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COMMON k–TRANSVERSAL OF FINITE FAMILIES

P. HORÁK

1. Introduction

Let A = (Ai, i ∈ I) be a family of subsets of a set E, let k be a natural

number. Suppose that there exists a mapping f : M → E, M ⊆ I × {1, 2, . . . , k},
such that f(i, j) ∈ Ai for each (i, j) ∈ M and f is injective in both coordinates,

i.e. f(i, j1) 6= f(i, j2) for j1 6= j2, f(i1, j) 6= f(i2, j) for i1 6= i2. Then the bag

(= multiset) {f(i, j), (i, j) ∈M} is called partial k-transversal of cardinality |M | or

of defect k · |I|−|M |. In the case M = I×{1, 2, . . . , k} the bag {f(i, j), (i, j) ∈M}
is referred to as (full) k-transversal.

Clearly, for k = 1, the concept of a partial k-transversal coincides with the

concept of a partial transversal defined in the usual manner.

k-transversals have turned out to play an important role in transversal the-

ory. There are two fundamental results concerning both transversal and matroids.

Rado (Theorem 6.2.1 of [4]) established a necessary and sufficient condition for

a finite family of sets to possess a transversal which is independent in a given

matroid. The second result, stated by Edmonds and Fulkerson (Theorem 6.5.2 of

[4]), says that the partial transversals of a finite family of sets form a matroid.

The two theorems lie at the very heart of transversal theory and therefore there

are many variations and generalizations of them. Yet, the generalization of these

milestone results seem to go in different directions.

In [2], the first “parallel” generalization of them has been obtained. The results

might be of great help when proving other generalizations in transversal theory.

A possible utilization is presented here.

In transversal theory there exist plenty of results concerning various aspects

of common transversal. A survey of this field can be found in [4], for later ones

see e.g. [1], [3]. In this paper we determine a necessary and sufficient condition

for two finite families A, B of the sets to possess a common partial k-transversal

of cardinality d, that is the criterion for the existence of a bag of cardinality d

which is a partial k-transversal of both A and B. This result is a generalization of

several theorems among others also of a classical theorem of Ford and Fulkerson
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(Corollary 9.3.4 in [4]).

2. Preliminaries

For the sake of compact formulations, besides the concept of a set, we will also

make use of the concept of a bag. Sometimes bags are also called multisets. A

bag is a collection of elements over some domain allowing multiple occurrences

of elements. For a bag B the |(x,B)| function defines the number of occurrences

of an element x in a bag B. The cardinality |B| of a bag B is defined by |B| =∑
x |(x,B)|. A bag A is a subbag of a bag B, denoted by A ⊆ B, if |(x,A)| ≤

|(x,B)| for each x. For the bag union A ∪ B, the bag intersection A ∩ B, the

bag difference A−B we have |(x,A∪B)| = max (|(x,A)|, |(x,B)|), |(x,A∩B)| =
min (|(x,A)|, |(x,B)|), |(x,A − B)| = max (0, |(x,A) − |(x,B)|). Let E be a set

and d be a natural number. Then the bag space Ed is the collection of all bags B

satisfying, for any x ∈ E, 0 ≤ |(x,B)| ≤ d.

To avoid misunderstanding any time we treat bags we will refer to it explicitly.

Let r : Ed → N = {0, 1, 2, . . .} be a function with the following properties:

(i) r(A) ≤ |A|,
(ii) if A ⊂ B, then r(A) ≤ r(B),

(iii) r is submodular.

The pair (Ed, r) is called a bag matroid over E and the bags B of Ed with the

property r(B) = |B| are called independent. When not specified, the subscript

d will be dropped. It obvious that the bag matroids are a special case of super-

matroids [cf. 5].

Further, let A = (Ai, i ∈ I) be a family of sets, let k be a natural number and

J ⊆ I. Then by A(J)k we will denote the bagB such that |(x,B)| = max (k, |{i, i ∈
J, x ∈ Ai}|). For k = 1, A(J)1 = A(J) = ∪i∈JAi which is the standard notation

in transversal theory.

Using powerful matroid techniques, Mirsky and Perfect presented in [4] a “con-

cise” proof of the necessary and sufficient condition for families A and B to possess

a common partial transversal (i.e. for k = 1). To be able to make use of their idea

for general k we state two theorems of [2].

Theorem 1([2]). Let A = (Ai, i ∈ I) be a finite family of subsets of a set E,

M = (E, r) be a bag matroid over E, and let k be a natural number. Then A
possesses a partial k-transversal of detect m, which is independent in M, if and

only if, for each J ⊆ I, r(A(J)k) ≥ k · |J | −m.

Theorem 2([2]). Let A = (Ai, i ∈ I) be a finite family of subsets of a set E,

and let k be a natural number. Then there exists a bag matroid over E such

that collection of its independent bags coincides with the collection of all partial

k-transversals of A.
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3. Results

We start this section with the main result of the paper.

Theorem 3. Let k, p be natural numbers. Then finite families A = (A1, . . . ,

Am), B = (B1, . . . , Bn) of subsets of a set E possess a common partial k-transver-

sal of cardinality p if and only if |A(J)k ∩B(I)k| ≥ k(|J |+ |I| −m−n)+ p for all

J ⊆ {1, . . . ,m}, I ⊆ {1, . . . , n}.

Proof. First of all we prove an auxiliary statement: Let Y be a bag over E.

Then Y contains a subbag which is a partial k-transversal of detect d of B =

(B1, . . . , Bn) if and only if |B(I)k ∩ Y | ≥ k · |I| − d for all I ⊆ {1, . . . , n}.The left

to right implication is an immediate consequence of Theorem 1 for the free bag

matroid. The converse will be proved by induction with the governing index n.

The first step of induction, for n = 1, is straightforward. Now let X be a minimum

subbag of Y satisfying the condition |B(I)k ∩X| ≥ k · |I|−d for all I ⊆ {1, . . . , n}.
By virtue of minimality of X there exists I0 ⊆ {1, . . . , n} such that

(1) |B(I0)k ∩X| = k · |I0| − d.

Consider two cases.

a) There exists a proper subset I0 of {1, . . . , n} with property (1). Put X1 =

B(I0)k∩X andX2 = X−X1. Then, for all I1 ⊆ I0, |B(I1)k∩X1| = |B(I1)k∩X| ≥
k · |I1| − d holds. Further, for all I2 ∈ {1, . . . , n} − I0, we have k(|I0|+ |I2|)− d ≤
|B(I0 ∪ I2)k ∩ X| ≤ |B(I0)k ∩X| + |B(I2)k ∩X2| = k · |I0| − d + |B(I2)k ∩X2|,
i.e. |B(I2)k ∩ X2| ≥ k · |I2|. Thus, from the induction hypothesis, X1 contains

a subbag Z1 which is a partial k-transversal of (Bi, i ∈ I0) of defect d and X2

contains a subbag Z2 which is a full k-transversal of (Bi, i ∈ {1, . . . , n} − I0).

However, from the minimality of X, we have |(x,X)| ≤ k for each x ∈ E. Thus,

Z = Z1 ∪ Z2 ⊆ X ⊆ Y is a partial k-transversal of B of detect d.

b) For every proper subset I of {1, . . . , n} it holds |B(I)k ∩ X| > k · |I| − d
and only for I = {1, . . . , n} the property (1) is satisfied. Then, on the basis of the

minimality of X, |X| = k · n− d. If B has the property

(2)
∑

1≤i≤n

|Bi| = k · n− d

then X is the required partial k-transversal. If not, then there exists an element in

some of B’s whose omitting does not violate the condition |B(I)k ∩X| ≥ k|I| − d,
I ⊆ {1, . . . , n}. Repeatedly using the above procedure we have to arrive at a

family B′ = (B′1, . . . , B
′
n), B

′
i ⊆ Bi, 1 ≤ i ≤ n, which either satisfies (1) for a

proper subset I0 of {1, . . . , n} or satisfies (2). The proof of the statement follows.

Now let A = (A1, . . . , Am), B = (B1, . . . , Bn) be families of subsets of a set E.

According to Theorem 2 the set of all partial k-transversals of B coincides with
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the collection of independent bags of a bag matroidM = (E, r). From Theorem 1

the family A possesses a partial k-transversals of cardinality p, i.e. with defect

d = m · k − p, which is independent in M (and therefore, at the same time, is a

partial k-transversal of B) if and only if r(A(J)k) ≥ k · |J |−d = k · |J |− (m ·k−p)
for each J ⊆ {1, . . . ,m}. Like in the case of matroids we have, for any bag

D, r(D) = max{|C|, C ⊆ B, C is an independent bag}. Thus, R(A(J)k) ≥
k·|J |−(m·k−p) precisely when A(J)k contains as a subbag a partial k-transversals

of B of cardinality k ·|J |−(m·k−p), that is of defect d′ = n ·k+m·k−k ·|J |−p. In

accordance with our auxiliary result this happens if and only if |B(I)k ∩A(J)k| ≥
k · |I| − d′ = k · |I|+ k · |J | − k ·m− k · n+ p. The proof is complete. �

As an immediate consequence of Theorem 3 we obtain

Corollary 1. The maximum cardinality t of common partial k-transversals of

the families A = {A1, . . . , Am}, B = {B1, . . . , Bn} is given by

t = k(m+ n) + min {A(J)k ∩B(I)k − k|J | − k|I|},

where the minimum runs over all J ⊆ {1, . . . ,m}, I ⊆ {1, . . . , n}.

Putting k = 1 in Theorem 3 we get Theorem 9.3.2 of [4]. For n = m, k = 1 we

obtain the following generalization of the criterion of Ford and Fulkerson (Corollary

9.3.4 of [4]).

Corollary 2. Let A = (A1, . . . , An), B = (B1, . . . , Bn) be finite families of

subsets of a set E, let k be a natural number. Then A and B possess a common k-

transversal if and only if, for all I, J ⊆ {1, . . . , n}, |A(Ik)∩B(J)k| ≥ k(|I|+|J |−n).
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