercive. On the other hand, Lemma 2.6 yields

(2.24) deg(F™,0,B¢(0)) =d*(0) =0.
The existence of a positive solution follows from (2.23), (2.24) and Lemma 2.5. [1

Remarks 2.5.
(i) According to the results for Q being a ball, the condition on p,q in Theo-
rem 2.1(v) does not seem to be optimal. In fact, a finer apriori estimate can lead

to weaker assumptions. Suppose e.g. that p,q fulfil the following assumptions:
+ J—

q< H p=q+1and p+1+E+—i > (q+ 1)q"(so that p, q need not fulfil the

condition from Theorem 2.1(v)). We show that this condition is also su [cieht for

the apriori bound and, consequently, also for the existence.

Let u be a solution of (2.22), i.e. it solves the problem [ F auP, Z_:J\ = tuf.

Choosing a test function ¢q(x) = min{1, %dist(x, 0Q)} for d > 0 small and putting

Qq = {x ; dg(x) =1} we get
[ [ [

(225) a Wwdx=a WPddx=— [Gdx < MITHI a.% [T
Q Q

Qq
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and using Holder inequality we obtain
L] n=k R
(2.26) uPdx<c  uP*ldx dp+T
O\Qq Q

, uEE L :
Choosing d = Qup““ldx , where v = (p — 1)/(p + 3), and using (2.25) and
(2.26) in Lemma 2.7 we get the desired apriori estimate for u.
Similar improvements can be made also for p <q + 1.
(ii) In order to prove Theorem 2.1(v) one can use also the function f(b) intro-
duced in the proof of Theorem 2.1(iv) and show I|m|nff(b) = 0. However, this

leads to estimates which are close to those already used in the proof of Theo-
rem 2.1(v).

(iii) The investigation of the function f(b) gives an information for the existence
of solutions also in other cases; however, in these cases other methods turned out
to be more powerfull. Nevertheless, the likely behaviour of f (indicated in the
figures below) gives us a good insight on the stationary solutions. To support the
figures below, let us only mention that it is easy to show that f(b) - oo if p>q,
b - 0,orifp<gq,b - oo. In both cases one can use a simple estimate v, < cb.

=]
Il
o

P=<q 20—1>p>q

p=2q—1 p>2q—1

Figure 7. The graphs of f.
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Proof of Theorem 2.2(i). Let Q = Br(0). The existence of a positive symmetric
solution to (2.1) follows by the same way as in Theorem 2.1(i); we have only to
restrict ourselves to the space Xs of all radially symmetric functions in X =
W12(Q). Hence it su [ced to prove the uniqueness. Denote r = |x|. Any positive
symmetric solution of (2.1) fulfils the O.D.E.

(2.27) Upr +

ur = auP, r C(0,R)
together with the boundary conditions
(2.28) ur(0) =0, ur(R)=u%R).

If ug, uy are two di[erkent positive symmetric solutions, then the uniqueness of the
solution of the initial problem for (2.27) implies u;(0) & u»(0). Hence we may
suppose u;(0) < uz(0). Since w := u, — uy fulfils

Wyr + wr = a(ub —ub), w,(0) =0, w(0) >0,

it is easily seen that w(r) > 0 for any r [0, R], so that u, > u; in Q. By (2.12)
neither u; nor uy is a local minimum of ® with respect to C ;= {u; u; < u < uy},
hence Lemma 2.4 implies the existence of a local minimizer of ® between u; and
Uz, which contradicts (2.12). 1

Proof of Theorem 2.2(ii). Let Q = Bgr(0). Considering only the space Xg
of symmetric functions we get similarly as in the proof of Theorem 2.1(iii) the
existence of a3 = 0 such that the problem (2.1) has a stable symmetric positive
solution if a > a3 and (2.1) does not have symmetric positive solution if a < a3.

To show the rest of the assertion we need some apriori estimates for symmetric
positive solutions. Hence suppose that u is such solution. Multiplying (2.27) by
ur and integrating resulting equation over (0, R) we get using (2.28)

1 1 1 L4
SUM(R) = SU3(R) < SUX(R) +
2 2 2 o

uZ(r)dr

r

a [ 1] a
— p+1 __ p+1 p+1
T u(R) u(0) < —p - lu(R)
which implies
2a
2q—p—1 ==
(2.29) u(R) < o1

Moreover, (2.27) implies urr > 0 whenever u, < 0, hence u, = 0 and (2.29) yields
an apriori bound for u, which is independent of a []d, A] for any A < oo fixed.

Denoting by d** the local degree corresponding to F*/x  and using apriori
estimates (2.29) we obtain for R > 0 su [ciehtly large

|:|+ I:I I:I+ I:I S+ S+
(2.30) deg F; /X, 0,Br(0) =deg Fy/x,,0,Br(0) =d; (0) =0=4d"(0),
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where the last two equalities follow analogously as the corresponding equality in
Lemma 2.6(ii).

Now if a > a3, then we have a positive symmetric solution u; which is a
local minimizer of @ in Xg (cf. the proof of Theorem 2.1(iii)), hence [Q2] implies
ds*(uy) = 1. If this were the only positive symmetric solution, (2.30) would imply

| |
0=deg F;/X,,0,Br(0) =d3"(u1) +d3"(0) =1,

a contradiction. Hence there exist at least two symmetric positive solutions for
a>as.

Now we show the existence of a positive symmetric solution for a = a3 and
this will also imply a3 > 0, since the equation Fo(u) = 0 does not have positive
solutions. Thus let u, be positive symmetric solutions of (2.1) with a =an | a3.
Then

(2.31) Un = Kun —anP (un) + Q(un)

and the boundedness of un, implies that we may suppose u, [—u{weak conver-
gence). Now (2.31) implies

Up —» U= Ku—asP(u)+Q(u),

hence u is a nonnegative symmetric solution for a = a$. It is now su Lcieht to
notice that u 8 0 by Lemma 2.2. 1

Proof of Theorem 2.2(iii), (iv). If p>2q—1or p=29—1 and a > q, then the
proof of Theorem 4.1 yields a positive symmetric supersolution to our problem,
hence the existence follows from Lemma 2.4 (used for the space Xs). If p =
20—1, a < g and u were a positive symmetric solution, then (2.29) yields a simple
contradiction. 1

Remark 2.6. If p > 1 or g > 1 is not subcritical, then one can still expect
similar results as in Theorems 2.1, 2.2. More precisely,

(i) if p > q, then there exists a, [0, oo) such that (2.1) has a classical positive
solution for a > a, and (2.1) does not have classical positive solutions for
O<a<a, IfQisaball and p>2q—1, then a, =0.

(i) If Qisaball, p<qand a=> a, (where a, is defined in Theorem 2.1(i)),
then (2.1) has a classical positive symmetric solution. If Q is a ball and
q <p < 2q-—1, then the conclusions of Theorem 2.2(ii) are true.

Proof. (i) Let p > q > 1, let u be a classical positive solution of (2.1) and let
a > a. Then u is a supersolution of (2.1) in which a is replaced by a and the
nonlinearities vP and v9 are suitably modified for v > maxu (so that the corre-
sponding functional is well defined and di Cerentiable). An obvious modification of
Lemma 2.4 implies now the existence of a solution T for the problem (2.1) with a
replaced by a@. Hence the existence of a, [0, oo] follows.
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To see that a, < oo, choose subcritical §,d§ > 1 such that § < min(f,q). If
a > 0 is large enough, we have a positive solution U of (2.1) with p,q and a
replaced by p,§ and &, respectively. The proof of Theorem 2.1(iii) shows that we
may suppose 0 < T < 1 in Q, hence T% > T9. Moreover, choosing a > 0 large
enough we have ali® > a0, so that T is a supersolution for the problem (2.1)
(with the nonlinearities vP, vd modified for v > 1), which implies the existence of
a solution for a large.

If Q is a ball and p > 2g — 1, we may use the supersolution from Theorem 4.1.

(i) Replacing the nonlinearities uP and u% by m(u) = umin(u,C)*~! and
n(u) = ut*emin(u, C)9717¢, respectively (where € > 0 is small and C > 0 is
large) we obtain similarly as in (2.29) the following apriori bound for the positive
symmetric solutions of the modified problem:

,E] R)I:I
n
(2.32) TR 4 o
M u(R)
_ L :
where M(u) = " m(v)dv. If u(R) > C, then (2.32) yields
2+2e~2q—2—2¢ 242~ 20—2—2¢
22 > lé(zR) 2 C - u(R) 2C - > c20—p-1
u( )2—C cr—1+ (,:)11 u(R)?Cr~

which is a contradiction for C large. Consequently, any positive symmetric solution

of the modified problem is a solution of our original problem for C large enough.
The existence of a positive symmetric solution for the modified problem for

p < g and a > a, follows from the mountain pass theorem similarly as in Theorems

2.1(i), 2.2(i) or from the degree theory (see Remark 2.3(ii)). The existence of a3

(as in Theorem 2.2(ii)) for ¢ < p < 2q — 1 follows from an obvious modification of

the proof of Theorem 2.2(ii). 1

Finally let us note, that if Q is a general domain in RN and p < g, then one

can easily show that (2.14) is true also for supercritical p, q.
3. Stationary solutions for N=1

Consider the O.D.E.
(3.1) Uxx = auP for x>0,
with the initial conditions
3.2 u(@ =m=>0, ux(0)=0.
We are looking for L > 0 such that

(3.3) ux(L) = ud(L).
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This will provide a symmetric solution to

1
Uk =au®  on (—L1),

(3.4) %y =y at — 1,1,

on

with | = L. If for given m there are two values L, L, such that (3.3) is satisfied,
then by shift and reflection we obtain a pair of nonsymmetric solutions uy, u, to
the problem (3.4) with | = (L + L2)/2, ui(X) = uz(—x).

Multiplying (3.1) by ux and integrating we see that

1 a a
3.4a “ud— —uP*l = const = ————mP*L,

Note that uxx = 0, hence ux is nondecreasing and since ux(0) = 0 we have that
Uyx = 0. Therefore

Yl EE
(3.4b) Uy = 1 uP+L — mp+1
and integrating this equation we obtain
(3.5) o v v IIZA—X.
m vP+I —mp+1 p+1

For m given, the solvability of (3.1)—(3.3) is equivalent to finding L such that

Cdw dv 2a
= _L,
m vP+1 —mp+1 +1
W)= 22 D) —mp
p+1

The last equation may be written in the form

p+1
2a

ui(L) — uP*(L) + mP*t = 0.
If we now denote by R(m) a root of the equation

(3.6) %qu —xP*l 4+ mPtl =9

ghf assume thgtR(m) > m, then (3.5) gives us a solution to (3.4) on the interval
—L(m),L(m) with

1
p+1 ) dv

L = - .
(m) 2a vP+I —mp+I
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. v
SettingV = m we get

—1 [ IGD) 4
(3.7) Lmy= P in-e-ve v
2a 1 VPl —1

Theorem 3.1. Assume that p > 2q — 1. Then for any | the problem (3.4) has
a unique nontrivial solution. This solution is symmetric.

Proof. Consider the function

+
(3.8) F(x) = %qu —xP+l 4 mP*L,

One has 1
F{)=(@p+1) axzq_l -xP .
Hence F Pvanishes only for

_ '%'@tzq—p—l)

(3.9) x= 0

Thus F is increasing up to this value and decreasing next. Hence (3.6) has only
one root

L1 A2q—p—1)
R(M) = el ,
q
in particular
(3.10) lim R(m) = +o0
m-0 m
Since
Lo
(3.11) 0< 2\ N
1 Vv p+1 — 1
we deduce from (3.7), (3.10) that
3.12) lim L(m) = +oo.
m-0
Combining (3.7), (3.11) we have also
(3.13) lim L(m)=0

m - oo
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and the range of L is (0, +o0). Now we show that L is a decreasing function.
Indeed, from (3.7) we have

1 [CR(mM)
__p=1 p+1 _ iy m dv
LQm) = __— _m S —
(3.14) 2 2a 1 Vp+l —1
. L1 ol
+ p + 1m—(p—1)/2 | —| 1 L—Rl(m) )
2a (m) 1 -1 m

m

But since R(m) is the only root to (3.6), it follows from the implicit function
theorem that R is di[erkntiable and by di [erkntiation one gets

mP

(3.15) RXm) = Ry — SR T

It follows that

CRmy & 1 1 = - .
7 = + = = +
- —R(m) + —RYm) = —— R(m) TR(m)2 1 — R(m)?
1 4 (-

=== “R(mM)%™1 —R(m)P IglR(m)zq — R(m)P* + mP*!

<—1 R(m)%4~1 — R(m)P pr2 lR(m)2q — R(mM)P*! + mP*? -

m2 a 2a
= 0’

the last inequality follows from the fact, that
gR(m)Zq—1 —R(m)’ = FOR(m) < 0.
Recalling (3.14) we obtain that
(3.16) L'¢m) <o.
(3.12), (3.13) and (3.16) yield the assertion. 1

Theorem 3.2. Assume that p =2q — 1.

(i) If a < q then the problem (3.4) cannot have nontrivial solutions.
(i) If a > g then for any | the problem (3.4) has a unique nontrivial solution.
This solution is symmetric.

Proof. (i) The boundary value u(L) must be a solution to (3.6). But (3.6)
reduces to o T
mPri=xtt 19 <o
a
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(i) In this case (3.6) has a unique root R(m) which is given by the explicit

formula
1 !1
R(m)=m 1- % a
(m) =
Hence - = 0 and it is easily seen from (3.14) that L¥m) < 0. (3.7)
immediately yields (3.12) and (3.13). 1

Next we turn to the case p < 2q — 1. Considering F given by (3.8) we see that
F has an absolute minimum given by (3.9). So, in order for (3.6) to have a root

we need
[ £II:I ]
F = Z=p=1 <0
q

which reads also
1
(3.17) m < ¢y = a24=P~1c(p, q),

where

’ q .

29
Then for m satisfying (3.17), the graph of F looks like

F
mP+1
; (§)z==
R1(m) ! R2(m) X
Figure 8. The graph of F.
1
and (3.6) has two roots Ri(m), Ro(m) which are equal to 3 247P~1 \when
m = C(a). Note that if m satisfies (3.17) then
11
& m=p-T

m=
q
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Since F(m) =0, one has
m < R;(m) < R,(m).

Let us now study the two curves

L= CRgm
(3.18) Lim)= 2 m-e-v2 V. =12
2a 1 Vp+l —1

on the interval (0, C(a)).

Lemma 3.1. Assume that p < 2q— 1. Then we have
(3.19) Li(m) < Lo(m),
and Lx(m) is decreasing for m [(0, cy). Moreover,

: p+1 —p31 oo gy
(3.20) mllrg:a) Li(m) = oa C(a) L Vrri—1 - L(a),
L=

where d(p,q) = 0.0 q

Proof. (3.19) and (3.|2_£0? are obvious. In order to show that L5'< 0 it is su [cieht

to prove that # < 0 (see (3.14)). From (3.15) we get

CRim) 1 1 BRim) — Ry(m)p+t + mp+t L
m T m Ri(m) —IRy(m)ZT

According to (3.6), the last equality implies that

Rim 1 B perH gymy
m T am? 2 Rj(m)P — IRj(m)2a—1"

T,
q

(3.21)

Since Ry(m) = ~ 7, Ra(m) is in the region where

1 — U, 29-1 _up
mF?x) =X xP > 0.
Hence, the right hand side of (3.21) is negative for i = 2. 1

Lemma 3.2. Assume that p <. Then L;(m) is increasing.

Proof. To prove that L’> 0 means (see (3.14)) to prove that

(=l [ Ri(m)
m_p_E_l |—L|;¥ > p_lm_Rer_l m dv
R (m) @1_1 2 1 VPFI =T
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The last inequality is equivalent to the following one:
(3.22) 1
Rm) & p-1 Rym P ERE gy

Y(m):=m
L(m) m 2 m 1 Vp+rl —1

Using (3.21) we get

] ]
1 Ry1(m) 20—p—1 p+1 1
Y = - R a-p - .
L(m) a m l(m) q 2 1 _ %Rl(m)Zq_p_l
But
q 2q—p—1 p+1 20—p—1 _ ii1(m) &)
0<1--R P11 - _~R g—p—1 —
TR1(m) —Ru(m) =

the last equality follows from (3.6). Hence

15 p 41 TR (m) B

(3.23) WLm)> S a- o S R
On the other hand,
[Ri(m)
— [p#1 AL p
We(my < P LRl (m) P4t . ,VPdV
2 m VP —1
p—1 TRi(m) e
=— -1
p+1 m

According to (3.6) we have
p-1 Fm P -1 TRy

Ry(m)2a—P~1,
p+1 m 2a m 1(m)

Our assumption on p, q implies now that

(- TR (1 Lo

Rl(m)zq_p_l.

Recalling the inequality R;(m) = m, we obtain

1 p+ 1 HR(m) b2
m

(3:24) Yr(m) <2 q- 22 Ry(m) P2,

(3.23) and (3.24) yield (3.22).
Lemma 3.3. Assume that p <2q—1. Then

(3.25) lim Lo(m) = + oo,
m-0

(3.26) lim 252 _

m-0 md—P

59

1 e = Yr(m).
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Proof. First remark that if R is a limit point (as m - 0) of Ry(m) or Ry(m)
one must have (see (3.6))

p+1
2a
Tha D

which meansthat R=0orR= —— . Since
p+1

1 1
oy < T Tl Gl
g p+1

R* —RP™ =0,

and
11
? 24P~ < Ry(m),

11
the only limit point of Ry(m) is % 97P™% and the only limit point of Ry (m)
is 0. Thus we have

m-0

One concludes like in (3.12) that (3.25) holds.
Since R;(m) - 0 and (3.6) implies that

O pag ]
mP*t =Ry (m)P*t 1— ?Rl(m)zq_p_l ,
we have
(3.27) lim R _
m-0 m

In the sequel it will be convenient for us to use the following notation: “f(x) [g(x)

when X - X,” means that lim @ = 1. When h - 0+, we have
x=Xa §(X)
Ciden - -
, dv v T

! VEIT—1 o vV +1)Pt—1 0 (G+LvV  prI

Using (3.18), (3.27) it follows that

(m)
p+1 _p-1 , 2 Ri(m _ _
(328) L]_(m) 1 a m 2 J\?ﬁ m 1= amp R]_(m) m

From (3.6) we deduce

p+1 e ]

e M= i T R @Y
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Ri(m)—m I%lRl(m)zq_p I%mzq_p.

Going back to (3.28) we get

hence

2 1
Li(m) I:I—m_gximq_g = _"mip
a 2a a

and (3.26) is shown. 1

Lemma 3.4. Assume that p <2q—1. Then

Proof. From (3.14), (3.7) we have

(3:29) Litm) = =2 LLim) + i),
where
1
pri o R m P R m
Gi(m):== —m 2z ——= -1 —
2a m m
According to (3.6) we get
1 —1_
I%i(m) ';]l_ z 2a g p*l
(3.30) - 1 = p+—1R'(m) mz .
(3.21) and (3.30) imply that
1 1 1
= £ g PFLl o a1 YR m2apt
(33)  Gim)=_— q= 5= Ri(m)"P 1= _Ri(m)

The first term on the right hand side of (3.29) tends to a finite limit as m - ¢,
(see (3.20)), while

Gi(m) - +oo, Gz(M) - —oo as m - Ce

since =i
Ro(m) = “P1 < Ro(m),
I%II:I_1_
Ri(m) - . TP as m - g
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Lemma 3.5. Assume that ¢ <p <2q—1. Then L; has a uniqgue minimum in
(O,C(a)).

Proof. It su [ced to prove that Lm) > 0 at any point m where L{m) = 0.
We first rewrite (3.14) in the following form:

2a +1 -1
(3.32) mmp—'ﬂ_lE(m) = _pT' (m) + J(m),
where
Ch gy R1(m)
I(m):= ~—0"""  J(m):= = R
1 VPHI—1 P —1 m

Di [erkntiating (3.32) and multiplying the result by m, we get
—1 .

(3.33) %mE}sLﬁm) = #l(m)hl(m) 1_|0+mlﬂ_ (p+l)lﬂhl£'

O 2(E—1)

Let us now compute m Iﬂlﬂ‘ﬁlE From (3.6) we obtain that
2a ¥l -1
29—p—1 — —
Rl(m) D+ 1 1
(3.15) and the last equality yield
_Ru(m) _ 1 1 _
650 m[ZE RH{m) m L= IRym)E ]
' _ et —1) (= &
k— [P’ T 2q—p—1
Further (m 9= [ m [ hence
mE_ e+ -1 (p+1EF(EI—1)
(3.35) - 1+ T + k= P11)? .

If L-{m) =0, then
(3.36) J(m) = pz;ll(m).

Using (3.34)—(3.36) we obtain from (3.33) that

2a
p+1

Llp (p+3)0-2 (p+1)o-1)— _
T . sy e IR i

m°z L%m) = J(m)
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We will be done if we show that the expression in big brackets is positive. It can
be easily seen that this holds if and only if

(3.37) o(3kp —2p + k) > k?(p — 1) + 2k.

To prove (3.37) we need the following lower bound for o:

(3.38) o= pz—_plk if L{m)=o0.
To derive (3.38) we use successively (3.34), the nonnegativity of L-and an obvious
inequality:

_ T

—
[Pt —1) _ - m P ., dv _p—1 @¥-—1
(k— ) P —1 mT—1 2 4, Veri—1 p+1 [P

Now an easy calculation yields (3.38). According to (3.38) it is su [cieht to prove

that o—100 ]
Z—p 2kp—2p+k(p+1) >k(p—1)+2.
Writing this inequality in the form
p?—1
kp—1)—(p—-1)+Kk >k(p—1)+2
we see that it holds if k > F% But k = 1_1}% > 1_1}% = pz_pl, since
q<p. —1

The results of Lemmas 3.1-3.5 are summarized in the following figures.

Lo(m)
L Lo(m) L L) L 2

/ LY
3 L1(m)
L1(m)
0 C@ M 0 C@ M 0 C@ M
p<q p=q g<p<2q-—-1

Figure 9. The graphs of Lj(m).
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Concerning symmetric solutions to (3.4) we have the following theorem.

Theorem 3.3.

() If p < q, then for any | > 0 the problem (3.4) has a unique positive
symmetric solution.

(ii) If p = g, then for any | > 1/a the problem (3.4) has a unique positive
symmetric solution, while for | < 1/a there are no positive solutions.

(iii)) 1f g <p < 2q—1, then there is a number L ™{depending on (a, p,q) such
that for | > L "there are exactly two positive symmetric solutions, for
| = L™there is a unique positive symmetric solution and for | < L ~there
are no positive solutions.

Proof. It is an immediate consequence of Lemmas 3.1-3.5. We only remark that
the nonexistence results in (ii), (iii) hold also for nonsymmetric solutions (recall
the observations at the beginning of this section). 1

Now we turn to the study of nonsymmetric solutions. From the fact that for
p<2¢g—1and 0 < m < c( there are two values L;(m),L2(m) such that
(3.3) holds it follows that there is at least one pair of nonsymmetric solutions
for I = 5(L1(m) + L2(m)). The following lemma is motivated by the question,
whether this pair is unique.

Lemm:i\ 3.6. Assume that p < 20 — 1 and either p < 4 orp > 4, q =
p—1-— m Then
(3.39) LH{m) + Lxm) <0 for m (0, c(ay).

Proof. According to (3.29) a su [cieht condition for (3.39) is that
(3.40) Gi1(m) + Gz(m) < 0.

By (3.31) this is equivalent to
(| (|
FIRy(m) . FORum)
Ri(m)? Rp(m)d = 7

where F is defined by (3.8). Setting

[N

2 p+
p2+ lyq_*% —ya+l + mP*,
a

H(y) =

we obtain that (q + 1)HXy) = x 9F¥x) if y = x9*1, hence (3.40) holds if and
only if

(3.41) HYy1) + HYy,) <0, yi :=Ri(m)®* i=1,2.
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Now we show that if H™y) < 0 for y [y, Y], then (3.41) holds. To do this
we first observe that

(3.42) Yo — Y1 = Y2 — VYo,

where y, is the unique point where H{y,) = 0. Indeed, from Taylor’s theorem we
have

(349 0=HE) =Ho) + sHTBGi Yol

B; lies between y; and y,. From (3.43) it is easily seen that

—1

o _ HHe),
Yo—VY1= H%l)(yz y1)

and (3.42) follows from the assumption on H™! Suppose now that Hy,) >
—H%y,). Then

(3.44) HXy. —n) > —HYy.1+n)  for n C00,y, — yi]
since

HSy, —n) < H®y, +n).
But (3.44) leads to ] ]
H y2 — (Yo —y1) <H(Yo)

what is a contradiction.
Suppose now that there is a point m such that LH{m) + L5{m) 2@0 (hence

LHm) = 0). For such m we get using (3.34) and the fact that # < 0 that
C—1 [ [R2(m) —1
T _ Rz (m)
eyt —1 I_m‘IEI P 1 W, av . m , dv
k— P! P —1 2 1 verl—1 Vel —1
i —1
dv =P~ 1 -1

=(p-1 V=
® )1 Vp+rl—1 p+1 ]

This implies that

eyt s 2P, 4(p—1)q
3p—1 Gp—1)(2g—-p—-1)
By (3.6) we have - . -
Pt 1 - _—Ry(m)2 Pt =1,

2a
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hence

g+l _ 2q—p—1 ~ (9p qg—p )

If we show that H™y) < 0 for y [[yl1,y>] then we arrive at a contradiction. A
straightforward calculation yields that

+1 3 g+3 2 _2q—p—1
ey Ly = Bl -+ p-aea-pry T

Taking (3.45) into account we see, that we need only to consider

e ()

Y =a@-2q-1)

The right hand side of (3.46) is then nonpositive if

_ _ p—1 _
(P —a)(2q p+1)3p_2q_1sq 1

By straightforward calculations it can be shown that the last inequality holds if
and only if
(29—p—1)(p*—pqg+29—3p+1) <0

The first term is positive and the second one is nonpositive if and only if
(3.47) q(p—2) =p?>—3p+1.

fp>4andq=p—1-— p—iz, then (3.47) is easily seen to hold. Consider now
p<4 Ifp<s2, thenqp—2)=p(p—2)>p°>—3p+1 If 2 <p<4, then
ap—2)>i(p+1)(p—2)=p?>—3p+1. 1

Remark 3.1. The method of proof of Lemma 3.6 does not work for any
p < 2q — 1, since for q > 3 there exists p [(d,2q — 1) such that H™y,) > 0.

Theorem 3.4. Assume that p < 2q — 1. Then the following holds:

(i) There is a number L™(0, L (ay] (which depends on a, p, q) such that for
any | > L™ the problem (3.4) has at least one pair of positive nonsym-
metric solutions ug, uz, u1(X) = us(—x) for x C[F1,1], while for | < LT
there are no positive nonsymmetric solutions.

@iy fpsd4orp>4,qg=p—1-— péz then L™= L, and the pair of
nonsymmetric positive solutions is unique.

Proof. In order to prove (i) we need only to show that the range of %(Ll +Ly)
contains the interval (L gy, ). This follows from (3.20), (3.25).
Lemma 3.6 implies (ii). 1
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In sections 4 and 5 it will be important to know how are the stationary solutions
ordered. For p = 2g — 1 we have shown that there is at most one positive solution,
for p < q it follows from Theorem 2.1(i) that any two positive solutions cross each
other. Concerning the remaining case q < p < 2q— 1 we have the following result.

Proposition 3.1. Assume that q <p <2q—1, | > L~ Let uy, u, be the two
symmetric solutions from Theorem 3.3(iii), m; = u;(0) < ux(0) = m,. Then

() uy <v (i.e. ui(X) <v(x), x I, 1]) for any positive solution v, v & uy,
(ii) any nonsymmetric positive solution crosses us,
(iii) any two nonsymmetric positive solutions cross each other.

Proof. (i) We show first that u; < u,. Suppose there is a point X, (0, I] such
that ui(Xo) = U2(Xo), U1(X) < ux(x) for x []0,X,). Set w := up; —u;. Then
Wx(0) = 0 and wyx(X) > 0 for x [0, X,), hence wx(x) > 0 for x [(D,X,). But
then w(X,) > w(0) > 0, a contradiction.

Let now v be an arbitrary nonsymmetric solution. If v = u; then v > u by the
maximum principlg. Supposg-there is a point X, [[F, 1] such that ui(Xo) > v(Xo).
Set w(x) := min v(X),ui(x) . Then

(3.473) w=<u;, Ww£&u;, W isa supersolution.

The problem (1.1) generates a strongly monotone compact local semiflow in C* :=
{v CW'?(Q); v = 0} (see Proposition 5.1) and it is easily seen that the subset
CS ={v [a*; v(x) = v(—x)} is invariant. The zero solution is unstable from
above (Theorem 2.1(iii)), the W1-?2—norm of any orbit can be estimated in terms of
its sup—norm (see (4.10)), therefore there is an orbit lying in CS which connects 0
to u; ([M, Theorem 8]), a contradiction to (3.47a). (It is not di Ccult to see that
Theorem 8 from [M] is applicable in our case, although it was formulated in [M]
only for semiflows on whole Banach spaces.)

(ii) Let v be an arbitrary nonsymmetric solution. Suppose v does not cross uy,
i.e. either v=u, or v < u,. In both cases we arrive at a contradiction, because
according to [M, Theorem 8] there are orbits (in CZJ") which connect u, to u; and
to oo.

(iii) Let v, v2 be nonsymmetric solutions, v & v,. If vi(X) = v2(—X), then they
cross at X = 0. Assume now that there is a point X, such that vi(Xo) & va(—Xo).
Then vy, vo lie on two di Lerent trajectories of the planar system

u“=w,

wH= auP.

The phase portrait for this problem is depicted in Figure 10.

Trajectories going through the points (m, 0), m < ¢,y (cf. (3.17)), cross both of
the curves u™= u%, u= —ud exactly twice. The trajectory going through (C(a), 0)
hits any of the curves u™= u9, u™= —u exactly once. Trajectories going through
the points (m, 0), m > ¢, cannot yield solutions to (3.4).
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Figure 10. The phase portrait for u~= v, v-= auP.

If a pair of nonsymmetric solutions is not unique, then there are two trajectories
that need the same “time” to go from the first intersection with u™= —ud to the
first intersection with u™= u9. It is easy to see that it is su [Cieht to consider
v1, V2 as depicted in the following Figure 11.

uH uy

Figure 11. Two nonsymmetric solutions vy, vs.

In both cases vi(—I) > vo(=I) and vy (1) < v2(I), i.e. v1, V2 cross each other. [

Now we turn to the investigation of the Morse indices of the stationary solutions.
These results will be used in Section 5.
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Theorem 3.5
(i) The symmetric stationary solutions are hyperbolic except of the cases

P<20—1, m=ce or g<p<2q-—1, =LY

(ii) The nonsymmetric stationary solutions are hyperbolic if they correspond
to m such that L{m) + L5(m) 8 0 (cf. Lemma 3.6).

Proof. Let v(X; ) be a solution of (3.1) with
V(L =p>0,  v(-lp=-—pl

We have to show that the linearized problem

(3.48) wi= apvP 1w, x CEHL D
(3.49) wH=1) = —qu(=1)*tw(-I)
(3.50) wH) = qv()9tw(l)

cannot have a nontrivial solution, if pu is such that

(I ) = va(l, p).

Obviously, w(x) = vu(x; ) satisfies (3.48), (3.49). Since (3.48) is a linear second

order equation, any solution of (3.48), (3.49) must be a scalar multiple of v, (x; ).
Assume now that v corresponds to a symmetric solution u, hence | = L;j(m) for

i=1or 2 (orl =L(mM)). The numbers m = v(0; ) and p are related (cf. (3.6))

by the equation

p+1

p+1 — P+l =
mPTH (W) = | 73

2,
Di [erkntiating the equality
Vx(Li(m); ) = vA(Li(m); p)

with respect to U, we obtain that

_ -1 _ _
(351) Vaga = VIRV = L — ) (o — V).
Since
Vs (Li(M); 1) — qvi v (Li (M); W) = avP(Li(m); ) — g2~ (Li(m); W),
we see that the right hand side of (3.51) is nonzero under the assumptions of the
first part of the theorem (L[ vanishes if and only if g < p <29—1, | = LY

apP —qu~t = avP(Li(m); p) —qva~1(Li(m); p) vanishes if and only if m = ¢()).
Hence, (3.48)—(3.50) has no nontrivial solution.
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To prove (ii) we can argue exactly as before with the only di[erknce that now
2l = Ly(m) + Lo(m). 1

In the remainder of this section we shall work with a fixed length I, we shall
vary the parameter a and we shall use the notations introduced in Section 2. We
want to use the bifurcation diagrams shown in Section 1; their correctness is shown
(except of the case 29 — 1 > p > max(4,q+ 1+ ple)) by Theorems 3.1-3.4 and
by the following lemma:

Lemma 3.7. Let ua be (any) positive solution of (3.4) and let L) be as in
(3.20) (if p<2q—1). Then we have

(i) If p<2q—1, then %L(a) <0, allrrgo L(a) =0, al_i]g]+ L(a) = +oo0,
(i) fp<ganda - O0+orifp=ganda - }+, the(r; i 3 0.
(i) Ifg<p<29—1and m [(0,cy) is fixed, then —L;(m) <O,

da
1] 1

lim min  Li;(m) = +oo,
a-0+ 0<m<c(a)

(iv) 1fp>2q—1(orifp=29—1anda>q), then lim [A[= +co (or
aIir(?+ [0}, [ +o0) and aIim [} = 0.

(V) If p<2q—1, then us - Ug, in WH2(Q) as a - a;+, where U5, is the
maximal positive solution of (3.4) and a; is as in Figs. 1-3.

Proof. (i) Follows immediately from (3.10) and (3.17).
(i) By the same way as in (2.29) we obtain

2a

29—p—1
(3.52) u =7

hence [ 3 0ifa — 0+ and [ [i$ bounded ifa — +. Ifp=g,a - 1+ and
Ua B 0, choose a sequence an | }— such that [0}, 3 ¢ > 0 (where un :=uU,,). We

may suppose u, [Cu (weak convergence) and passing to the limit in the equality
Un = KUn - anP(Un) + Q(Un)

we get up > u=Ku+ %P(u) + Q(u), which contradicts Theorem 3.3(ii).
(iii) Using (3.7) we obtain

d 1 1 1 d
_ P+l 2
—L =—_L + ———m b2 —_R
da 1(m) 2a 1(m) 2a " Rym) P+ da 1(m)
m

and di [erkntiating (3.6) we get

d p+1 Ra(m)™
il = ! L&
daRl(m) 2a? FUR;(m) 0
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d
hence ﬁLl(m) <0.
Now suppose ax — 0 and min Li(m) < | < +oo, where ¢k = Ca.. Then
o<m<ck

ck — 0 by (3.17), hence there exists a sequence uy of positive solutions of (3.4)
with a = ax and ux(0) = mx — 0. Since ax — 0, this implies Lk 3 0, which
contradicts Lemma 2.2.

(iv) The estimate (3.52) implies U4 +oo fora — 0+ and p > 29 — 1. If
p=29—1, ax - q+ and [k = c (where ux = ua, and c is a constant), then
choosing a weakly convergent subsequence we get (as in the proof of (ii)) ux - u,
where u is a positive solution corresponding to a = . Now Theorem 3.2(i) and
Lemma 2.2 yield a contradiction.

Finally, choose € > 0 and choose any positive function u : [—1,1] - (0,¢€)
fulfilling the boundary conditions in (3.4). Then uxx < auP for su Lciehtly large
a, hence u; < u < g, which implies [u} 3. 0 for a — oco.

(v) This follows from the continuous dependence of Lij(m), L and ¢y on a
and from the continuous dependence of the solution of (3.1)—(3.2) on m. 1

If uis a solution of (3.4) (or, equivalently, (2.2)), then the number of the negative
or zero eigenvalues of the operator F{u) = | — K + aP {u) — Q%u) (where |
denotes the identity), will be denoted by M~ (u) or M°(u), respectively. Recall
that any eigenvalue A 8 1 of Fu) is simple since the corresponding eigenvector
is a solution of a second order linear di[erkntial equation with a fixed boundary
condition. Moreover, the variational characterization of eigenvalues of F "{u) gives
us immediately the continuous dependence of these eigenvalues on the solution u,
which implies

(3.53) O M~ (un) - Mgu) if un -~ uand M°)=0
(354) 0= r]Iim M~ (up)— M~ (u) =1 if up, -~ uand M°(U)E0

Finally, if M°(u) = 0, then the degree d(u) is well defined and d(u) = (—1)M W,

Theorem 3.6. Let a, and a; be as in Figs. 1-5.

(i) Let p=<g. If uis a positive symmetric solution of (3.4), then M~ (u) =1
fora=<a; and M~ (u) =2 for a > a;. Moreover, M°(u) =0ifaga;. If
u is a positive nonsymmetric solution of (3.4), then M~ (u) =1, M°(u) =
0.

(i) Let gq<p<2g—1 and let the assumptions of Theorem 3.4(ii) be fulfilled.
Let a > a, and let u; < uy be the two corresponding symmetric positive
solutions of (3.4). Then M~ (uy) = M°(u1) =0, M~ (uz) =1 for a < ag,
M~(up) = 2 for a > a; and M°(u) = 0 if a B a;. If u is a positive
nonsymmetric solution of (3.4), then M~ (u) = 1, M°(u) = 0.

(iii) Let p=2q—1 and let u be a positive solution of (3.4). Then M~ (u) =
M®°(u) = 0.

(iv) M—(0) =0 and M°(0) =1 for any p,qg.
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Proof. (i) Choose a > a, su [ciehtly close to a;. Using Lemma 2.6, Lemma 2.3
and the homotopy invariance property of the degree one easily gets

0 =dz, (0) = dz (u) + d3 (0) = dz (u) +1,

where u is the unique positive solution of (3.4), hence dZ (u) = da(u) = —1. Since
u- 0fora- a, and M—(0) =0 & M°(0), we get using (3.54) (which is easily
seen to hold also for varying a) and Theorem 3.5 that M~ (u) = 1 and M°(u) = 0.
By Theorem 3.5 this will hold for any a < a;.

Now choose a~— < a; < a* close to a; and let u~,u* be the corresponding
positive symmetric solutions and uj’, u; the corresponding positive nonsymmetric
solutions (for a = a™). Using the homotopy invariance of the degree we get

(355) —1=da-(U7) =dar (U") + dar (U}) + da (U7 ) = dar (UT) + 2dg+ (U7)
due to the symmetry uy (X) = u; (—x). Theorem 3.5 implies
|da-+ (U™)] = [da+ (U)] = 1,

so that (3.55) yields da+(U™*) = 1, da+ (uy") = —1.

Repeating our considerations with a close to a, for F/x , where Xs is the
space of symmetric functions from X, we get d3(u) = —1 and (M®)"(u) = 1
for any a > a, and any positive symmetric solution u (where d* and M* is
the degree and the Morse index corresponding to F/x, respectively), hence
M~@Uu*) = (M%)~ (u*) = 1. Since dy+(U™) =1 and M~ (u*") < 2 by (3.54),
we have M~ (u*) = 2. Finally, (3.54) and da+(uy) = da+(uz) = —1 imply
M~(u) =M~(u3) = 1.

(ii) We have M°(u;) = 0 by Theorem 3.5. If M~ (u;) > 0, then this would
imply the existence of a positive (symmetric) solution lying between 0 and u;
(see Lemma 2.4 and the proof of Theorem 2.2(ii)). Hence M~ (uy) = 0, d(u;) =
da(uy) = 1. Let u, be the unique positive solution for a = a, and choose a— <
a, < a* su Lciehtly close to a,, € > 0 small. If uj” < u; are the positive solutions
corresponding to a*, we have

0 = deg(Fa-, 0, Be(Uo)) = deg(Fa+, 0, Be(Uo)) = da+ (U7") + da+ (U3)
= 1 + da+ (U;),

hence dq+(u3) = —1 and using (3.54) and Theorem 3.5 we get M~ (u;) = 1. The
rest of the assertion can be proved analogously as in (i).

(iii) The assertion can be proved by the same way as the equality M~ (u;) =
M©°(uz) = 0 in the proof of (ii).

(iv) This is trivial. 1

Corollary. If p<2g—1 and U is a maximal non-negative solution, then T is
unstable from above.
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Proof. If M~ (T) > 0, then the instability from above of T follows by the same
way as in the proof of Theorem 2.1(i), since the eigenvector corresponding to the
first eigenvalue of F 0) is positive.

If M~(@) =0,thenp=q,a<a, and eitheru=00rp >gq,a=a,. In
both cases d(T) & 1, hence U is unstable (see [Q3]). Assume now that T is stable
both from above and from below and choose € > 0. Then there exists d > 0 such
that the solution u(t, uo) of (1.1) stays in B¢(0) = {v CW2(—I,1); M+ul= €}
whenever u, (B (U) and either u, =T or U, < U. Choosing u~,u* [Bk(T) such
that u” < u < u™ in [-1,1] we can find v > 0 such that u~ < v < u™ for any
v [B, (1), since W2(—I,1) [_CI([—I1,1]). The monotonicity of the flow (see the
proof of Proposition 5.1) implies

fu(t, v)—Ulde(—py = [t u™)—u(t,u™) [de(—yy < cluft,u™)—u(t,u™) X 2ec

for any v [BJ, (0), and the variation-of-constants formula from [A1l] implies

(3.56) fu(t,v) —ul=x C(DJ sup [U{t,v) —ULde(—y,y = 2ecC(D

t— =<t

for any v [B, (u), where C(D1- +oco0 as [} 0+. Fix [ 3 0. Takingv >0
smaller, if necessary, we may suppose u(t,v) [CBg(0) for v [B,(0) and t []Q, 01
(see Proposition 5.1). This estimate together with (3.56) imply u(t,v) [CBg(U)
for v [B,(U0) and any t > 0 (where € = gmax(,2cC())), which gives us a
contradiction with the instability of u.

Consequently, T is unstable from above or from below. If U = 0 then the
instability from above follows from the fact that the functional ® corresponding

to (2.1) is even. If p > q, a = a,, then U is stable from below by [M, Theorem 8],
hence it is unstable from above. —1

4. Blow up and global existence

In this section we consider the problem
C1

Eutzmaup x [Q, t>0,
(4.1) % =yl x [aD, t>0,

ux,0) =u,(x) =0 x CQ,

with p,q > 1, a> 0, Q RN is a smoothly bounded domain. We assume that
Uo = 0 is smooth enough and that the compatibility condition al;]o =ud, x AN

is satisfied. By a solution we mean a nonnegative classical solution.
Theorem 4.1. If Q is the unit ball B(0) and

p>2q—1 or p=2¢q—1 and a=>q
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then the solution u exists globally and stays uniformly bounded for any u,.

Proof. For any u, there is a smooth function v, satisfying the compatibility
condition and such that

Uo(X) < Vo(X) = Vo(IX]) for |x] =<1.

We shall construct a sequence {wnh(r)} such that for n large enough

(4.2) Wn(r) = Vo(r)

and

(4.3) wir) + ywﬁ(r) —awb(r) <0, r [1(0,1),
(4.4) wh(0) =0, wh(1) =wa().

The maximum principle implies then that the solution emanating from u, stays
below wy, for t > 0.

0 4—1 Ghig _
q lrn , C . —— q 1

Put wp(r) := Cn—T n.—T+en,sn>O,sn_.Oas
n - oo, Then wh(r) = C¥ @D hence (4.2) holds for n large enough.
Set ¢on(r) :=C, — q;nlr“. Then

WE(r) = ()0

and (4.4) follows. Since

WERR) = gon(@ID/07D 12072 4 (n — 1) ()W D
it su Cced to show that
(45) apn(@ID/ETPP2 4 (n+ N = 2)pn(N)V 12 < agn (YO0,
Multiplying (4.5) by ¢,(r)P/@=D we obtain
(4.6) q¢n(r)(p—2q+1)/(q—l) r2n—2 4 (n+N — 2)¢n(r)(p—q)/(q—1) Mm2<ag.
If p > 2q — 1, then the left hand side of (4.6) is easily seen converge to zero as

n - oo,

If p=2q—1, a>q then (4.6) has the form

P 1 NP
4.7) 1— (g—1) r™2+nC, 1+

n
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It is obvious that it is su [cieht to prove (4.7) for r = 1. But for r = 1, (4.7)
reduces to
qg+en(n+N —2) <a,

a—q
n+N—2

In what follows we show that Theorem 3.1 is sharp. More precisely, we prove
that for Q = B1(0), p<2q—1orp =2q—1, a<q blow up occurs, while for
N =1, p=2q—1, a=q all solutions are global but unbounded.

We are also interested in all possible types of behaviour of solutions to (4.1).
Three possibilities are conceivable:

(i) global existence and boundedness,
(i) blow up in finite time,
(iii) global existence without uniform boundedness.
In several cases we will be able to prove that the third possibility cannot occur.

Theorem 4.2. Assume that N =1 (Q = (—I,1)) and

therefore we only need to choose €, < and we are done. 1

p<2qg—1 or p=2q—1, a<q.

Then
(i) any global solution is uniformly bounded in X = W2 j.e.
sup [u(:, t) Gd < co.
>0

(i) If up = v, ue B v, where v is any maximal stationary solution, then u
blows up in a finite time.

Remark 4.1. Under the assumptions of Theorem 4.2 we have the following
list of maximal stationary solutions.
The trivial solution is maximal if

p=gq,a>0,I=< 2 (Theorem 3.3(ii)),

or q<p<2q—1,a=>0, I<LY (Theorem 3.3(iii)),
or p=20—1, a<q, >0 (Theorem 3.2(i)).

Any positive solution is maximal if

p<gq,a=>01>0 (Theorem 3.3(i)),
or p=g a>0 I> i (Theorem 3.3(ii)).
or gq<p<2q—1, a>0, =LY (Theorem 3.3(iii)).

Except of the minimal symmetric solution, any nontrivial solution is maximal if

g<p<2q—1,a>0, 1>L~ (Proposition 3.1).
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Proof of Theorem 4.2. (i) We proceed by contradiction. Suppose that u is a
global solution which is unbounded in the W2—norm (which we denote similarly
as in Section 2 by [=10)J Then one of the following possibilities must occur:

4.8) tIim (-, t)[F oo

or

(4.9 limsup [, t) (= oo, Iitm inf [O{:, t) (< oo,
t- oo -

Exactly in the same manner as in [F], the variation of constants formula from
[A1] can be used to prove that for any constant C large enough, (4.9) implies
the existence of a positive stationary solution v with [T = C. This is impossible,
since under our assumptions we have an apriori bound for stationary solutions due
to (2.29), (3.52) and Theorem 3.2(i).

Suppose now that (4.8) holds. The solution u satisfies the well known energy
identity

L 4] O O
(4.10) uZdxdt+® u(-,t) = d(uy), t=>0,
o -l

where @ is the energy functional introduced in Section 2, i.e.

Ly 1 ;. & 1

§V>2‘ + VPl dx — v()I+L + y(=D9+t |
-

If we set
Fv) :=v()® + v(-)*

for v. CCI([—1, 1), then we get from (4.10) and (4.8) that
[ R
Fu(t - o0 as t- oo

Our next aim is to show that there is a constant ¢, > 0 such that

I
(4.11) F u(,t) =co ugdx
-

for t large enough. To do this we first choose for any t > 0 a point X, = X, (t) such
that ux(Xo,t) = 0 and observe that

4.12 - dx = Su(l, 20 — 2y, P
(4.12) utuxx_zu(,) mu(,) ,

Xo
_ o

since UgUx = U2 — p%lup“ o
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Analogously,

(4.13) T Ugliedx = Su(=1, )20 — —2_y(=1, P+
. tUx = 2 ’ p+ 1 ] .

Adding (4.12) to (4.13) and using the assumption on p, q, a we get, that for t large
enough (t >0 if p=2q — 1, a < q) there exists an € > 0 such that

O o T v Y ST v
eF u(,t) = |uux|dx < uZ dx uZ dx
(4.14) B [ -
€ = 2 — 2
= upydx+Ce  ugdx.
8l -
But " " (=
Ux(l, ) —Ux(X,t) =  UxxdX= ugdx=— 21 uZdx ,
X X —I
hence 0 b
ux(, ) <udl, )+ 21 uldx
—
and
Ly (- e
(4.15) uZzdx <4l u(l,*@+21  u? .
|

=
Using (4.14) and (4.15) we obtain (4.11). If we now set

R ==
ft) .= F u(,s) ds,
0

then (4.11) and (4.10) yield that

L] [ O
ft)<co uZdxdt =c, ®(Uo)— @ u(-,t)
0

Lo et

<ci+c; F u(,t)

for some positive constants ¢, c2. But this means that there is a constant cz > 0
such that

2q
fit) = caf ()7L
for t large enough. Hence f blows up in a finite time what is a contradiction.

(i) We show that (i) is a consequence of (i). We recall from Section 3 (Corollary
of Theorem 3.6) that under our assumptions any maximal solution v is unstable
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from above. By [A1], (4.1) defines a local semiflow in X = W12(—I,1). The maxi-
mum principle implies the strong monotonicity of this semiflow. Hence, according
to [M, Theorem 5] there is a function w defined on [—I,1] % (—oo, T), T > 0, with
the following properties: w satisfies the equation

Wt = Wy — awP in (—1,1) x (—o0,T),
together with the boundary condition

Wy (], 1) = w9 (%l 1) for t [(Foo,T),

further

(4.16) w(X, t1) < w(Xx, t2) for x ([, 1], —co <ty <t <T,
and

4.17) w(,t) - v inX as t - —oo,

Suppose that T = co. Then
sup Dwi(:, t) O oo,
t=0

hence w tends to a stationary solution which is by (4.16), (4.17) greater than v —
a contradiction. By the maximum principle u(:,t) > v for t > 0, therefore (4.17)
implies the assertion. 1

Concerning the localization of blow up points we have the following result.
Theorem 4.3. Assume that N =1, Q = (—1,1) and

p<2g-—1 or p=29—1, a<q.
Let u, & 0 satisfy the conditions :

Uo(X) = Uo(—X) for x [J#+1,1],
us(x) =0 for x C]Q,1].

If p > g assume further that u, is a subsolution, i.e.

ull—aub =0  for x [(F1,1),
ul{x1) = xud(x1).

Let u blow up. Then u blows up only at the points —1, 1.
Proof. We shall use an idea from [FML]. We set

J (X, t) 1= ux(X,t) — d(x)ud(x, t)
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and show that J = 0 in [0,1] < [0, T) for a suitably chosen function ¢; T is the
blow up time of u. For given u, we choose ¢ smooth as follows:

é=0 on [0,1—¢€], 0<e<],
6. ¢5¢™>0 on (1-&1l 6@ =¢,
ud=¢ud  on (1-—¢g1).

With this choice of ¢ we have

J(x,0) =0 for x [0, 1],
J@O,t)=0, J(1,t)>0 for t C[Q,T).

If we derive for J a linear parabolic inequality such that the maximum principle
enables us to conclude that J =0 in [0, 1] x [0, T) then we are done, since then

Ux(X, 1) = (L — ;)uq(x,t) for x [T0— ; 1)

and integrating this, we obtain

€

Lda—q)
> .

u(x,t) < k(L —x)¥4»  for x [U— % 1), k:= % - 161 -73)

Obvious calculations yield

Jt_Jxx
= Ut — Usooe = AOUTTH (U — Un) + O™IY + 299" U9 uy + q(q — 1)pu®2uf
= — apup—lux + aqq)up+q—l + ¢D3E|q + 2q¢%q—1ux + q(q _ 1)¢uq_2u)2('

From the definition of J we have
—apuPtuy + aqpuP* it = —aquPtI —a(p — Q)uPux.

If p<q, then
Ji— Jux +aquP 13 =0

and we are done.
If p > q, then we obtain

—a(p—a)u”ux = —(p—q)lL—XJpr—q)% U= (P=Q)"t  ux—(p—q)adu’*uf.

Since ut = 0 by the maximum principle, we arrive at

Jit — Iux + (p - Q)UFXJX + aqup_l‘J =

= (3g — p)PU U +q(2g — 1 — p)pu2uZ = 0



80 M. CHIPOT, M. FILA and P. QUITTNER

and the proof is finished. 1

Remark 4.2. Ifa=0, Q = (—1,1) and u, = 0 fulfils some additional assump-
tions, then one can use the similarity variables

— —_ )\ = —X = - - :;
w(y,s) = (T = u(x, 1), y J?rgs oM =8 A= 5G-1)

(where T is the blow up time) in order to show that for any y = 0,

(T -t u@@ —y\/ﬁ, t) - Wo(y) as t - T,
where w, is the unique positive bounded solution of
wi= )ZLWD+ Aw in (0, o),
wi(0) = —w(0),

see [FQ]. Repeating formally these considerations also for a > 0, we get the same
result if p < 2q — 1, while for p = 2q — 1 we obtain

(T— ul—y T —t1) - wa(y) as t- T,
where w, is a positive solution of
wi= %WD+ Aw + awP in (0, o),
w'0) = —w9(0).

The existence of such a solution for small a > 0 can be shown e.g. by investigation
of critical points of the functional

Ld (-
E(v) = ) I_—%_I + %Iﬁ + pjril oA+t dy — (Hilvq“(O),
where [(}) = e~y /4 (cf. [FQ]). Notice also that this problem does not have positive
solution for a > 0 large, since in this case we have E'{v)v > 0 for any v & 0.
Next we turn to the higher dimensional radially symmetric case.
Theorem 4.4. Assume that N > 1, Q = B4(0) and
p<2g—1 or p=29—1, a<q.

() If up (=ue(r)) is such that

(4.18) ui+ N - 1UOD— aub =0 for r (0, 1),
(4.19) us(0) =0, ugl1) = ud(D),
Cba Tober
(4.20) Uo(1) >1 and uy(l) > p+1 ifp<29-—1,

then u blows up in a finite time.
(i) Initial data u, with the properties required in (i) exist.
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Proof. (i) According to the maximum principle it follows from (4.18),(4.19) that
ut = 0. On the other hand, (4.18) yields that

NTruD = arN"tuP = 0,

hence u5'= 0 on [0, 1] because u5{0) = 0. The maximum principle implies then
that u, = 0. »)

We want to show that U(t) := Ju(r,t)dr satisfies an O.D.E. which has the
property that all its positive solutions blow up in finite time. To do this we first
derive some estimates.

L Ll O
utup dr = UrrUyr — auPu, dr
0
Cip, O
= “ui— ——uPtt dr
0 2 r p+l r

1 2q _ a p+1
2§u (1,1 mu (1,10).

Ifp=29—1,a<aq, then
1201 by — 2 pHigg ) = 5u% —17_2
2u 1,9 p+1u (1,t) =0u’9(1,v), 6.—2 1 7

If p<2g—1, then we use (4.20) to obtain
LAy — 2wt = suB(1, o)
2 1 p + 1 L _— 1

for some 6 > 0. In both cases

=)
(4.21) Uglr dr = 8u29(1, t).
0
On the other hand
(4.%
q L4 Ld 5 o Ld 5d 1
ud(1,t) b
Ugup dr < NE=I ugdr + Ut ugdr dr+ Ut auPdr dr
0 € € 0 0 0 0
=+ 1 + 3,

where we used the facts that

u 11t - — D _
r = ;lsl—l)’ since I%LI lur r = (ut + aup)rN 1 > O,
and that - -
Ur = Urr dr < (ut+aup) dr

0 0
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Put now g—1-n
= —a = - < <qg—1.
e:=u “(1,1), a N_l,anl
Then -
I, <UL 1) uedr,
0
m=n L
I, =< utdr
0
- )
I3 < aeuP(1,t) ugdr < auP™9(1,t) ugdr
0 0
-
<au® 171, t)  uedr,
0
hence
oo L4
Ii+ 1+ 13 < 2Au% 1781, 0) +  uedr U dr,
0 0
A :=max{1,a}, ¢ := min{a,n}.
For t such that =
2AU9718(1 ) < uedr
0
we obtain =" =
L +h+1l3<2 ugdr
0
If [
2AUI78(1 ) = uedr,
0
then =

i+ 1, + 13 <4AUP 1781, 1) uedr.
0

In both cases we get from (4.21), (4.22) that
gU(t) = AU (DM
dt -

for some A > 0, 4 > 1 which means that u must blow up in a finite time.
(i) We show that there is a number @ > a such that a solution of the equation

(4.23) ul’=aup, x [(0,1)

satisfies (4.19), (4.20).
Consider first the case p <2q—1. By Lemma 3.7 we have L5y -~ 0 asa — oo.
Hence, for any a large enough the equation

L,(m;d) =1
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has a solution M. The value at 1 of the solution to (4.23), (4.19) which corresponds
to M is equal to Ry(M). But

11
Ro (M) > Ea
q
and the assertion follows.
If p=2q9—1, a <q, then the assertion follows from Lemma 3.7(iv). 1

For general domains we have the following result.

Theorem 4.5. Assume that p<q. Then
(i) u blows up if ®(u,) <O.
(i) If u is global, then

(4.24) igg g, t) [elgy < oo,
(4.25) sup [, t) Gd < oo,
t=0
provided
N
(4.26) N=<2 o N=>2, q<m

In the case p = g we assume in addition that a & agq.

(iii) Assume that (4.26) holds. If p = q and a < ag then any solution blows
up.

(iv) Assume that (4.26) holds. If p =g assume in addition that a > aqg. Then
u blows up provided u, = v, Uy B v, Vv is any positive stationary solution.

Remark 4.3. Under the assumption (4.26), the assertion (i) was proved
already in [E, Theorem 1.1(a)]. The proof there is similar to ours, it is based on
the classical concavity method (see [L]).

Proof of Theorem 4.5. We prove first the assertion (ii). Observe that (4.25)
implies (4.24), since the trace operator Tr : W12(Q) - L9*1(9Q) is continuous
and according to [Fo]

-, t) [elgy < c([ [, OS<liF<>t t, s) Lhaq))

ifr>@—1)(N—1), N >1.

Exactly by the same reasoning as at the beginning of the proof of Theorem 4.2,
it can be seen that we have only to prove that (4.8) leads to a contradiction.

To do this we proceed similarly as in [F, Lemma 1]. Put

]
M (t) ;= u? dx dt.
0 o
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Then . |- 1

MKt =  u?dx = (U?)edxdt+  uzdx.
Q 0 Q Q

Assuming that p < q and setting € := p — 1 we obtain that

1
(4.27) %M Tty = -2+ e)du) + g | Caffdx + G=1-¢  ja+igs
Q

qg+1 50

In what follows, positive constants depending only on a, p, q, Q, u, will be denoted
byci (i=1,2,...). From (4.27) we get

(4.28) M‘IEI) =C1 Iﬂ(-,t)lﬁ;l—cz,
therefore
(4.29) MKt) - oo as t - oo,

On the other hand, using (4.10) we obtain from (4.27) that

[ [ Y 1
M%) =2 (2+¢) uZ dx dt +csMt) —cq
0 Q

hence
L1 ¢ e
MM 14 & MO2s
LGl L i L 1 5] pa I
=22 +¢) u? dx dt (up)?dxdt — uugdxdt  +
0 Q 0 Q 0 Q

+2M (csM=¢y) —csM Y

The first term on the right hand side is nonnegative according to the Cauchy
inequality and the second one tends to infinity as t — oo. Thus, thereisat, =0
such that the right hand side is positive for t = t,. This implies that

I%I/l —&/2 @

(4.30) <0 for t=t,.

Since M ~%/2 is decreasing, it must have a root — a contradiction. This proves (ii)
for p<aq.
Let us now prove (i) for p <q. From (4.27) and (4.10) we obtain that
M) = —2(2 + £)D(uo).

This again yields (4.29), hence also (4.30) and (i) follows.
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Now we turn to the case p = q. We again prove first (ii) showing that (4.8)

+
leads to a contradiction. Choose 0 <e<p—landset&€=1— " i Then
[ [ [

%M Xty =— 2+ )o) + | (fAdx —ag  uP™ldx+&  uP*ids

I;f) Ijl Q ~ o0Q
= — (2 +£)O(u) + :

2
hence
_s (men
(4.31) 175 M Tt) = —(2 + £)d(u) + L_gl+ £ | [mAdx
Q
Using (4.10) we get
432 LI (]

" MT) = -2 +e)d(uy) + (2+¢) (u)?dxdt+ =+§& | [oAdx.
2 0 Q 2 Q

Our next aim is to show by contradiction that M™t) — oo ast — oo. Suppose
that there exist a ¢ > 0 and a sequence {tn}, tn - oo, such that

(4.33) M&t,)<c for n CON.

[

1 . .

Set d(t) := al u(x,t)dx and write u in the form u = d+u ~-Where u “bklongs
Q

to the subspace of functions irX which are orthogonal to constants. From [N,

Theorem 7.1] it follows that ( , | [V]2x)*/2 is an equivalent norm for v from this
subspace. Thus, (4.32) yields that [-'t,) Gd is bounded because
1 1

Q|Iﬂ%x= Q|IIEldx.

Therefore (4.8) implies that d(tn,) — oo. Now (4.10) yields that ®(u(;,tn)) is
bounded from above and according to (4.31) it is also bounded from below. Thus

® u(, tn)

u s tn

4.34 ——— —~ 0.
(430 d(tn)P

Setting v, ;= uC, tn) we have that v, — 1 in X since

d(tn)

[ -tn) Gd.

()
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Under our assumption on p, X = W12(Q) is continuously embedded into LP*1(Q)
and the trace operator Tr : X - LP*1(9Q) is also continuous. Hence, (4.34)
implies that
1 [
(| (|
0= lim a VWdx—  vP*dS =alQ|—[aQ]
n- oo Q a0
what is a contradiction with our assumption on a.
Since M™t) — oo ast - oo, it is possible to find for any C > 0 a 1 = 0 such
that

(4.35) MKt) = Ct, M()=Ct for t=T.

From (4.32) it follows that

.
L] 2
MHXt) = 2(2+¢) +cs (up)?dx dt — ¢,
0 Q
thus
1 O o = -
(4.36) MM T 1+§ 5;'>|v| Ce (ut)zdxdt—c7 —cgM™

0

We want to show that the right hand side of (4.36) is positive for t large enough.
To do this, we use the estimate

] REY ] -
(4.37) M) = u?dx=<2 uldx+t (up)?dx dt

Q Q 0 Q

which follows from the next simple observation:

L \/H—j_’t'lIZI

u(,t) = Uup(X) +  ue(x,8)ds < uo(X) + t ut(X, s) Iz_(ljs
0 0

According to (4.37) we obtain

S -
M C6 (Ut)Z—C7 —CSMD> n MMD—C]_()M —Cgl\/“:|
0
===
=MZ"2°M — +M Z2ME )
=M ZtM Cs ZtM C10

Now (4.35) yields that the right hand side of (4.36) is positive for t large enough
and the proof of (ii) for p = q can be finished in the same way as in the case p < g.
To prove (i) for p =g we recall (4.32). It implies now that

1

L] 2
MHXt) = 2(2+¢) +cs (up)?dx dt + c7.
0 Q
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Hence, for any C > 0 there is a T = 0 such that
(4.38) M(t) = Ct for t=r1.

The right hand side of (4.36) reads now

1 Ld] 1
M cg (up)?dxdt+c; —cgMP
0 Q
and using (4.37) we get
L4 1 - , U 0 1
M cg (up)?dxdt+c; —cgM=M C7 — £C uZ dx +MDEM—C3 .
0 Q Q

The estimate (4.38) ensures positivity of the last expression for large t. This
completes the proof of (i) and (ii).

Proof of (iii). Suppose there is a global solution u. According to (ii) it is
bounded, hence its w-limit set consist of stationary solutions. But the only sta-
tionary solution is the unstable trivial solution (see Theorem 2.1(ii)), a contradic-
tion.

To prove (iv) we argue similarly. If u were global then its w-limit set would con-
sist of stationary solutions. But according to Theorem 2.1(i) there is no stationary
solution larger than v and v is unstable from above. 1

Remark 4.4. If p < q then initial functions u, with ®(u,) < 0 always exist.
If p <q then for any v (Trv & 0), ®(Av) < 0 provided A is large enough. If p=gq
then we choose v such that
1 1

a VvPtldx < vP*lds.
Q 00

Concerning global existence for general domains we have the following result.

Theorem 4.6. Let p,q be such as in Theorem 2.1(v). Then all solutions are
global and bounded.

Proof. Using the energy identity (4.10), we derive an apriori estimate for
[uf-, t) . This implies (by the same argument as at the beginning of the proof
of Theorem 4.5) that [uf(:,t) lelo) is bounded, too.

By Lemma 2.7 and Holder inequality we have that for any € > 0 small there
exists a constant C¢ such that

1
(4.39) ui*tds < eMI?H Ce 1 f <elul®wemmibfy +C,

0Q

where =1l Idenotes the norm in L"(Q). Since Hdlder inequality implies also

I3k e @by + C.,
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we get using (4.39)

1
(4.40) d(u) = |_—§r|_ e M2} Ce.

Since ®(u) < ®(u,), the estimate (4.40) proves our assertion. 1

Let us now turn to the interesting case p=2q—1, a=q.

Theorem 4.7. Assume that p =29—1,a=q, N =1, Q = (-1,1). Then
there exists a unique function w which satisfies the equation

(4.41) wi-qw? 1 =0 in (-1,1)
together with the boundary condition
(4.42) w(xl) = oo,

All nontrivial solutions of (4.1) are global and tend pointwise to w as t — oo.

Remark 4.5. It is known (see [KN] and the references there), that positive
solutions of the problem

(4.43) mFauw xL[Q
(4.44) u=oco  x [dD

exist fora>0, p>1.
In [KN] it is shown that u(x) behaves near 0Q like

e
(4.45) % 7 ist(x, 00) 25

From this it follows that solutions to (4.43), (4.44) are not singular stationary

solutions to the problem (1.1), except of the case a = g, p = 29 — 1, when ou

on
behaves like u% near 0Q.
In [KN] also uniqueness of solutions to (4.43), (4.44) is shown for p = 3.

We prove Theorem 4.7 in the following series of lemmas.

Lemma 4.1. There is a unique function w which satisfies (4.41), (4.42). More-
over,

(4.46) w(X) = w(—x) for x [J#1,1].
Proof. Denote by ¢4 the solution of the initial value problem
o= g
¢0)=a=>0
$+0) =0.
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Then ¢4 is given by the formula (cf. (3.5))

Haoo gy
(4.47) M =|x|.
a v2a — o2

The function ¢q exists for |X| < Lmax(Q) < oo, Lmax(Q) is given by the formula

L (a)_ll‘/ dv _ 1 @1/dz
max - a V—qu—dzq _(Xq_l . V—qu—l.

Lmax(0) is decreasing, it tends to zero as a — oo and there is a unique o, such
that Lyax(0p) = 1, namely

(| [
dz qil

Oo = 0 220 =1
Hence, w = ¢, is the unique solution to (4.41), (4.42) with w"(0) = 0. The
function ¢, obviously satisfies (4.46).

Suppose there is a nonsymmetric solution. Let m be its minimum attained at
0 8 X, [(#1,1). Instead of (4.47) we obtain now the formula

Hoco v X x|
m V24 —m2d or
(4.42) implies that
td dv
————— = |1 —Xo| = | —1—Xo|
m v —m2a
what is a contradiction. 1

Lemma 4.2. Let p,qg,a, N be as in Theorem 4.7 and let 0,, ¢ be as in Lemma
4.1. If 0 < up = w, Uy 80, then there exist a;, a0, (0, 0,) and functions gs, g2
such that g; = ¢q, + g; satisfy the conditions

(4.48) Y1 (X) < u(x, to) < Wa(X) for some t, >0,
(4.49) = quitt =0 in (-1,1),

(4.50) Pilxl) = = g(x1),

(4.51) i) =gi(=x)  for |x| =<1,

(4.52) Uitx)=0  for x [C]0,1].

Proof. By the maximum principle

| (|
0 < u(x, ty) <w(x) for any t, [0, tmax(Uo) ,
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where tmax(Uo) is the maximal existence time. From (4.47) it is easily seen that
¢a(1) - 0as a - 0. Therefore, there is a a; > 0 such that ¢g, < u(;,t;). On
the other hand ¢y(1) - o0 as a - oo and ¢pg(X) - Pg,(X) pointwise in (—1,1),
hence, there is a a, > 0 such that ¢, > u(-,t;). The functions ¢, satisfy all
conditions except of (4.50). We shall show that it is possible to find functions g;
such that g; = ¢q, +g; satisfies (4.48)-(4.52). Observe first that ¢5(1) < ¢4(1)
for any a (0, a,). This is easy to see if a is small, because then ¢ (1) is small,
let us say ¢4(1) = € and

-
(D)= dx)dx < qe* ™t < e = dpg(D).
0

But the mapping a B ¢5(1) — ¢4 (1) is continuous, therefore its values must be
negative for all a [0, o) since there is no B with ¢g{(1) — g (1) = 0.
Set
for |x]=1—n, 0<n<l1

X) =
In.n() [X| —1+n for 1-n<|x=1

Taking gi = 0n;,n; With n; su Cciehtly large and suitable n; (n; small), it is not
di Ccult to check that the conditions (4.48)—(4.52) are satisfied. 1

Lemma 4.3. Assume that p,q,a, Q are as in Theorem 4.7. Let
Uo(X) = Uo(—X) for |x| =1,
us(x)=0  for x []Q,1].

Assume further that

u@0,t) =K on [0,tnax(up)) for some K >0

and either
() ug=0 in [-1,1] %[0, tmax)
(i) ?gr any t []0, tmax) there is a unique point y(t) [(0, 1) such that
ug(x,t) <0 for 0=x<y(t), ux,t)>0 for yt)<x<1.
Then tax = oo.

Proof. Consider the case (ii). Since ux(0,t) =0 and ux(x,t) =0 for x [(0, 1],
we have uyx(0,t) = 0, hence

ue(0,t) = —qu?@~1(0,t) = —qK 2971,
By the maximum principle, there is a constant ¢c; > 0 such that

Ue(X, t) = —cy for |x| =<1, t CJO, tax)-
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Therefore, for z [(0,1) we get

) )
(4.53) UtUy dX = —Cq Ux dX = —cyu(z, t).
0 0

Further,

J 3 -
(4.54) Uty dX = = % —u% _dx = luzq(O, t) < 1k

0 2 5 x 2 2

and

3 J ) - -
(4.55) UtUy dX = UtUy dX — Utux dX < cp 1+u(z,t) .

z 0 0

The inequalities (4.53)—(4.55) will be used to derive an apriori estimate of u(l, t).
Using (4.55) we get

= -
UZ(z,t) =u®(z,t) =2 Uk dx = u?(z,t) —2c; u(z,t) +1
z
= 1uzq(z t)—c
= , 3.
2
Hence

(4.56) Ux(z,t) = %uq(z, t) —c4.

Using (4.54), (4.53) we get

(4.57) —KA = Ugly dX = —cyu y(t),t + UtUy OX.
2 0 0
By (4.56) we have
L L O 1 g 1 Lo £ 1
Uty dX = ~—ul—cy updx = ~u%—cy4 ugdx— —u9—cs updx.
y@® y@® o 2 o 2

Since —c¢1 < u(Xx, t) < 0 for x []Q, y(t)), we obtain

Lo L 1
Euq —C4 UrdX =<ciCq
0

thus

I:]:| d I:]:":hq+1 1

> - - —
(4.58) o utuxdx_dt . 20+ D) csU dXx —cs.
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Combining (4.57), (4.58) we get

g e+ 1

1
- - <
(4.59) t . 2q+D) cqu dx<ce 1+u(l,t) .

Integrating from 0 to T < tyax and taking into account that u¢(1,t) > 0, it follows
that

- ] - -
(4.60) _t uIt(x, T)dx—cs  u(x,T)dx<cg 1+u(l,T) T +c;
' 2@+1) o ’ o - ’ '
By Holder and Young inequalities

- -
ca u(x,T)dx=sn u"r(x,T)dx+c, n>=>0.
0 0

If we take n < , then (4.60) yields

2(g+1)
[

0

o | [
uI(x, T)dx<cg 1+u(@, T) T +c9 for T (0, tmax).
Suppose that tmax < co. Then u(1,t) - oo ast - tmax. Therefore, there is a
T [0, tmax) such that
)
(4.61) Uit (x, T)dx < cpoTu(l, T)  for T (T, tmax).
0

Using (4.53), let us now estimate uy from above in the following way:

: L1
2 2 2
uiz, ) =u(z,t)—2  uuxdx < u9(1,t) +2c, 1+u(z,t)
V4

< 2u%(1,t) +cy1,

hence
Ux(z, T) = 2u9(1,T)

if u(1, T) is large enough. By the mean value theorem
UL, T)—u(l—¢,T)=¢eux(&T)=<2eul(1,T),
thus

(4.62) u@l—=eT)=u(@,T)—2eu(1,T) = %u(l,T)
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if £:= Lul=9(1, T). Using (4.61), (4.62) we obtain
4
[ [

coTu(, T)=  ui*(x, T)dx = ud*(x, T)dx
1—¢

Iﬁ‘ |;|1 2

. huntelh, wan)

1-e 2 2w

This means that
u(l, T)=cuT,

c11 does not depend on T. This is a contradiction.
In the case (i), the proof is slightly simpler. We only mention that ¢; = 0, hence
(4.57), (4.58) are not needed to derive (4.59). The estimate

g M0 1
— — - <
it o, 2q+1D) Csu dX < cg
follows from (4.54), (4.56) in the following way:
}K2q> I:llu Uy dX = I:llu I__EJuq—c ng I:t”:bq—ﬂ—c u%(
2 T, T Tt 2 * Tdt , 2(q+1) '
1

Lemma 4.4 Let p,q,a, Q be as in Theorem 4.7. Then u is global and u(:,t) - w
pointwise as t — oo, provided 0 < uy, <w, U, 0.

Proof. According to Lemma 4.2 we need only to prove that u is global and
tends to w if Uy = g + gn,n, O [0, 0o) (with suitable n, n). We first show that
the assumptions of Lemma 4.3 are fulfilled. We have

u(0,t) = ae for t (0, tmax)
since
(4.63) u(x, t) < w(x) for |x| <1, t O], tax)
according to the maximum principle. We have also
(4.64) u=0 in [—1,1] < [0, tmax),
because

ul-qu2~1 =0 in (-1,1),

us(x1) = £ uld(x1).

Hence, u is global.
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From the fact that there are no stationary solutions it follows that u cannot be
bounded. By (4.63), (4.64) the pointwise limit V exists in (=1,1). But V must
satisfy (4.41), (4.42), hence V = w. 1

Lemma 4.5. Let p,q,a,Q be as in Theorem 4.7. Then u is global and u(:,t) -
w pointwise as t — oo, provided u, = K + gy, Where Kk is any positive constant
and gy,n is from Lemma 4.2, n, n are suitably chosen.

Proof. According to Lemma 4.4, we need only to consider k > a,. Obviously,
us(x) = 0 for x [0, 1] and it is not di Ccult to verify that there are n, n such that
ull-qu2d—1 has exactly one sign change in [0, 1] and u, satisfies the compatibility
condition. From the maximum principle it follows that there is at most one sign
change of u¢(,t) in (0,1) for t (0, tmax). Take any t; (0, tmax)-

If u¢(x,t1) = 0 for x []Q, 1], then u(:,t;) < w by the maximum principle and
Lemma 4.4 yields the assertion.

If ug(x,t1) <0 for x [0, 1], then ug < 0 in [0, 1] % [t1, tmax), hence tmax = oo
and u tends to a stationary solution from above. But the only stationary solution
is 0 and 0 is unstable from above, a contradiction.

We only need to consider the case when there is a function y(t) such that

u(x,t) <0 for x <y(t), ug(x,t) >0 for x> y(t), t 4, tmax)-
Lemma 4.3(ii) can be applied if we show that
u@,t) =K on [0,tmax) for some K > 0.

Take any t, < tmax and choose X, such that w(X,) > u(1,t) for t < t,. By the
maximum principle
max (u—w) = max (u—w).

O0=x=Xgo
O=t=<tg o=t=tq

(| (|
If u(0, t)—w(0) = mai( u(0, T)—w(0) , then we use the fact that uy(0, t)—wy(0) =0
=

which implies uxx(0,t) — wyxx(0) < 0 and
Uxx (0, ) < Wyx(0) = qw?I71(0).
This yields
Ur(0, ) = Uxx(0,1) — qu?@=2(0,t) < q %Zq—l(O) —u71(o, t)El 0.

1 1
This means that rtn<e%x u(0,)—w(0) = ue(0)—w(0) = k—a,, therefore u(0,t) <k
for t [JQ, trmax)- 1

Proof of Theorem 4.7. Theorem 4.7 is an immediate consequence of Lemma 4.5,
since for any u, = 0, Uy £ 0 and any t, small, there are constants ki, ko, > 0 and
functions g1, 02 as in Lemma 4.2 such that k; + g1 < u(-, t,) < kz + go. 1
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5. Convergence to equilibria

The aim of this section is to study the problem (1.1) from the point of view of
dynamical systems.

The solution starting from u, will be often denoted by u(t, uy), by 1 we mean
the norm in X = W2(Q).

Proposition 5.1. The problem (1.1) defines a compact local semiflow in C* =
{v CW'?(Q);v=0ae}provided N =1,20r N >2,qg<N/(N—-2),p <
(N +2)/(N — 2). This local semiflow is monotone in the following sense: if
Uo < Tp a.e., Ug E To, then u(t,uy) < u(t, o) in Q for any t [, tmax(To)). If
N = 1, this is the strong monotonicity (u(t,T,) — u(t, ue) lies in the interior of
C™).

Proof. A straightforward modification of [Al, Lemma 14.3] in virtue of [AL,
Remark 14.7(b)] shows that [A1, Theorem 12.3] is applicable for WS = W12(Q),
i.e. (1.1) (where uP := |ulP"tu and u9 := |u|9tu) defines a local semiflow in
W2(Q). Moreover, a repeated use of the variation-of-constants formula [A1,
Corollary 12.2] with suitable Wg =WLrQ), 2=1ro<r<---<rpm=r>N
shows the continuity and boundedness on bounded sets of u(t, ) : Wri(Q) -
WIreri(Q) [W1ri+1(Q), hence u(t,") : W12(Q) — WT(Q) is continuous and
the flow in W12(Q) is compact.

Suppose now u, < T,. It can be easily shown that we may find up, T, CCP(Q)
such that uy < Tn, Un — Uo, Un — U, in WL2(Q) and up, T, fulfil the boundary
condition ou = |u|%tu. Using the maximum principle we get u(t, un) < u(t, n)
for t small enough. The continuous dependence on initial values implies now
u(t, ug) < u(t, Up).

If up =0, Uy & 0, then uy := u(T, uy) CWT(Q) LA(Q) is nonnegative and
u; 8 0 for T > 0 small enough, hence we may find ¢; [CDI(Q) (a smooth function
with compact support in Q) such that ¢; & 0, 0 < ¢; < u;. The maximum
principle implies u(t, ¢;) > 0 for t (0, tmax(®$1)), hence

u(t +1,uo) = u(t,ug) = u(t, d,) > 0.

Consequently, u(t, up) is positive for t (0, tax(Uo)) and [A3, Corollary 9.3 or
9.4] implies that u(-, uo) is a classical solution of (1.1) for t {0, tmax(Uo)).

Finally, let 0 < uy, < U, Uy B U,. Then we have u(t,u,) < u(t,T,) and
u(T,Uo) B u(r,Ty) for T small enough. Moreover, u(:, ug), u(:,T,) are classical
solutions, hence the maximum principle implies u(t + T,u,) < u(t + 1,T,) on
the time interval where both solutions exist. (4.10) implies then that tmyax(Uo) =
tmax(To) and the assertion follows. 1

Remark 5.1. The problem (1.1) defines a strongly monotone compact local
semiflow in C* n W1r(Q) for any r > N.
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Theorem 5.1.Denote the set of initial nonnegative data for which the solutions
exist globally by G. Then G is star-shaped with respect to zero. Moreover, G is
closed in C™* provided one of the following conditions holds:

. N+1.
() p<gandg< —— if N > 1,
. . N +2
(i) p=g<min 2, ——— .
N
Proof. The fact that G is star-shaped follows from Proposition 5.1. To prove
that G is closed we proceed by contradiction. Suppose that u(t, u,) blows up in a
finite time T and that there is a sequence {un} Gl u, - U, in X. By continuous
dependence on initial values, it is possible to choose forany K>0at; <T and
an ny such that

(51) 'ﬂ(tlv Uno) IE: I;n<atx 'j(tv Uno) lj’ K
=t

Di [erkntiating the equation with respect to t, multiplying it by u; and integrating,
we obtain

(15-5) ] 1 ] 1 1
Z—  ufdx= ugurdx=— |[Ofdx—ap uPluZdx+q ud~tu2 ds.
2dt o Q Q Q a0
By Hdlder inequality we have
eP e 11
ui—tu2ds < uzsds us@Dgs s for s,s™>1, —+= =1
F:Jo) aQ aQ SEE

Consider first the case N >1or N =1and p=q.

N-—-1
IfN >1,sets:= N =26" 8:= %+a. Then the trace operator Tr : W®2(Q) -
. . N-—1
L25(aQ) is continuous, s = and the trace operator Tr : W12(Q) -

20—1
. . . N-—-1 .
Ls'@=D(9Q) is continuous provided N = 2 or N > 2, sifg— 1) < 2N 5 i€

6= 1 + W Hence, if N > 2, then we take € = W
If N =1, then we choose arbitrary s > 1.
With this choice of s, €, we obtain
1
ui=tu2 dS < ¢y [T [ 3], < cp [T mm P 552,
F:]o)

where [-lg}h or [Zlz1denotes the norm in W82(Q) or L?(Q), respectively. Using
Young inequality we obtain
- 1 L1

_.8
ud™tu2ds <= c, M7t nmEHn -6 uidx .
20 Q
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Now (5.2) yields that

S—  Wdxs-— MK  uldx+c Tt nmyHn -6 uldx
1 9—_1|:|
s—zm@cgme u? dx
Q

(|
if we PEE N ST 2¢; Iﬂll“rlml. Since u is global, we know from Theorem 4.5(i)
that @ u(:,t) =0 for t =0, hence

E 2 1 1 1 1 1 1
(5-5) ufdxdt=® u(, 0 —® u(,t) = u(,0) .
0 Q

Therefore, integrating (5.4) we get

-~ L] (- -1 [
(5.6) M, Ut +  u(x,1)dx<c4 max [, t) [1F6 +1 .
0 Q =T

1 1
Estimating both , u?dx and | CuJAdx as in (4.37) we see that

1 Ld 1
(,7)Pk2 m(,0)Ht (., t)CBdt .
0

Hence, (5.6) yields

1 4—1 1
(5.7) (., 1) [21< 21¢4 max [U{:, ) [IF8 + 1 +cs.
=T
o q—1 . 2—
In the case p = q it is easy to check that 1-0 <2ifN=12ande< —

orif N >2 €= w Therefore (5.1), (5.7) yield a contradiction if we
choose K large enough and T = tg, u(:,0) = Un,.
In the case N > 1, p < q, we proceed slightly di Cerently. According to (4.28)

1

(5.8) ek cgM™+¢c; = 2c6  uuedx + c7.
Q

By Holder inequality, (4.37) and (5.5), we obtain
] =1 Ld0] Py yn=L

uugdx< 2 uidx+t uZ dx dt uZ dx
Q Q 0 Q Q
n=k

< (cg +cot)’?  uZdx
Q
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Now (5.8) implies that

R=L LA
(5.9) M, T)Fkco  Uui(x,T)dx  +c7,
Q

where ci0 depends on t. But taking u(:,0) = un,, T = t; we obtain from (5.6),
(5.9) that

1 q—1 1

(5.10) [{ty, Un,) B cq1 [ty U, ) C21-0) +1
what is a contradiction to (5.1), since 2?1;—16) < 2 under the assumption N > 1,

<gq<N*1
p=<q N-1 .

Consider now the case N = 1, p < . From (4.10) it follows that

1 - a - 1 -
==  |[OfAdx+ —— P ldx s o) + —— a*lds
C12 > Q| X D1 Qu X (uo) 1+ 1 aQu
hence 1 1
Mf-,t)C = c13 supu(x,t)+1 .
x [

This means that for K large enough Omt% [u(t, un,) Lelg) cannot be attained for
=t=1y
t = 0. Therefore, there is a to [(0, t;] for which

max u(x,t) = maxu(x,tz) = max u(x,t;) =: U.
x 1 x 1 x [aQ

o=t=t;

3
IfU > %#IQI 9P then there is a & [0, 1) such that

+1
1 1
(5.10a) 2 k) dxs 0 uT(x ) dS.
p+1 o q+1 50
Since ®(u) = 0 by Theorem 4.5(i), we obtain from (5.10a) that
1-9% - 1 -
5.11 - I+1(x, t,)dS < =  t2)[2 dx.
(5.11) q+1 aQU (x, t2) 5 le 2)|7 dx
Taking sP= % (5.11) yields
e Ll
uSED(x 1)dS ° =cp | COX )2 dx °
Q

aQ
—1
<Cius rtnalx g, t) Iﬁgﬂ for t<t;.
=t
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By (5.3) we have

1

(3 .
- q+1 g
ui tuZdS < cyy ui*tds " max -, t) C9FL
aQ 20 =t

q—1 1
< o5 [ (3 max (-, ) CI¥T, §= > +e.
=t

Instead of (5.10) we obtain now by the same arguments as before that

- 1 g1 [
futy, Uno)li—LIS Cis [U{ti,un,)IF0a+l +1 |

1 -1 . 1 . _
where L bt <2 if e < —— and we arrive at a contradiction.
1—-06qg+1 +1
1 LA
The proof is trivial if U <= a——|Q| 9P since then
p+1
1
US?q_l) dS < cy7.
90

L1

Theorem 5.2. Assume that N =1 and p <q. Then for any u, Cd*, u, €0
on 0Q, there is a A, > 0 such that u(t,Aup) - 0in X ast - oo for A < A.;
u(t, AoUo) tends to a positive stationary solution as t —» oo, while u(t, Aup) blows
up in finite time for A > A,.

Proof. Set
Ao =sup{A = 0; u(t, Au,) exists globally}.

From Theorem 4.5(i) and Remark 4.2 it follows that Ay < co. Set
A1 =sup{A=>0; u(t,Auy) - 0 in X ast - oo}

According to Theorem 2.1(i), zero is a stable stationary solution, therefore A; >
0. Obviously, A1 < A,. The domain of attraction of 0 is open in X, hence
u(t, A1Uo) cannot tend to zero. By Theorem 5.1, u(t, A1Uy) is global and according
to Theorem 4.5(ii), it is bounded in X. Therefore the w-limit set w(A1U,) is
nonempty and consists of positive stationary solutions. Since w(A1U,) is connected
and the positive stationary solutions are isolated (Theorems 3.3(i) and 3.4(ii)),
w(A1Uo) = {v}, where v is a positive stationary solution.

The proof will be finished if we show that A; = A,.

Suppose A; < Aq. By Theorem 5.1, u(t, AqUo) is global, hence u(t, Aquo) —» W
ast — oo, where w is a positive stationary solution. Since

(5.13) u(t, AoUo) > u(t,A\1u,) for t=>0,
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we have that w = v, because any two positive stationary solutions must intersect
(Theorem 2.1(i)). The stationary solution v is hyperbolic (Theorem 3.5) and un-
stable (Theorem 3.6(i)). Its stable manifold W3(v) is an immersed submanifold of
X with codimension = 1, therefore it cannot contain an open set — a contradiction
to (5.13). (For the existence of the local (un)stable manifold see [S, Theorem 5.2],
for the globalization see [H, Theorem 6.1.9].) 1

Let v, and v, be stationary solutions. We say that v; connects to v,, i Cthere
is an orbit {u(t); t CRI} such that u(t) - vy in X ast - —oo, u(t) - vz in X as
t - +oo,

For semilinear parabolic equations with homogeneous Dirichlet or Neumann
boundary conditions, the connecting orbits problem was solved completely in
[BF1],[BF2]. But nonlinear boundary conditions were not considered there.

Theorem 5.3. Assume that N =1, p<q and a > a;. Let v; denote the sym-
metric positive stationary solution and v, v3 the nonsymmetric positive stationary
solutions. Then

(i) vj connects to 0 fori=1,2,3;
(i) vy connects to v, and vs.

Proof. (i) follows from [M, Theorem 8] and Theorem 2.1(i).

To prove (ii) we first recall that M~ (v;) = 2 (Theorem 3.6(i)) and that there
exists an orbit w lying in the unstable manifold W"(v;) such that w blows up in
a finite time T (see the proof of Theorem 4.2(ii)).

Let ' = {y(s); s [0, 1]} be a Jordan curve in WY(v;1) around v; such that
y(0) = y(2) =: v, lies on the orbit which connects v; to 0. Set

So ;= sup{s; u(t,y(o)) - 0 for o []Q,s]}.

Then s, > 0, because the domain of attraction of 0 is open. There is as; [(0,1)
such that y(s;) [, hence s, < s;3. By Theorem 5.1, u(t, y(so)) exists for t =0
and u(t, y(so)) converges to a stationary solution v,. The semiflow is gradient like
with respect to the functional ®, therefore v, 8 vi. This means that v; connects
to v, or v3. Butif {u(x,t); t CRI} is an orbit connecting v, to vo, then {u(—x,t);
t CRI} connects v; to vs. 1

Theorem 5.4. Assume that N =1, q<p<2q—1, a>a,. Let u; denote the
smaller symmetric positive stationary solution. Then the following holds.

(i) Any positive stationary solution v (v & u;) connects to u;.
(i) Let v be a stationary solution, v>u;. If0=su, =V, U, B0, up, B,
then u(t,uy) - U;.
(iii) Let all nonsymmetric positive stationary solutions be hyperbolic. Then for
any u, ", up >0, there is a A, = 0 such that u(t,Auy) —» Uy ast - oo
for A < Ao; while u(t, Aug) blows up in finite time for A > A,.

Remark 5.2. The nonsymmetric positive stationary solutions are hyperbolic
ifeg.p<4orp=>4,q=p—1— ;3; (see Theorem 3.5 and Lemma 3.6).
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Proof of Theorem 5.4. (i) Since u; is stable (see the proof of Theorem 3.6(i)),
the assertion follows from Proposition 3.1 and [M, Theorem 8].

(i) is an immediate consequence of (i).

To prove (iii) we define Ao, A1 as in the proof of Theorem 5.2. Since the set
of stationary solutions is bounded in L*°(Q) (cf. (2.29), (3.52)), Theorem 4.2(ii)
implies that A, < co. Obviously, A; < A, and according to (ii), A; > 0.

Suppose that Ay < Ap. Take A2 [(N1,A;). Then u(t,A1up) and u(t, Azup)
converge to the same stationary solution by Proposition 3.1. But this stationary
solution is unstable and hyperbolic. Hence, we arrive at a contradiction as in the
proof of Theorem 5.2. 1

We formulate our next (and last) result as a remark, since we only indicate
some possible proofs. To give a complete proof is out of the scope of this paper.

Remark 5.3. If N =1, p,q are as in Lemma 3.6 and a > a; then the larger
symmetric stationary solution u, connects to both of the nonsymmetric stationary
solutions.

There are several possibilities to prove this fact. We shall sketch two of them.

(i) OW=3(u;) (the boundary of the domain of attraction of the smaller symmet-
ric stationary solution ui) is an invariant Lipschitz manifold with codimension
one. (This might be shown in the same way as Theorem 5.5 in [P], see also [T,
Propositions 1.2 and 1.3].) From Theorem 5.4(i) it follows that u, AW S(uy).
Since WY (uy) contains initial data for which blow up occurs and also initial data
for which the corresponding solutions tend to u; and dimW!Y(uz) = 2, there is
a Up [WY(uz) n 0WS(u1), Uy £ uy. Analogously as in [P, Theorem 5.4(V)] it
could be shown that any two functions in dW=S(uy) cross each other. Hence, if we
denote by z(f) the number of sign changes (zero number) of f CQ([—I, ]), then
z(uo — uz) = 1. But we also know that

] [ [
tI|r_n z u(t,up) —uy =1,

since

. u(t,ug) — uz
lim —————— = =*¢,,
t——oo [(t, Uy) — U [ 2

¢2 being the second eigenfunction of the linearized (at uy) statipnary problem
(which is a Sturm-Liouville problem). It is well known that z u(t,uy) — uy is
nonincreasing in t for t [C(}oc0,T), T < oo being the maximal existence time.
Therefore

[ (|
(5.14) z u(t,ug)—ux =1 for t [(#oo,T).
Assume that

(5.15) u(=1,t;up) = ux(=1), u(l, t; ug) < uz(l)
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for t close to —co. From (5.14) it follows that
(5.16) u(l, t;uo) < uz(l) for t [(#oo,T).
Let v; be the nonsymmetric stationary solution with
vi(=1) > ux(-1), vi(l) < ux(D).
. 1 1
Since z(v1 —uy) =1, we have z u(t,u,) —vi =1 for t close to —oo. But then
(5.17) u(—I,tup) = vi(=h for t C(Foo,T)

according to the nonincrease of z.

(5.16), (5.17) and (4.10) imply that [u{t, uy) Ci$ bounded for t [(F-o0, T) which
means that T = co and u(t,ug) —» vy ast - oo,

If the inequalities in (5.15) are reversed, we can argue exactly as before to prove
that u, connects to Vo, Vo(X) = vi(—X).

(i) Another possibility to prove the connections is to use the y-map (see [BF1,
Section 2]). This tool enables us g show thejexistence of an orbit {w(t);t [
(—o0,T)} lying in WY(up) with z w(t) —u, =1 for t (oo, T). As before,
we can conclude that T = oo and w(t) converges to a nonsymmetric stationary
solution as t - oo.
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