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HILBERT–SPACE–VALUED MEASURES ON

BOOLEAN ALGEBRAS (EXTENSIONS)

J. HAMHALTER and P. PTÁK

Abstract. We prove that if B1 is a Boolean subalgebra of B2 and if m : B1 → H

is a bounded finitely additive measure, where H is a Hilbert space, then m admits
an extension over B2. This result generalizes the well-known result for real-valued
measures (see e.g. [1]). Then we consider orthogonal measures as a generalization of

two-valued measures. We show that the latter result remains valid for dimH <∞.
If dimH = ∞, we are only able to prove a weaker result: If B1 is a Boolean
subalgebra of B2 and m : B1 → H is an orthogonal measure, then we can find a
Hilbert space K such that H ⊂ K and such that there is an orthogonal measure
k : B2 → K with k/B1 = m.

Notions and Results

Definition 1. Let B be a Boolean algebra and let H be a real Hilbert space.

A mapping m : B → H is called a measure if the following two conditions are

satisfied (the symbol ‖ ‖ stands for the norm of H induced by the scalar product

〈·, ·〉):

(i) supa∈B ‖m(a)‖ <∞,

(ii) if a, b ∈ B and a ∧ b = 0, then m(a ∨ b) = m(a) +m(b).

Obviously, if H = R then we obtain an ordinary real-valued bounded measure.

For a given Boolean algebra B and a given Hilbert space H, let us denote by

M(B,H) the set of all measures onB ranging inH, and let us denote byMc(B,H)

the set of all m ∈ M(B,H) such that supa∈B ‖m(a)‖ ≤ c. The following simple

proposition says that the set Mc(B,H) (c ≥ 0) is quite large. (Recall that two

elements a1, a2 ∈ B are called disjoint if a1 ∧ a2 = 0.)

Proposition 2. Suppose that we are given a nonnegative c ∈ R and suppose

that {a1, a2, . . . , an} is a subset of B consisting of mutually disjoint nonzero el-

ements in B. Suppose further that {v1, v2, . . . , vn} is a subset of H such that

‖
∑
i≤n εivi‖ ≤ c for any choice of εi ∈ {0, 1} (i ≤ n). Then there exists a mea-

sure m ∈ Mc(B,H) such that m(ai) = vi. Moreover, if the vectors vi (i ≤ n)
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are mutually orthogonal then m can be chosen so that 〈m(a),m(b)〉 = 0 for any

disjoint pair a, b ∈ B.

Proof. We may (and shall) assume that B is a collection of subset of a set A.

Viewing B this way, the set {a1, a2, . . . , an} becomes a set of mutually disjoint

nonvoid subsets of A, say {A1, A2, . . . , An}. Choose points pi ∈ Ai (i ≤ n) and

write, for any subset D of A which belongs to B, P (D) = {vi | pi ∈ D}. If we put

m(D) =
∑
i∈P (D) vi, then m is the desired measure. �

The following proposition sheds light on the topological structure ofMc(B,H).

Proposition 3. Suppose that w denotes the weak topology of H (thus, w is

the weakest topology making all the functions 〈·, x〉 (x ∈ H) continuous). If we

understand Mc(B,H) (c ≥ 0) as a subset of the (topological) product (H,w)B ,

then Mc(B,H) becomes a compact space.

Proof. Let us denote by Sc(0) the closed ball in H with the radius c and with

the centre in 0. As known (see e.g. [2]), the set Sc(0) is compact in the topol-

ogy w. Since Mc(B,H) is a subset of the topological product (Sc(0), w)B and

since (Sc(0), w)B is compact (Tychonoff’s theorem), we only have to verify that

Mc(B,H) is closed in (Sc(0), w)B . But the pointwise limits of (finitely additive)

measures obviously remain measures. This completes the proof of Proposition 3.�

Theorem 4. Let B1 be a Boolean subalgebra of B2 and let H be a real Hilbert

space. Let m : B1 → H be a measure. Then m admits an extension over B2.

Proof. Let us denote by P the set of all finite partitions of B1. (By a partition

we mean a set P = {p1, p2, . . . , pn} such that pi (i ≤ n) are mutually disjoint and

∨i≤npi = 1.) Let us consider the set P together with the refinement relation ≤.

Thus, we put P ≤ R (P,R ∈ P) if for any p ∈ P there exists r ∈ R such that

p ≤ r. Obviously, the relation ≤ is a partial ordering of P and we may view P as

a partial ordered set.

Put c = supa∈B1
‖m(a)‖ and set, for any P = {p1, p2, . . . , pn} ∈ P, FP = {m ∈

Mc(B2,H) |m(pi) = m(pi) for any i, i ≤ n}. By Prop. 3, FP 6= ∅ for any P ∈ P.

Put further F = {FP |P ∈ P}. We shall show that F is a filter base consisting of

closed sets inMc(B2,H).

Indeed, sinceMc(B2,H) is considered with the weak topology, every FP is closed

in Mc(B2,H). Further, suppose that P,R ∈ P , where P = {p1, p2, . . . , pn} and

R = {r1, r2, . . . , rm}. put Q = P ∧ R = {pi ∧ rj |i ≤ n, j ≤ m}. Obviously,

FQ ⊂ FP
⋂
FR and thus, as a simple consequence, every intersection of a finite

subset of F is nonvoid. Hence F is a filter base as we were to show.

We shall now use the compactness argument. Since Mc(B2,H) is compact,

we infer that
⋂
F 6= ∅. Choose a measure in the intersection

⋂
F , some k ∈

Mc(B2,H). By the definition of the sets FP , we immediately obtain that k(a) =
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m(a) for any a ∈ B1. Therefore k extends m and the proof of Theorem 4 is

complete. �
Let us now take up a special class of measures. It should be noted that in a

slightly more general setup they have been considered in [3].

Definition 5. Let B be a Boolean algebra and let H be a real Hilbert space.

A measure m : B → H is called orthogonal if for any two disjoint elements a, b ∈ B
we have 〈m(a),m(b)〉 = 0.

In other words, an orthogonal measure maps disjoint elements into orthogonal

ones. Let us denote by O(B,H) the set of all orthogonal measures on B which

range inH. Analogously, we define Oc(B,H) (c ≥ 0) as the set of all m ∈ O(B,H)

such that supa∈B ‖m(a)‖ ≤ c. Thus, Oc(B,H) ⊂ Mc(B,H). The following

proposition gives us a useful characterization of orthogonal measures.

Proposition 6. Let m ∈ M(B,H) be a measure. Put R(m) = {p ∈ H | p =

m(a) for some a ∈ B} and denote by S(m) the sphere in H which is centred in
m(1)

2 and which has the radius ‖m(1)‖
2 . Then m is an orthogonal measure if and

only if R(m) ⊂ S(m).

Proof. Suppose that m is an orthogonal measure. Suppose further that p ∈
R(m). It means that p = m(a) for some a ∈ B. We have 〈m(a),m(1)−m(a)〉 =

〈m(a),m(a′)〉 = 0 and therefore we obtain

‖m(a)−
m(1)

2
‖2 =

1

4
〈m(a)− (m(1)−m(a)),m(a)− (m(1)−m(a))〉

=
1

4
(‖m(a)‖2 + ‖m(a′)‖2) =

‖m(1)‖2

4
.

It follows that ‖m(a)−m(1)
2 ‖ = ‖m(1)‖

2 and therefore m(a) ∈ S(m). Thus, R(m) ⊂
S(m).

Suppose on the contrary that R(m) ⊂ S(m). Suppose that a ∧ b = 0 for some

elements a, b ∈ B. Put x1 = m(a), x2 = m(b) and x3 = m(a∨b). Then xi ∈ R(m)

(i = 1, 2, 3) and x3 = x1 + x2. By an easy computation we obtain

‖xi‖
2 = ‖xi −

m(1)

2
+
m(1)

2
‖2

= ‖xi −
m(1)

2
‖2 + ‖

m(1)

2
‖2 + 2

〈
xi −

m(1)

2
,
m(1)

2

〉
= 〈xi,m(1)〉 (i = 1, 2, 3).

Thus, ‖x1‖2 + ‖x2‖2 = ‖x1 + x2‖2 and therefore

〈m(a),m(b)〉 = 〈x1, x2〉 = 0.

�
The foregoing proposition has the following two corollaries.
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Corollary 7 (see also [3]). If H = R, then O(B,H) consists of all two-valued

measures.

Proof. A measure m : B → R is orthogonal if and only if R(m) = S(m) =

{0,m(1)} (Prop. 6). It follows that m is orthogonal if and only if it is two-valued.�

Corollary 8. Suppose that dimH <∞ and suppose that we are given nonneg-

ative c ∈ R. Then Oc(B,H) (c ≥ 0) is a compact space when viewed as a subspace

of Mc(B,H) (as always,Mc(B,H) is endowed with the weak topology).

Proof. We have to show that if m is a pointwise limit of elements of Oc(B,H),

then ‖m(a) − m(1)
2 ‖ = ‖m(1)‖

2 for any a ∈ B. But this is obvious since the

norm topology and the weak topology coincide on every finite dimensional normed

space. �

Let us consider the extension problem for the orthogonal measures.

Theorem 9. Let B1 be a Boolean subalgebra of B2 and let m : B1 → H be

an orthogonal measure. If dimH < ∞ then m admits an orthogonal extension

over B2.

Proof. Suppose that c = supa∈B ‖m(a)‖. In order to copy the proof of The-

orem 4, we have to establish that the corresponding collection FP consists of

nonvoid sets and that the filter base F converges in Oc(B,H). The former prop-

erty is guaranteed by the last statement of Prop. 2 (the measure m of Prop. 2

can be chosen orthogonal) and the latter property follows from the compactness

of Oc(B,H) (Prop. 8).

To our regret, we have not be able to prove Theorem 9 for an arbitrary Hilbert

space. We rather suspect that it cannot be proved at all. The thing is that in

this case the space Oc(B,H) does not have to be compact. (For instance, take

B = {0, a, a′, 1} and H = l2(N), where N means the set of natural numbers. Let

δj (j ∈ N) denote the element of H such that δj(i) = δji (i ∈ N). Let M be the

sequence of orthogonal measures (mn)n∈N determined by the following equalities:

mn(a) =
δ1 + δn

2
, mn(a

′) =
δ1 − δn

2
.

Then the set M has no cluster point in O1(B,H).) �

In the conclusion, let us relax the initial extension problem by allowing “en-

largements” of the range Hilbert space of the orthogonal measure in question. In

this case we have a positive result. Unfortunately, we cannot avoid the use of

deeper results of the operator theory.

Theorem 10. Let B1 be a Boolean subalgebra of B2 and let H be a Hilbert

space. Let m : B1 → H be an orthogonal measure. Then there is a Hilbert space K
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which contains H as a Hilbert subspace and which fulfils the following property:

There is an orthogonal measure k : B2 → K such that k|B1 = m.

Proof. We may (and shall) identity B2 with the lattice of all projectors L(C)

of a commutative C∗-algebra C. We assume that C acts on a (complex) Hilbert

space F .

Take now the mapping f : B1 → R defined by putting f(P ) = ‖m(P )‖2 (P ∈
B1). It is easy to check that f is a bounded finitely additive nonnegative measure

on B1. According to [4], f can be extended to a finitely additive nonnegative

bounded measure f̃ : L(C̃)→ R, where C̃ is a commutative von Neumann algebra

containing C. Going on further, f̃ can be extended to a nonnegative bounded

functional f̂ on the entire C̃ (we take the integral of the measure f̃ |L(C̃) by making

use of the spectral theorem in C̃). Put f = f̂ |C. Using the GNS-construction (see

[2]), we infer that there is a (complex) Hilbert space G and a ∗-homomorphism

φ of C into a C∗-algebra B(G) of all bounded operators acting on G such that

f(A) = 〈φ(A)x, x〉 (A ∈ C) for a suitable x ∈ G. Let us define a mapping

p : B2 → G by the equality

p(P ) = φ(P )x (P ∈ B2).

Then p can be viewed as an orthogonal measure with values in a real Hilbert

subspace L of G generated by the set {p(P )|P ∈ B2}. Indeed, if P,Q ∈ B2, then

PQ ∈ B2 and 〈p(P ), p(Q)〉 = 〈φ(PQ)x, x〉 ≥ 0. Moreover, for any P ∈ B2 we have

‖p(P )‖2 = 〈φ(P )x, φ(P )x〉 = 〈φ(P )x, x〉 = f(P ). Further, for any P,Q ∈ B1 we

have 〈p(P ), p(Q)〉 = ‖p(P∧Q)‖2 = f(P∧Q) = ‖m(P∧Q)‖2 = 〈m(P ),m(Q)〉. Put

Kp = {p(P )|P ∈ B1} and Hm = {m(P )|P ∈ B1}. Define a mapping U : Kp →
Hm by putting U(p(P )) = m(P ). The definition of U is correct and moreover,

U can be linearly extended over spanKp (here spanKp means the closed linear

hull in L). Indeed, if
∑
i≤n αip(Pi) = p(Q) (αi ∈ R), then using the equality

〈p(P ), p(Q)〉 = 〈m(P ),m(Q)〉 (P,Q ∈ B1) we obtain

‖
∑
i≤n

αim(Pi)−m(Q)‖2 = ‖
∑
i≤n

αim(Pi)‖
2 + ‖m(Q)‖2 − 2

〈∑
i≤n

αim(Pi),m(Q)

〉
= ‖

∑
i≤n

αip(Pi)− p(Q)‖2 = 0.

Let us denote again by U the extended mapping. Thus, we have a unitary

mapping U : spanKp → spanHm. Let K be a (real) Hilbert space such that

K ⊃ H and dimL ≤ dimK. Extend U to a unitary mapping from L into K (we

set U|K⊥p = V, where V is a unitary mapping of K⊥p into H⊥m). Denoting finally

the extended mapping again by U and putting k = U ◦ p, we easily check that k is

an orthogonal measure on B2 which extends m. The proof is complete. �
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Let us note in the conclusion of this paper that the proof of the latter theorem

yields an “absolute” extension theorem provided the dimension of H is sufficiently

large. Indeed, if C is the C∗-algebra associated with B2 in the proof and if we put

d(B2) = dens C, where dens C denotes the density character of the (topological)

space C, then we easily check that dimL ≤ d(B2) (the representation φ in the

proof of Theorem 10 can be chosen cyclic). Applying now Theorem 10, we obtain

the following corollary.

Corollary 11. Let B1 be a Boolean subalgebra of B2 and let H be a real Hilbert

space. Suppose that m : B1 → H be an orthogonal measure. If d(B2) ≤ dimH then

m admits an orthogonal extension over B2.

Remark 12. After finding the proof of Theorem 10, we became aware of the

paper “Orthogonally scattered dilation of Hilbert space valued set functions”,

Lecture Notes in Math. 945, 269–281, Springer-Villey 1982 by S. D. Chatterji.

Quite deep main result of the latter paper together with our Theorem 4 provides

an alternative proof of Theorem 10. As technical as our proof of Theorem 10 may

be, we believe that it is still simpler.
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