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SOME SUMMATION FORMULAE

OVER THE SET OF PARTITIONS

W. C. CHU and R. K. RAINA

Abstract. Some algebraic identities with independent variables are established by
means of the calculus on formal power series. Applications to special functions and
classical polynomials are also demonstrated.

1. Introduction

Let σ(n) denote the set of partitions of n (a nonnegative integer) usually denoted

by 1k12k2 . . . nkn with
∑
iki = n; ki is, of course, the number of partitions of size i.

If the number of parts for the partition set of n is restricted to k, i.e.,
∑
ki = k;

then the corresponding subset of σ(n) is denoted by σ(n, k).

For nonnegative integral vector k̄ = (k1, . . . , kn), the multinomial coefficient
(
x
k̄

)
as usual, is defined by

(1.1)

(
x

k̄

)
=

(x)|k̄|∏
(ki) !

,

where the finite product
∏

runs over i from 1 to n, (x)k stands for the all factorial

notation, and |k̄| represents the coordinate sum for the vector k̄ = (k1, . . . , kn).

In his recent paper, Chu [3] obtained a useful algebraic identity in the form

(1.2)

(
xy

n

)
=
∑
σ(n)

(
x

k̄

)∏(
y

i

)ki
,

where x and y are assumed as two complex numbers. This formula contains

numerous similar binomial summations over the set of partitions as special cases.

The purpose of the present paper is to generalize (1.2) involving certain se-

quences which are generated by the function f(t) [g(t)]
x

(see Carlitz [1, p. 521]).

The algebraic identity to be obtained may also be viewed as the means of variable-

separation for the sequences involved. The usefulness of our results is depicted by

considering some applications which yields summations formulas over the set of

partitions for special functions and classical polynomials.

Received September 3, 1991; revised March 4, 1992.
1980 Mathematics Subject Classification (1991 Revision). Primary 05A18, 33C20.
Key words and phrases. Binomial coefficient, formal power series, generating function, clas-

sical polynomials, hypergeometric function.



96 W. C. CHU and R. K. RAINA

2. Main Theorem

For formal power series f(t) and g(t), with f(0) = g(0) = 1, consider the formal

expansions

[f(t)]
x

=
∑
n≥0

λn(x)tn; λn(1) = λn;(2.1)

[g(t)]
x

=
∑
n≥0

An(x)tn,(2.2)

and

(2.3) f(t) [g(t)]
x

=
∑
n≥0

cn(x)t
n,

where x is an arbitrary complex number independent of t.

It follows from (2.2) and (2.3) that

(2.4) Cn(x) =
n∑

m=0

λn−mAm(x).

We propose to establish the following:

Theorem. For arbitrary complex numbers x and y,

(2.5) Cn(xy) =
n∑

m=0

λn−m
∑
σ(m)

(
x

k̄

)∏
[Ai(y)]

ki ,

and

(2.6.) Cn(xy) =
n∑

m=0

λn−m(1− x)
∑
σ(m)

(
x

k̄

)∏
[Ci(y)]

ki ,

Proof. In view of the defining equations (2.2) and (2.3), and the exponential

law axy = (ay)x, and performing simple calculus on formal power series, we have

f(t) [g(t)]xy = f(t) {1 + ([g(t)]y − 1)}
x

= f(t)
∑
k≥0

(
x

k

)∑
i≥1

Ai(y)t
i


k

= f(t)
∑
k≥0

(
x

k

) ∑
∑
ki=k

(
k

k̄

)∏{
[Ai(y)]

ki tiki
}k

= f(t)
∑
k≥0

tk
∑
σ(k)

(
x

k

)∏
[Ai(y)]

ki .
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The assertion (2.5) follows now on comparing the coefficient of tn on both the

sides.

By writing

f(t) [g(t)]
xy

= [f(t)]
1−x {1 + (f(t) [g(t)]

y − 1)}
x
,

and proceeding on the same lines as indicated above, the desired result (2.6) is

easily arrived at. �
Corollary. For arbitrary complex numbers x and y,

(2.7) An(xy) =
∑
σ(n)

(
x

k̄

)∏
[Ai(y)]

ki .

It follows easily from (2.5) (or (2.6)) in the case when f(t) ≡ 1.

3. Applications

Since most of the classical special functions and orthogonal polynomials can be

identified with the sequence {Cn} defined by (2.3), therefore, our theorem would

widely be applicable. To illustrate, we consider the following examples.

Example 1. Let us set

f(t) =
1 + u− au

1 + u− (a+ b)u
, and g(t) = 1 + u,

where u is implicitly defined in terms of t by u = t(1+u)a+b. By appealing to the

results of Gould [4]:

(3.1)
∑
k≥0

x+ bk

x+ (a+ b)k

(
x+ (a+ b)k

k

)
tk = (1 + u)x

1 + u− au

1 + u− (a+ b)u
,

the following combinatorial identities emerge from (2.5) and (2.7):

xy + bn

xy + (a+ b)n

(
xy + (a+ b)n

n

)
=

n∑
m=0

b

a+ b

(
(a+ b)(n−m)

n−m

)

·
∑
σ(m)

(
x

k̄

)∏{
y

y + (a+ b)i

(
y + (a+ b)i

i

)}ki(3.2)

and

(3.3)
xy

xy + bn

(
xy + bn

n

)
=
∑
σ(n)

(
x

k̄

)∏{
y

y + bi

(
y + bi

i

)}ki
.

It may be observed that for a = b = 0, both (3.2) and (3.3) correspond to the

formula (1.2).



98 W. C. CHU and R. K. RAINA

Example 2. Next let

f(t) =
1− av

1− (a+ b)v
, g(t) = ev,

where v = te(a+b)v, then (2.5) and (2.7) in conjuction with the known formula

(Gould [4])

(3.4)
∑
k≥0

x+ bk

x+ (a+ b)k
[x+ (a+ b)k]k

tk

k !
=

(1− av)evx

1− (a+ b)v
,

yield the following identities on Abel coefficients:

xy + bn

xy + (a+ b)n

[xy + (a+ b)n]
n

n !
=

n∑
m=0

b

a+ b

[(a+ b)(n−m)]
n−m

(n−m) !

(3.5)

·
∑
σ(m)

(
x

k̄

)∏{
y

y + (a+ b)i

[y + (a+ b)i]
i

i !

}ki

and

(3.6)
xy

xy + bn

[xy + bn]
n

n !
=
∑
σ(n)

(
x

k̄

)∏{
y

y + bi

(y + bi)i

i !

}ki
.

Incidentally, Gould’s formula (3.1) has also been used by Chu [2] to derive new

partition identities.

Example 3. For the Laguerre polynomials, we have the generating function

[5, p. 84, Eqn. (15)]

(3.7)
∞∑
n=0

L(α−n)
n (x)tn = (1 + t)αe−xt.

On comparing it with (2.3), we find that (2.5) yields the result

(3.8) L(α−n)
n (xy) =

n∑
m=0

(−1)n−m(−α)n−m
(n−m) !

∑
σ(m)

(
x

k̄

)∏{
(−y)i

i !

}ki
.
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Example 4. By considering the generating function [5, p. 85] for the Bernoulli

polynomials

(3.9)
∞∑
n=0

Bn(x)
tn

n !
=

text

et − 1
,

then from (2.3) and (2.5) we have

(3.10)
Bn(xy)

n !
=

n∑
m=0

Bn−m

(n−m) !

∑
σ(m)

(
x

k̄

)∏{
yi

i !

}ki
,

where Bn denotes the Bernoulli numbers.

Example 5. If we consider the Lagrange polynomials [5, p. 85] defined by the

generating function

(3.11)
∞∑
n=0

g(x,z)
n (u, v)tn = (1− ut)−x(1− vt)−z ,

then from (2.3) and (2.5) we get

(3.12) g(xy,z)
n (u, v) =

n∑
m=0

vn−m

(n−m) !
(z)n−m

∑
σ(m)

(
x

k̄

)∏{
(y)iu

i

i !

}ki
.

Example 6. For the generalized hypergeometric function we have the gener-

ating function [5, p. 139, Eqn. (10)]

(3.13)
∞∑
n=0

(λ)n
n !

p+1Fq+1

[
−n ; (ap) ;

x
1− λ− n ; (bq) ;

]
tn = (1− t)−λpFq

[
(ap) ;

xt
(bq) ;

]
.

Comparing it with (2.3), then (2.5) gives

(xy)np+1Fq+1

[
−n ; (ap) ;

z
1− x− n ; (bq) ;

]
(3.14)

=
n∑

m=0

(
n

m

)∏p
j=1(aj)n−m∏q
j=1(bj)n−m

m !zn−m
∑
σ(n)

(
x

k̄

)∏{
(y)i
i !

}ki
,

where (ap) denotes the array of p-parameters a1, . . . , ap, and here in (3.12) to

(3.14), (x)n stands for the Pochhammer symbol (x)n = Γ(x+n)
Γ(x) .
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