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A COUNTEREXAMPLE TO A FEDORENKO STATEMENT

T. GEDEON

Abstract. We present a counterexample to the following statement of Fedorenko:
For a continuous map of a real interval these two conditions are equivalent:

(i) f |Rec (f) is a homeomorphism

(ii) every minimal set, which is not an orbit of a periodic point, has an ex-
hausting sequence of periodic decompositions.

The main aim of this paper is to present a counterexample to a proposition
due to Fedorenko [F], namely to that one which claims that for any continuous
function I → I (I is a real compact interval) f |Rec (f) is a homeomorphism if
and only if every minimal set, which is not an orbit of a periodic point, has an
exhaustive sequence of periodic decompositions.

Let us recall the corresponding definitions:

Definition 1. A point x ∈ I is a periodic point of a continuous function
f : I → I (denoted by f ∈ C(I, I)), if there exists n such that fn(x) = x, where
f denotes the n-th iterate of f . A point x ∈ I is asymptotically periodic, if the
sequence fn(x) converges to the orbit of some periodic point y ∈ I, when n→∞.
We denote by Per(f) the set of all periodic points of f .

Definition 2. Let M be a closed set, M ⊂ I. Then we will call the family of
sets {Mi; i = 1, . . . , n } satisfying

1. Mi ∩Mj = ∅ for i 6= j
2. ∪ni=1Mi = M

a decomposition of the set M .
We will say that a decomposition {Mi} of the set M refines a decomposition

{Ni} of M if for every Mi there is an Nj such that Mi ⊂ Nj .
A sequence of decompositions {Mn

i , i = 1, . . . , in}, n = 1, 2, . . . of M is called a
refining sequence if {Mn+1

i } refines {Mn
i } for all n. Refining sequence of decom-

positions is exhaustive, if limn→∞ supi diamMn
i = 0.

A decomposition {Mi, i = 1, . . . , k } is periodic if its members are subsets of
closed pairwise disjoint intervals and

f(Mi) = Mi+1, i = 1, . . . , k − 1, f(Mk) = M1.
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Definition 3. An interval J is called wandering, if J , f(J), f(J)2, . . . are
disjoint and no point x ∈ J is asymptotically periodic.

Definition 4. A minimal set M is an invariant, closed set which has no proper
subset of the same type.

Definition 5. The set of recurrent points is the set

Rec (f) : = {x ∈ I, ∀ ε > 0 ∃ N ≥ 0 ∀ i ≥ 0 ∃ i+1 ≤ n ≤ i+N |fn(x) − x| < ε}.

The following theorem is useful not only in our particular case but also in
general.

Theorem 1. DenoteM = ∪M the union of all minimal sets of a map f . Then
Rec (f) =M.

Proof. Our proof will follow the original proof of Birkhoff [B], where this the-
orem is proved for the smooth dynamical systems.

1. Rec (f) ⊂M.

Let x ∈ Rec (f). Define N = {fn(x)} ( A denotes the closure of the set A).
Since x ∈ Rec (f), N is a minimal set and x ∈ N .

2. M⊂ Rec (f).
Let x ∈M, then x ∈M for some minimal set M . If M is a periodic orbit then

clearly x ∈ Rec (f).
So assume that M is not a periodic orbit and x /∈ Rec (f). Then,

(1) ∃ ε > 0 ∀ N > 0 ∃ i ∀ i+ 1 ≤ n ≤ i+N |fn(x) − x| > ε.

Take ε > 0 from (1) and a sequence {Nj}∞j=1 tending to infinity which with

the corresponding sequence {ij}∞j=1 satisfies (1). Define a sequence J = {f i1(x),

f i2(x), . . . } and let y be its limit point.

By construction of J we see that if z ∈ U = {fn(y)}, then |z − x| ≥ ε.
Since U is a closed invariant set, U ⊆M , U 6= M , and M is a minimal set, we

have a contradiction. �
Theorem 2. There exists a continuous function g : I → I such that g|Rec (f)

is a homeomorphism and there is a minimal set M of g, which has no exhausting
sequence of periodic decompositions.

Proof. Proof will be divided into several lemmas.
Take a function f(x) = λ∗x(1 − x) for λ∗ = 3, 569 . . . . It is known [SKSF],

that such a function has cycles of orders 1,2,4, . . . , and no odd cycle, and such

that the set K = {fn(1
2 )} is homeomorphic to the Cantor set ( 1

2 is the critical
point c of f) and Rec (f) = K ∪ Per(f) (K is the infinite ω-limit set).

It is also known, that our f has no wandering interval (cf. [vS], therefore
K = ∩∞n=1 ∪

2n

i=1 I
n
i , where Ini for fixed n, are closed periodic intervals of the

period 2n, has the empty interior and K has an exhausting sequence of periodic
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decompositions. In such a case any two points u, v ∈ K are f -separable (two
points u, v are f -separable if there exist disjoint closed periodic intervals Ju, Jv,
containing u and v, respectively) and according to [JaSm] f is non-chaotic.

Then Theorem 1 of [MiSm] implies that f |K is a homeomorphism. �

Definition 6. A point x of the Cantor set is of the type i ( inside) if it is a
two-side limit point of the Cantor set and it is of the type o ( outside) if it is only
one-side limit point of that set.

It is easy to see (cf. renormalization process [vS]), that x ∈ {fn(c)}∞n=1 if and
only if x is of the type o.

Definition 7. Denote by A-orb(y) the set {x ∈ A, ∃ m, n > 0: fm(x) =
fn(y)} i.e. A-orb(y) is the full orbit of y within the set A.

Since f |K is a homeomorphism and f(K) = K, for every n there exists precisely
one x ∈ K, such that fn(x) = c. Therefore card(K-orb(c)) = ℵ0.

If we denote C = K\K − orb(c) then C is uncountable and

(2) every x ∈ C is of the type i.

Now we will use the technic of blowing-up the orbits, which was introduced by
Denjoy [D]:

Take an arbitrary sequence of compact intervals such that the sum of their
lenghts will be less than, say, 1

4 .
Now take some z ∈ C and construct a new function g in the following way:

We replace every v ∈ I-orb(z) by a compact interval Iv from our sequence in
such a way, that

g(Iv) = If(v); g|Iv is linear;

and the trajectories of other points remain unchanged.
In other words we define a continuous nondecreasing (and outside, intervals Iv

increasing) function τ ∈ C(I, I) such that τ(u) = v for all u ∈ Iv and then we
define g by

(3) f ◦ τ = τ ◦ g.

Let c∗ be the critical point of g and let K∗ = {gn(c∗)}.

Remark. By our construction τ(Per(g)) = Per(f),
τ(K∗) = K and so τ(Rec (g)) = Rec (f) (we “add” only the interiors of wandering
intervals to the dynamics, which doesn’t affect the above mentioned sets). Since
Rec (f) is closed (Theorem 3.11 of [SMR]) and τ is continuous and nondecreasing,
Rec (g) is also closed.

Observation. Since int(Iv) is a wandering interval for all v, int(Iv)∩Rec (g) =
∅ for all v.
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Lemma 1. g|Rec (g) is a homeomorphism.

Proof. Since Rec (g) is a compact set it is sufficient to show that g is one to one
(g is continuous) on Rec (g).

We see that τ is one to one on Rec (g) except the end points of Iv = [v1, v2],
v1, v2 ∈ K∗ where τ(v1) = τ(v2) = v.

Since for all v ∈ I-orb(z) v 6= c holds, we have c∗ /∈ ∪vIv and g|Iv is one to one
for all v. Thus g(v1) 6= g(v2) for all v.

This and (3) imply that g|Rec (g) is one to one and thus a homeomorphism.�
Lemma 2. There exists a minimal set M for the map g, which is not a periodic

orbit and which has no exhausting sequence of periodic decompositions.

Proof. Take M : = K∗. It is easy to see that K∗ is the minimal set for g,
and that it is not a periodic orbit. Further, since K = ∩∞n=1 ∪

2n

i=1 I
n
i , we have

K∗ ⊂ ∩∞n=1 ∪
2n

i=1 J
n
i , where τ(Jni ) = Ini .

But now limn→∞ diamJni(n) > 0 for those sequences of the intervals Jni(n) for

which ∩∞n=1I
n
i(n) = a, where a ∈ C-orb(z).

(For every a such a sequence of intervals Ini(n) exists, see (2)). Thus ∩∞n=1J
n
i(n) = Ia.

Since for every sequence of periodic decompositions {Sn}n,i of K∗ there is the
corresponding sequence of periodic decompositions {Tni }n,i of K, by the argument
above there is no exhausting sequence of periodic decompositions for K∗. �

Now putting together Lemma 1 and Lemma 2 we are done.
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[JaSm] Janková K. and Smı́tal J., A characterization of chaos, Bull. Austral. Math. Soc. 34
(1986), 283–293.

[MiSm] Misiurewicz M. and Smı́tal J., Smooth chaotic maps with zero topological entropy, Er-
godic Theory & Dynam. Systems 8 (1988), 421–424.

[vS] van Strien S. J., Smooth dynamics on the interval, preprint (1987).
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