Acta Math. Univ. Comenianae 123
Vol. LX, 1(1991), pp. 123-131

A THEOREM CONCERNING
SYSTEMS OF RESIDUE CLASSES

Z. W. SUN
We first introduce some notation. As usual (ng,...,ny) (resp. [n1,...,Nnk])
stands for the greatest common divisor (resp. least common multiple) of nq, ... , ngk.

By system we mean a multi-set whose elements are unordered but may occur re-
peatedly. Following S. Znam [8] we use a(n) to denote the residue class

{x Zx=a (modn)}.
For a system
® A = {ai(ni)He,

of residue classes, the n; are called its moduli.

Definition. An integer T is said to tﬁ_a_f:overing period of (1) if it is a period
of the characteristic function of the set ;_; aj(n;) .

It is clear that [n4,...,ng] is a covering period of (1), and that any covering
period is a multiple of the smallest positive one.

For any set S of integers we use d(S) to denote the asymptotic density

Nliinw%|{OSX<N:x CShY .

(JA| is the cardinality of A.) The limit obviously exists if S is a union of finitely
many residue classes. In fact

1
1 .
d ai(ni) =N|{0SX<NZX [aj(n;) for some i}
i=1
where N is any positive common multiple of ny, ..., ng.

Our main result is
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Theorem. Let T be the smallest positive covering period of (1). Then we have

(N1, ... ,NK) : )
2 _ < l1<i<sk:n;= - .
) T ong —maxHisiskini=n} d
dl griepks

To prove it we need two lemmas.
1 1

Lemma l. d aj(nj) =d 0(ni)
i=1 i=1

This is Lemma 2.3 of R.J.Simpson [6]. We can also prove it by using Theorem
1 of [2].

Lemma 2. Let ny,...,nx CZI7, and let P be a finite set of primes such that
all the n;j are contained in

P = {n Z": all prime divisors of n belong to P } .

Then % — 1 —1
d o) = :lFTl - I:Ilﬁ _
i=1 p [F] nEIZrhiiiDIn.)

Proof. We note first that

ES — = 1+ + =+ = 1
nDZ:hi:ElOlni) n el pLEd P P pDZIp
Let N = [ng,...,ng] and Ny, = p . For suLciehtly large m we have
p [P1

N|Nm. From the inclusion-exclusion principle it follows that

%I :Il | S
d o(ny) :W 0=x<N:x [ 0(nj)
i=1

=

. _
L v R i
:W 00 < x<N: njlx 10 =x < N: [nj,nj]Ix

i=1 l=<i<j=k
+ (—1)"‘1@%'3 X<N:[ng,...,ngIx %
1 -
| v [ S—
_ 1N N e N
N n; [ni, nj] N1, ..., ng]

i=1 1=i<j=k
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1 I:ll 1+ T 4 1 1 11 @
= '_|! = £ - a — — a + ...
1+%+piz+"' i—ln d el lsi<jsk[n"nj]d@
PEE -
+ (—l)k_l—l z
[ng,...,n] _d
i
|£‘ e == | s R m— [—
Juzal Pom=ee oy Mi d|Nm 1=i<j=k LT di
On 1 T
peper L 2
[nl,...,nk]dI . d
1 1 )
Ly 41 I 1 1 ]
P~ i e .
o1 P M i ni|n|l\lli? 1=i<j=k [n,n; 11NN
C 1q
+ (=D -
[n1,....nK]ININm
( d|n|m stands for “d|n and n|m ")
1 1 1
L o |:|'_|E‘—I - b
pre1 P maoon|n|Nm n Juzal K _n
for some i n C0ni)nP
This concludes the proof.
Proof of Theorem. Since T is a covering period (1), we have
1 1
| S| | S|
ai(nj) = z+Ty:z 1 ai(nj) andy 4
i=1 i=1
| S| | S|
= {ai+nix+Ty:x,y ZA}y=  ai({(n;, T)) .

i=1 i=1

Let S denote the set {n1,...,nx} and P be the set of all prime divisors of

[ng,...,nk]. Since
g, ..,n) _ [(n1,...,NK),T] ni _ [n;,T]
T .nd T and ST
we have
(ny,...,NnK) Ek nj
(T,ng,...,nE) OT,n;)
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and hence n
(g, )/ (T, Ny, ..., NK)

Obviously, H can be written in the form pép where 3, = 0. And it
o B

COT,ni)) nP .

is clear that

lordpn; —ordpn;j| < ordp[ny, ... ,Mk] —ordp(nNy, ... ,NK) =0 .
(WeDuse ordyn to denote the greatest integer a such that p® divides n.) So, if
n,n“Sland ] %Hap) o I%Insp) |

p[E] p [P

then k, = I, for all p [Pl and hence n = n"
Let M = mEaZ§|{l <i=<k:nj =n}. From Lemmas 1,2 and the above, we
n

have

I:I%I:I

— = d@i(ni))=d ai(ni) =d ai((ni, T))
i=1 ! i=1 |:|Ii—l - i=1
&l 1
=d - o(T) = —ppl':' =
=1 pLEd m:izfgm(ni:))mﬁ
1 1
- ]
- I P h L —1 n
- - p i Ny, ..., n/(T,nq,...,NK)
1
1
1+plTép+pz(1—+5p)+"'
p A1
| |
_ (1) s 1 TR T e B
(Mg om0 p 1—‘31%; -
_ () T [y
(T,Nng,...,NK) Mptm1+p+---+p5p -
1 (ueny 11 ——
M (T,ng, ,nk)pml+%+ +p%9|=1n'
Therefore
1
(1. ) = 1 —
T n)sM l+—++ = =M -,
(T, nq, , Nk p P p p g Do)
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which is the desired result. 1
Remark 1. By checking the proof we see that (2) is implied by
1

| S
=d  0((ni, T))
i=1

8

©)

>

3| e

i=1 !

which holds if T is a covering period of (1).

We now say a few words about the theorem. If (ny,...,nK)|T then (2) holds
trivially. Note that (2) can be written in the form
@5 ;smaﬂ{lsisk:ni:nﬂ L
(T,Nny,...,NK)  nCzt

(N1,...,m)[d][Ng,... ,nk]

which is implied by

1 1
@) i=1n_i = (T,ng, ..., nK) °

If T|(n1,...,nk) then (4) holds, for

1 1
| S— 1
= (N; = = @ @ @ @
= d i:lal(nl) - d(al(T)) (T, n]_, e nk) .

>

> |

i=1 !
However (4) fails to hold in general, for example, the smallest positive covering

period of {0(2),0(3)} is T =6, but 5 + 3 & G35

Corollary. Let ng be the smallest positive covering period of (1), and [ny,...,
ng] have the prime factorization

L1
M, oMl = pi" . pr<p2<---<pr.
i=1

Suppose that pg' (g and p{|ns for some s =1,... ,k, and that aj(n;) na;(n;) = 1
whenever pg[n; and pf 0hj (1 <1i,j <k). Then we have

C—p!

i— Pi—1

(5) p2® < g (a) max {1<i<k:ni=ns}
1ss=<k
peIns

where

5(0) =min{d=1: p? %] forsome O0<i=<k}
(p® [Mistands for “p%|n and p®*! gn” .)
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and
1 1
T e Y
&(0) = 1- —g=qv1 1= =1 -
t i=1 pi
gt

Proof. Letl ={l1<i<k:pfni}andJ ={0,1,...,k}—1. Obviously I & 1
0 CXand pg' Oh; for every j CI1 If i [Cand j CJ-{0} then a;(n;) naj(n;) = L1
From this it follows that

— | S| 1 1
x [ aj(n;) implies X = [nj]j rm 3 ai(ni) — aj(nj) = ai(ny) .
i1 i=1 j LI3+{0} i1l

Hence the smallest positive covering period of {aj(n;i)}i rmmust be a divisor of
[Njlj ca
Applying the theorem we get

(Ni)im

((ni)i malnjlj e

(6)

ST%l{lgiSk:ni:ns}l = .

[nili coa
dl(ni)ilj:l

(Notice that i [1if 1 <i <k and n; = ng for some s [I1) Since pg|(ni)i rrwe

have J . J
[nj]j [RE) p?% [nj]j e (ni)i [

i e

[nj]ij

and thus the left side of (6) is a multiple of p2/(p%, [njlj ) = pe?. As for the
right side of (6), we note that

|—H< |—H< 1
d| nil; Djd d| n;li Djd djpSt— |:| p(-xi d
MDim Py t |i=1 i
[T (- 1 [T
1 1 1 1 1
- 1+p_+p_+' T Tar—o+1 1 p_+p_+
con 7 Lo
1+ i + i 1 1+ i + i +
i=1 i P pfitt i Pf
ist
= &(a) :
i—g Pi— 1
Combining the above we obtain (5) from (6). 1

Remark 2. 1=d(a) =a, 0 <g(a) <1.
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Suppose that (1) is a disjoint system (i.e. ai(ni),...,ax(nk) are pairwise dis-
joint). If p&r does not divide (the smallest positive covering period) no, then by
the corollary we have

v
@) pr@) < max |[{1<i<k:nj=ns}| - .
l=s=<k i=1 Pi — 1
pyT Mg

(Note that g(ay,) < p'b—:l.) This is the first result announced in Sun [7].

Assume that each modulus of the disjoint system (1) occurs at most M times
(i.e.
Hl<i=sk:ni=ns} =M foreverys =1,...,k). By Merten’s theorem
(cf.[5]), we have

1 |:b I__dllnx

- — — where y is the Euler constant ,
X p—1 X
p<x
p prime
and thus
1 b 1
— — < for su [ciehtly large x .
p—1 M
p<x
p prime
Let p©be the smallest prime such that
P — P~ 1
<p
p prime

iz P 1 p<pr P71
p prime
and hence p™is an upper bound of prime divisors of ny,...,nk. If pr = p=e

must have pgr [n}.

Now let’s suppose the disjoint system (1) is also a covering, that is to say, (1)
is a disjoint covering system (i.e. aj(nj), 1 < i <k, form a partition of Z). By the
corollary,

(@ i
8@ <

0 forall t=1,...,r and a=1,...,0;.
=

pt=p

i=1

(Notice that ng = 1 and €¢(a) < 1.) This establishes Burshtein’s conjecture ([4]).

(The original conjecture is that py =M i_lpi—il.)
Letl<t<r,

5 = 8¢(0) = min{d=1: p** %] forsome O0<i<k}
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and 1 1 1
%@1 %Cl if r>1,
= =
=

([-] is the greatest integer function.) In [3] Berger, Felzenbaum and Fraenkel
showed that

M¢

r=1.

1 1

M21+@—1) #Ei.e. Pt Py lowm.
1

i= ! i=1
et

In [6] R.J.Simpson proved that

iz Pi

and then he derived that there exists a number B(M) such that, in any disjoint
covering system whose moduli are repeated at most M times, the least modulus
is less that B(M). It is obvious that

Tl

iz Pi

My = pr

Given 1 <t <, (since g(oy) < ptp—:1 if r>1, and g(ay) = ptp—zl if r=1) we

have from the corollary M = My, moreover there exists a modulus divided by pg®

and not by pf“*l which is repeated at least M times. If r = 2 then

r
M, > L >... =
r = Pr P Pr—1 . P P2 01

r

and thus 0 =
M= pp(1—p;') +1.

The last inequality was first proved by Berger, Felzenbaum and Fraenkel [1]. There
something was said about which modulus must occur at least [p2(1 — pl_l)] +1
times.
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me to publish this paper.
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