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ON VARIETIES GENERATED BY BOOLEAN CLONES

K. DENECKE

Clones are collections of functions defined on the same set A which are closed

under superposition and contain all projections. One of the applications of clones

is the composition of switching circuits. The combination of switching circuits to

logical networks can be regarded as a technical realization of the superposition

of Boolean functions, i.e. functions defined on the set {0, 1}. In [5] A. I. Mal’cev

described clones as carriers of algebras of the type (2, 1, 1, 1, 0). W. Taylor ([6])

showed that the identities of such clone algebras (for short also clones) correspond

to so-called hyperidentities. Hyperidentities are special formulas in a second or-

der language. To the differences between clones of Boolean functions and clones

of functions defined on sets with more than two elements belongs the following

fact ([2]): Every clone of Boolean functions is (up to isomorphisms) uniquely de-

termined by the sets of its hyperidentities. In this sense, Boolean clones can be

“separated” by hyperidentities. This is not longer true for clones of functions de-

fined on sets with more than two elements. There are non-isomorphic clones of

functions defined on the same set A with |A| > 2 satisfying the same hyperiden-

tities. Using these results we characterize that part of a variety generated by a

clone of Boolean functions which consists only of clones of Boolean functions and

describe all homomorphic images of clones of Boolean functions.

1. Basic Concepts

Let A be a finite nonempty set and let On(A) be the set of all n-ary functions

f : An → A. We set O(A) = ∪∞n=1On(A) and define the following operations on

O(A) : ∗, ξ, τ,∆, e21:

(f ∗ g)(x1, . . . , xm+n−1) : = f(g(x1, . . . , xm), xm+1, . . . , xm+n−1),

f ∈ On(A), g ∈ Om(A),

(τf)(x1, . . . , xn) : = f(x2, x3, . . . , xn, x1),

(ξf)(x1, . . . , xn) : = f(x2, x1, x3, . . . , xn),

(∆f)(x1, . . . , xn) : = f(x1, x1, . . . , xn−1) if f ∈ On(A) with n > 1 and
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(τf)(x1) = (ξf)(x1) = (∆f)(x1) = f(x1) if f is a unary function.

As a nullary operation we add the binary projection on the first component

(e1(x1, x2) = x1).

In this manner we get an algebra O(A) : = (O(A); ∗, ξ, τ,∆, e21) of the type

(2, 1, 1, 1, 0). Each subalgebra of O(A) (or its carrier) is called a clone. In case

that A = {0, 1} by L2 we denote the lattice of all subclones of O(A). The lattice

L2 is atomic and dually atomic, the cardinality of L2 is countably infinite and

each clone from L2 is finitely generated ([6]). For |A| > 2 the lattice L|A| of all

subclones of O(A) has the cardinality of the continuum and there are clones which

are not finitely generated. If C is a clone then under IdC we understand the set of

all identities of C. For instance, e21 ∗X = X is an identity satisfied by every clone

C = (C; ∗, ξ, τ,∆, e21), where X is a variable for any function of C. For an algebra

A = (A; Ω) the set of all its derived operations is the clone generated by Ω and

is called clone of all term functions of the algebra A. Conversely, if a clone C of

functions (defined on A) is given, it can be regarded as the clone of term functions

of an algebra with the carrier A. Clearly, an algebra is not uniquely determined

by the clone of its term functions. For terms w1, w2 which are constructed in the

usual way from individual variables and from the elements of a set of operation

variables (each of them is endowed with an arity) we define:

Definition 1.1. Let w1, w2 be terms built from operation symbols ωi of the

arity ni, (i = 1, . . . , k). w1 = w2 is called a hyperidentity of the algebra A = (A;ω)

(in symbols A ` w1 = w2 or T (A) ` w1 = w2) if for all choices of ni-ary functions

fi (i = 1, . . . , k) from T (A) the two term functions wA1 , wA2 obtained from w1 and

w2 by replacing the ni-ary operation symbols ωi by fi (i = 1, . . . , k) are identical.

In [7] W. Taylor recognized the equivalence between identities for clones and

hyperidentities (see also [4]).

As an example we mention that the equation F (F (x, y), y) = F (x, y) is a hy-

peridentity satisfied by any lattice. That means: substituting any binary term

function of the lattice for the binary operation symbol F one obtains a lattice

identity.

Hyperidentities can be applied in the theory of logical nets. Consider the fol-

lowing example:

Let be a symbol for an arbitrary switching circuit with one

output and two inputs. Then the composed network (Fig. 1) can be substituted

by the elementary switching circuit since F (x,F (x,F (x, y))) = F (x, y) is a hyper-

identity of the two-element Boolean algebra 2 = ({0, 1};∧, N) (∧ conjunction, N

negation) and since the term F (x,F (x,F (x, y))) describes the composed circuit.



ON VARIETIES GENERATED BY BOOLEAN CLONES 227

Fig. 1.

2. Separation of Clones of Boolean Functions by Hyperidentities

Under the separation of two clones via hyperidentities we understand the fol-

lowing problem: Are the sets IdC and IdC′ of all identities of two non-isomorphic

clones C and C′ (written as hyperidentities) of functions defined on the same set A

equal or not?

In [1] the following result is given:

Lemma 2.1 ([1]). Let C and C′ be two clones of Boolean functions with C ⊂
C′. Then IdC ⊃ IdC′, where IdC and IdC′ are the sets of all identities of the

clones C and C′, respectively.

To prove Lemma 2.1 the identities of C (of C′) are written equivalently as

hyperidentities of certain two-element algebras. For clones of functions defined on

sets with more than two elements Lemma 2.1 is not valid. We will give an example

for A = {0, 1, . . . , k − 1}, k ≥ 3. Consider the functions c, h1, h2 defined by

c(x) =

{
0, if x = 1, 2

x, otherwise
, h1(x) =

{
0, if x = 2

x, otherwise
, h2(x) =

{
0, if x = 1

x, otherwise

and the clones C = 〈{id, c}〉 (id is the identity function on A) where C1 = {id, c}
is the set of all unary functions of C and C′ = 〈{id, c, h1, h2}〉 where C′1 =

{id, c, h1, h2} are the unary functions of C′. It is easy to see that the monoid

C′1 = ({id, c, h1, h2}; ∗, id) is isomorphic to a direct power of C1 = ({id, c}; ∗, id).
It follows that IdC′1 = IdC1. Because of C = 〈C1〉 and C′ = 〈C′1〉 we have

IdC = IdC′, but C ⊂ C′.
Further for clones of Boolean functions we have ([2]):

Lemma 2.2 ([2]). Let C and C′ be two non-isomorphic clones of Boolean

functions with C * C′ and C′ * C and assume that there is no clone C′′ ∼= C′

with C ⊆ C′′ and no clone C∗ ∼= C with C′ ⊆ C∗. Then there holds IdC * IdC′

and IdC′ * IdC.

Remark. From Lemma 2.1 and Lemma 2.2 it follows that for any two non-

isomorphic clones of Boolean functions C and C′ there holds IdC 6= IdC′, i.e. C
and C′ can be separated by hyperidentities.



228 K. DENECKE

3. Varieties Generated by Boolean Clones

We can now state and prove an easy but useful corollary of Lemma 2.1 and

Lemma 2.2.

Corollary 3.1. Let C and C′ be two clones of Boolean functions with IdC ⊃
IdC′. Then there is a Boolean clone C′′ with C ⊂ C′′ and C′ ∼= C′′.

Proof. Assume that for all C′′ ∈ L2 we have: if C′′ ∼= C′ then C ⊂ C′′. If C′ ∼=
C′′ ⊆ C we get IdC′ = IdC′′ ⊇ IdC. This contradicts the presumption. Further

there exists no clone C∗ with C′′ ⊆ C∗ ∼= C since otherwise IdC′′ ⊇ IdC∗ = IdC
and IdC′′ = IdC′. IdC′ ⊇ IdC contradicts the presumption. Moreover, there

exists no clone C+ with C ⊆ C+ ∼= C′′ ∼= C′ since by C+ ∼= C′ we would have

C ⊂ C+ and C = C+ ∼= C′′ ∼= C′ would mean IdC = IdC′ which contradicts the

presumption. Therefore, if C′′ and C are incomparable, i.e. if C′′ * C and C * C′′

by Lemma 2.2 we get IdC′′ * IdC and IdC * IdC′′ = IdC′ in contradiction to

the presumption. �

A consequence of Corollary 3.1 and Lemma 2.1 is

Theorem 3.2. Let C and C′ be two clones of Boolean functions. Then IdC ⊃
IdC′ if and only if there is a Boolean clone C′′ with C ⊂ C′′ and C′′ ∼= C′.

Further we get

Corollary 3.3. Let C and C′ be two clones of Boolean functions. Then IdC =

IdC′ if and only if C ∼= C′.

Proof. C ∼= C′ implies IdC = IdC′. If conversely, IdC = IdC′ then C ⊂ C′ and

C′ ⊂ C are impossible because of Lemma 2.1. Assume C and C′ are incomparable,

i.e. C * C′ and C′ * C. There are clones C∗,C+ with C ⊆ C∗ ∼= C′ and

C′ ⊆ C+ ∼= C. Otherwise by Lemma 2.2 it would be follow IdC 6= IdC′. Since

from C ⊂ C+ ∼= C it would be follow IdC′ ⊃ IdC, we get C = C∗ ∼= C′ or

C′ = C+ ∼= C. In both cases we have C ∼= C′. �

Let V(C) be the variety (of algebras of the same type (2, 1, 1, 1, 0)) generated

by C. Clearly, every subalgebra of C is a Boolean clone. The only isomorphism

of a Boolean clone C′ is given by the mapping C′ → C′d ∼= C with Cd = {fd | f ∈
C} and fd(x1, . . . , xn) = Nf(Nx1, . . . , Nxn), where N is the negation. C′d is a

Boolean clone. There arises the question whether all algebras of V(C) which are

Boolean clones are subclones or isomorphic images of subclones of C.

Definition 3.4. V2(C) := V(C) ∩ L2.

Clearly, V2(C) = {C′ | IdC′ ⊇ IdC ∧ C′ ∈ L2}. We get the following charac-

terization of V2(C):
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Theorem 3.5. Let C be a clone of Boolean functions. Then we get V2(C) =

IS(C) where I, S denote operators for the formation of isomorphic images and

subalgebras.

Proof. Clearly, IS(C) ⊆ V2(C). If C′ ∈ V2(C) and Id (C) = Id (C′), then we

get C ∼= C′ by Corollary 3.3 and therefore C′ ∈ IS(C). If IdC′ ⊃ IdC then by

Theorem 3.2 there exists a Boolean clone C′′ with C′ ⊂ C′′ and C′′ ∼= C. Under

this isomorphism there exists a subalgebra of C which is isomorphic to C′, i.e.

C′ ∈ IS(C). Altogether we have V2(C) ⊆ IS(C). �

In a natural way there arises the question whether any homomorphic image

of a Boolean clone is again a Boolean clone (i.e. by Theorem 3.5 a subalgebra

or an isomorphic image of a subalgebra). Factorization of a clone by each of its

congruence relations leads to all homomorphic images of this clone. On every clone

C there are the following congruence relations κ0, κa, κ1 defined by

(f, g) ∈ κ0 ⇐⇒ {f, g} ⊆ C and f = g,

(f, g) ∈ κa ⇐⇒ {f, g} ⊆ C and arf = arg (arf = arity of f)

(f, g) ∈ κ1 ⇐⇒ {f, g} ⊆ C.

As usual C/κ0 = C and C/κ1 = I, where I is a one-element algebra of the type

(2, 1, 1, 1, 0). The carrier of C/κa consists of exactly one function of each arity.

Therefore, C/κa = O({0, 1}).

(Remark that for the algebra C/κ1 there is no set such that C/κ1 is isomorphic

to a clone of functions on this set.) Gorlov ([3]) determined the congruence lattices

of all Boolean clones.

We introduce the following notations:

+ for the addition modulo 2 on {0, 1},

N for the negation,

cn0 , c
n
1 , n ∈ N, for the n-ary constant operations with the value 0 and 1,

respectively,

L1 :=
〈
{+, N, c10, c

1
1}
〉

(linear functions),

L3 :=
〈
{+, c10}

〉
linear {0}-preserving functions),

L4 := 〈{x+ y + z}〉 , L5 := 〈{x+ y + z,N}〉 ,

O4 := 〈{N}〉 , O9 :=
〈
{N, c10}

〉
,

O8 :=
〈
{id, c10, c

1
1}
〉
, O6 :=

〈
{id, c10}

〉
,

O1 := 〈{id}〉 .
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Further we define congruences κc and µ1 by

(f, g) ∈ κc :⇐⇒ {f, g} ∈ C and arf = arg and there is an element c ∈ {0, 1}

with f(x1, . . . , xn) = g(x1, . . . , xn) + c.

(f, g) ∈ µ1 :⇐⇒ {f, g} ∈ C and f = g or there is an element n ∈ N
with {f, g} = {cn0 , c

n
1}.

Then the congruence lattices of all Boolean clones have the following form:

κ1

κa κa

κc

µ1

κ0

κa

µ1

κ0

κa

κ1 κ1 κ1

κ0
κc

κ0

L1,L5,O4 O9 O8

all other Boolean

clones

These congruences lead to the following factor algebras: L1/κc ∼= L3 ⊂ L1,

L5/κc ∼= L4 ⊂ L5, O4/κc ∼= O1, O9/κc ∼= O6 ⊂ O9, O8/µ1
∼= O6 ⊂ O8.

Further, it is easy to see that the carrier of O9/µ1 contains exactly three unary

functions f1, f2, f3 with

∗ f1 f2 f3

f1 f1 f2 f3
f2 f2 f1 f3
f3 f3 f3 f3

Therefore, O9/µ1 = 〈{f1, f2, f3}〉 is not a clone of Boolean functions. O9/µ1 can

be interpreted as a clone of functions defined on {0, 1, 2} with f1 = id, f2 = (12),

f3 = c10.

We mention that an algebra is subdirectly irreducible if its congruence lattice

has a uniquely determined atom. Using Gorlov’s result we get:

Lemma 3.6. Every Boolean clone is subdirectly irreducible.

Altogether we obtain

Theorem 3.7. Let C be a clone of Boolean functions and C 6= O9. Then

V2(C) = HS(C) \ {I,O({0})} (I = one-element algebra).

For O9 we have V2(O9) = HS(O9) \ {I,O({0},
〈
{id, (12), c10}

〉
}.
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