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SELF–DUAL REGULAR MAPS FROM MEDIAL GRAPHS

D. ARCHDEACON, J. ŠIRÁŇ and M. ŠKOVIERA

1. Introduction and Preliminaries

There are a number of papers dealing with symmetries of maps, i.e., of graphs

embedded in closed surfaces. Many of them concentrate on the construction and

characterization of regular maps. In this paper we investigate the relationship

between the symmetries of a map and those of its medial map. The main issue

of this study is a theorem saying that a map M (orientable or not) is regular and

self-dual if and only if the medial map m(M) is regular. This theorem combined

with a lifting technique based on special voltage assignments allows us to construct

new oriented regular self-dual maps from old ones. As a consequence, we obtain

that if G is a d-valent graph admitting an oriented regular self-dual map, then the

graph G(k) obtained from G by replacing each edge by k parallel edges also has

such a map whenever g.c.d. (d, k) = 1. Similar results (but without self-duality)

were obtained by S. Wilson [7] for some types of graphs. On the other hand, self-

dual regular maps (with self-complementary underlying graphs) were investigated

by A. T. White [6].

Regular maps can be introduced in several different ways. For our purposes it

will be convenient to define them by means of an action of the map automorphism

group on the set of corners. Let M be a map with underlying graph G. Then

any ordered pair of two consecutive edges appearing on the boundary of a face of

M determines a corner; the order in the pair determines the orientation of the

corner. Let C(M) be the set of all corners of M ; obviously | C(M) |= 4 | E(G) |.
The map M is said to be regular if the map automorphism group of M , Aut M ,

acts transitively on C(M). This definition is easily seen to be equivalent to the

one given in [7].

In the orientable case a slightly weaker definition is often convenient. Let the

supporting surface S of M be orientable. If an orientation of S is specified then

the map M is said to be oriented. The orientation of S then splits C(M) into

two disjoint subsets: C+(M), the set of corners whose orientation agrees with that
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of S, and C−(M), the complement of C+(M). Note that | C+(M) |= 2 | E(G) |.
An oriented map is said to be orientably regular if the group of orientation-

preserving automorphisms of M , Aut+M , acts transitively on C+(M). In [7] such

maps are called rotary; Coxeter and Moser [2] and Jones and Singerman [4] call

them regular.

Of course, an orientably regular map may admit an automorphism that reverses

the orientation; such an automorphism is said to be a reflection. Orientably

regular maps with a reflection are occasionally called reflexible.

2. Regularity, Duality, and Medial Maps

Let M be a map, that is, a 2-cell embedding of a graph G in an oriented surface

S. To form the medial map of M , denoted by m(M), first place a vertex ve into

the interior of every edge e. Then, for each face F of M , join ve to vf by an edge

lying in F if and only if the edges e and f are consecutive on the boundary of F .

The graph underlying the map m(M) will be called the medial graph of G and

denoted by m(G). The medial graph is clearly 4-regular, as each face creates two

adjacencies for each edge on its boundary.

Note that the faces of the medial mapm(M) split naturally into two types: faces

containing vertices of the original map M (vertex-faces) and those corresponding

to faces of M (face-faces). For the sake of convenience, we shall think of vertex-

faces as coloured black and face-faces as coloured white. Obviously, this colouring

is a proper face colouring of m(M), and we shall always assume m(M) to be

coloured this way.

We explain the main ideas on oriented maps first, postponing the general case to

the end of this section. Thus, let M be an oriented map. We pay particular atten-

tion to the orientation-preserving map automorphisms ofm(M) which preserve the

two parts in the face bipartition; call them colour-preserving automorphisms

of m(M). We shall call the medial map m(M) orientably colour-regular if for

any two undirected edges x and y of m(G) there is a colour-preserving automor-

phism of m(M) which takes x to y.

Observe that if M is an orientably regular map then m(M) is orientably colour-

regular. Indeed, let x = vevf and y = vgvh be two edges of m(M). By regularity of

M , there is an automorphism ϕ of M which maps the corner ef to the corner gh.

Now, ϕ obviously induces an automorphism ϕm of m(M). Since ϕ maps corners

to corners, ϕm preserves vertex-faces and thereby colours of m(M).

Conversely, assuming that m(M) is orientably colour-regular we can show that

M is regular. To see this, let ef and gh be two corners of M . The property of

m(M) implies that there is a colour-preserving automorphism ψ of m(M) which

sends vevf to vgvh. As ψ preserves colours, it induces the required automorphism

of M taking ef to gh.

Thus we have proved:
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Theorem 1. Let M be an oriented map. Then M is orientably regular if and

only if the medial map m(M) is orientably colour-regular.

Let M be an oriented map with underlying graph G and let M∗ be the dual

map of M ; as usual, the graph underlying the map M∗ will be denoted by G∗. For

technical reasons we shall assume that M and M∗ induce the same orientation of

the ambient surface.

Adopting the standard notation, let e → e∗ be the duality mapping of E(G)

onto E(G∗). This mapping extends to a mapping of corners of M∗ in the following

way: to the corner ef of M there coresponds the dual corner f∗e∗ (see Fig. 1).

f

e
e∗

f∗

Figure 1.

If M and M∗ is a pair of dual maps then we can assume that their medial

graphs coincide. Thus, for their medial maps we have m(M) = m(M∗) except for

the face colourings: black faces of m(M) become white faces of m(M∗) and vice

versa.

In Proposition 1 we have shown that the property of m(M) being orientably

colour-regular is equivalent to orientable regularity of M . This suggests the fol-

lowing question. Forgetting about the face colouring of m(M), how can regularity

of m(M) be expressed in terms of properties of the original map M? We answer

this question in the next theorem.

Theorem 2. Let M be an oriented map. Then m(M) is orientably regular if

and only if M is orientably regular and self-dual.

Proof. Let M be orientably regular and self-dual. Thus, there is an orientation-

preserving map isomorphism θ : M → M∗. The mapping θ, being at the same

time a self-homemorphism of the ambient surface, induces a map-isomorphism

θm : m(M)→ m(M∗). Since m(M) = m(M∗) and θm interchanges colours, θm is

in fact a colour-reversing automorphism of m(M).

The orientable regularity of M implies that m(M) is orientably colour-regular

(see Theorem 1). Let H be the set of colour-preserving automorphisms of m(M).

Consider the set H ∪ Hθm. As θm interchanges colours, H ∩ Hθm is empty.
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Therefore

| Aut m(M) |≥| H ∪Hθm |= 2 | H |= 4 | E(M) |= 2 | E(m(M)) | .

This shows that m(M) is orientably regular.

Conversely, assume that m(M) is orientably regular. By Theorem 1,M is ori-

entably regular. It remains to prove thatM is self-dual. Let σ be a colour-reversing

automorphism of m(M).(Such an automorphism clearly exists, for the number of

colour-preserving automorphisms of m(M) is | E(m(M)) |<| Aut m(M) |.) We

can view σ as a map isomorphism m(M) → m(M∗) which interchanges colours.

Again, regarding σ as a self-homeomorphism of the surface, we see that σ induces

a bijection σo : M →M∗. From the fact that σ is colour-reversing, it follows that

σo maps corners of M to corners of M∗. Thus σo is a map isomorphism M →M∗,

which means that M is self-dual. �
As mentioned earlier, results analogous to Theorem 1 and Theorem 2 can be

established without the assumption of orientability. In this case we define the map

m(M) to be colour-regular if for any two arcs ( = edges with specified direction)

x and y of m(M) there is a colour-preserving automorphism of m(M) which takes

x to y. (The reader should compare this definition with the one given for the

orientable case.) Since the arguments are similar to those presented above, we

state the following summarizing theorem without proof.

Theorem 3. Let M be a map. Then:

(1) M is regular if and only if m(M) is colour-regular.

(2) M is orientably regular if and only if m(M) is orientably colour-regular.

(3) M is regular and self-dual if and only if m(M) is regular.

(4) M is orientably regular and self-dual if and only if m(M) is orientably

regular.

3. Lifting Regular Medial Maps

Let M be an oriented map and let m(M) be the face-coloured medial map of

M . The chosen orientation of the surface induces an orientation of all white faces

of m(M). This enables to assign direction to every edge of m(M) consistently

with the white face it is adjacent to.

Let Γ be an Abelian group and g an arbitrary element of Γ. Let α be a voltage

assignment α on m(M) which to every edge of m(M) directed as above assigns

the element g (i.e., α is constant on edges with preferred direction); such a voltage

assignment will be called medial. Note that a similar type of voltage assignment

has already been considered by Archdeacon [1].

The notion of a medial voltage assignment can also be defined for non-orientable

medial maps. Note, however, that if the supporting surface for M were non-

orientable then the preferred directions of edges ofm(M) would not be well defined.
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Therefore, in a medial voltage assignment on a non-orientable m(M) the element

g ∈ Γ is always assumed to be of order 2.

In either case, a medial voltage assignment gives rise to a the derived graph

and a derived embedding in the usual sense (see [3]). We shall restrict ourselves

to the case when the derived embedding surface is connected. This is equivalent

to assuming that Γ is a cyclic group generated by g. In particular, if m(M) is

non-orientable this means that Γ ∼= Z2. Thus we can speak of the derived map

which will be denoted by m(M)α.

The following theorem shows how to define map automorphisms of the derived

map by means of automorphisms of the base map. As in Section 2 we explain the

ideas on the orientable case. Let us first briefly recall the structure of the oriented

derived map m(M)α [3]. The vertex set of m(M)α is {ub; u a vertex of m(M),

b ∈ Γ}. Each arc x = uv of m(M), emanating from a vertex u and terminating

at v, lifts to | Γ | arcs xb = ubvbα(x), b ∈ Γ, of m(M)α. Moreover, if P and T

are the rotation and the arc-reversing involution corresponding to m(M), then the

rotation Pα of the derived map m(M)α is given by

Pα(xb) = (Px)b

and the arc-reversing involution Tα of m(M)α by

Tα(xb) = (Tx)bα(x).

Theorem 4. Let M be an oriented map and let α be a medial voltage assign-

ment on m(M). Let A be an automorphism of m(M).

(1) If A preserves colours of faces and the preferred directions of edges of

m(M), then for each a ∈ Γ the mapping Aa given by

Aa(xb) = (Ax)ab

is an orientation-preserving automorphism of m(M)α.

(2) If A is a reflection of m(M), then the same formula as in (1) defines

reflections of m(M)α.

(3) If A reverses both the face colours as well as the preferred edge directions

of m(M), then for each a ∈ Γ the mapping Ba given by

Ba(xb) = (Ax)ab−1

is an (orientation-preserving) automorphism of m(M)α.

Proof. Let A be an orientation-preserving automorphism of m(M). This is

equivalent to saying that A, regarded as a one-to-one mapping on the set of arcs of
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m(M), commutes with both the rotation P as well as the arc-reversing involution

T ; i.e., AP = PA and AT = TA.

(1) To prove that Aa is an orientation-preserving automorphism of m(M)α it is

sufficient to verify that Aa commutes with both Pα and Tα. Employing the fact

that A commutes with both P and T we successively obtain:

PαAa(xb) = Pα((Ax)ab) = (PAx)ab = (APx)ab = Aa(Px)b = AaP
α(xb).

To show that TαAa = AaT
α recall that A preserves the preferred directions of

edges. Therefore, for every arc x of m(M) we have α(Ax) = α(x). Now,

TαAa(xb) = Tα((Ax)ab) = (TAx)abα(Ax) = (ATx)abα(x)

= Aa((Tx)bα(x)) = AaT
α(xb).

(2) The automorphism A is a reflection if and only if AP = P−1A and AT = TA.

The proof of the fact that AaP
α = (Pα)−1Aa and AaT

α = TαAa is similar to the

above.

(3) In this case A is orientation-preserving, again. Since it is colour-reversing it

follows that α(Ax) = α(Tx) for every arc x of m(M). The equality PαBa = BaP
α

can be proved in the same way as in (1). In addition, using the fact that Γ is

Abelian we obtain:

TαBa(xb) = Tα((Ax)ab−1) = (TAx)ab−1α(Ax)

= (ATx)aα(Tx)b−1 = (ATx)a(bα(x))−1 = Ba(Tx)bα(x) = BaT
α(xb).

This completes the proof. �
The above result has the following immediate consequence:

Theorem 5. Let M be an oriented map and let α be a medial voltage assign-

ment on m(M). Then:

(1) If m(M) is orientably colour-regular, then so is m(M)α.

(2) If m(M) is orientably regular, then so is m(M)α.

(3) If m(M) is regular, then so is m(M)α.

Proof. It is sufficient to check that the automorphisms Aa and Ba introduced

in Theorem 4 yield a group acting in an appropriate way on arcs of m(M). �
A result similar to Theorem 5 can be proved in the general case as well. For

non-orientable maps, however, the formalism employed in Theorem 4 has to be

replaced by the technique of three involutions describing a map, see e.g. [5]. Since

the difference is only technical and arguments are otherwise analogous, we state

the theorem without proof.

Theorem 6. Let M be a map and let α be a medial voltage assignment on

m(M). Then:

(1) If m(M) is colour-regular, then so is m(M)α.

(2) If m(M) is regular, then so is m(M)α.
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4. Applications

Let M be a map and let α be a medial voltage assignment on m(M). Clearly,

the face colouring of m(M) lifts to a proper face 2-colouring of the derived map

m(M)α. Since the derived map is 4-valent, m(M)α is the medial map of some map

L. Now assume that the original map M is regular and self-dual. By Theorem 3,

m(M) is regular; by Theorem 6 the same holds for m(M)α. Applying Theorem 3

again we see that the new map L is regular and self-dual (and thus has the same

property as the original map M). Therefore, our theory provides a convenient

tool for constructing new regular self-dual maps. We shall demonstrate this by

establishing the following “orientable” result first.

For a graph G, let G(k) denote the graph obtained from G by replacing each

edge with k parallel edges having the same end-vertices.

Theorem 7. Let G be ad-valent graph of order n admitting a regular (or only

orientably regular) self-dual map on an orientable surface of genus g. If k is a

positive integer such that g.c.d. (d, k) = 1, then G(k) admits a regular (orientably

regular) self-dual map of genus kg + (k − 1)(n− 1).

Proof. We prove only the regular case; the other case follows analogously. Let

M be a regular self-dual map on the surface of genus g such that the underlying

graph of M is G. By Theorem 2, the medial map m(M) is regular. Let H be the

graph underlying m(M) whose edges are directed as described in the beginning of

Section 3. Consider the voltage assignment α on H which assigns to the preferred

orientation of every edge the element 1 in the cyclic group Zk; this is clearly a

medial voltage assignment. Observe that each face of m(M) has length d and its

boundary carries the net voltage d in Zk . Since g.c.d. (d, k) = 1, each face F of

m(M) lifts to a single face Fα of length kd in the derived map m(M)α. As already

noted, m(M)α is again a medial map. By Theorem 6, m(M)α is a regular map

and by Theorem 3 it corresponds to a self-dual map M̃ with underlying graph,

say, G̃. Let F0 and F1 be two vertex-faces of m(M) having a common vertex v.

Then it is easy to see that every vertex from the fibre over v is a common vertex

of the lifted faces Fα0 and Fα1 . Thus an adjacency of two vertex-faces F0 and F1

in m(M) gives rise to a k-fold adjacency of the lifted vertex-faces Fα0 and Fα1 .

Consequently, G̃ coincides with G(k).

Finally, using Euler’s formula it is readily computed that the derived surface

has genus kg + (k − 1)(n− 1). The proof is complete. �

Using the same method, a similar (but weaker) result can be proved also in

the non-orientable case. In a regular non-orientable medial map the group acts

transitively on the directed edges. Since each edge receives inverse assignments

under its two directions, the constant assignment on this orbit must be an element

of order 2. That is, we are forced to have k = 2 for non-orientable maps.
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Theorem 8. Let G be a graph with all vertices of odd valency. Assume that G

admits a non-orientable regular self-dual map on a surface with crosscap number

h ≥ 1. Then G(2) has a regular self-dual map on an orientable surface of genus

h− 1.

Note that while the process in Theorem 7 can be iterated, one cannot use the

last result repeatedly. There are two reasons for this: the graph G(2) has even

valency, and the resulting derived surface (obtained by Z2-voltage assignment on

the medial map) is necessarily orientable.

Finally, observe that the coverings m(M)α → m(M) resulting from Theorem 6

are all cyclic, i.e., their covering transformation group is cyclic. This raises the

question of the existence of a non-cyclic covering map m(M)α which would still

be regular.

References

1. Archdeacon D., The medial graph and voltage-current duality, Discrete Math. (to appear).
2. Coxeter H. S. M. and Moser W. O. J., Generators and relations for discrete groups, 3rd,

Springer, Berlin, 1972.
3. Gross J. L. and Tucker T. W., Topological Graph Theory, Wiley, New York, 1987.
4. Jones G. A. and Singerman D., Theory of maps on orientable surfaces, Proc. London Math.

Soc. (3) 37 (1978), 273–307.
5. Jones G. A. and Thornton J. S., Operations on maps and outer automorphisms, J. Combin.

Theory , Ser. B 35 (1984), 93–103.
6. White A. T., Strongly symmetric maps, in: Graph Theory and Combinatorics (1979), 106–132

(R. J. Wilson, ed.), Pitman, London.
7. Wilson S., Cantankerous maps and rotary embeddings of Kn, J. Combin. Theory Ser. B 47

(1989), 262–273.

D. Archdeacon, Department of Mathematics and Statistics, University of Vermont, Burlington,
VT 05405, U.S.A.; e-mail: archdeac@uvm.edu
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