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AN EXAMPLE OF INFINITELY MANY

SINKS FOR SMOOTH INTERVAL MAPS

A. F. IVANOV

Abstract. We show, for arbitrary ε > 0, the existence of a C2−ε unimodal interval
map with infinitely many sinks outside a neighbourhood of the critical point. It is
known that such C2 maps do not exist.

1. Introduction

Let a continuous map f of a closed interval I be given. Recall that an attracting

cycle of f is called a sink, and an interval J ⊂ I such that fn(J)
⋂
fm(J) = ∅,

n 6= m, and J is not attracted by a sink, is called a wandering interval.

C∞ interval maps having wandering intervals or infinitely many sinks can be

constructed by using similar procedures [6]. Note that C∞ circle map with wan-

dering intervals was first constructed by Hall [2] as an improvement of the classical

Denjoy example. Using a procedure suggested by Coven and Nitecki [1] it can be

easily transformed into C∞ interval map with wandering intervals. Some other

examples were given by de Melo [5].

In [3] Mañé proved that C2 interval maps cannot possess infinitely many sinks

or wandering intervals outside a neighbourhood of the critical set (see also [7]).

Recall that the critical set K for a smooth interval map f is defined by K =

{x ∈ I|f ′(x) = 0}. Martens, de Melo, and van Strien have shown [4] that C2

interval maps which are C3 in some neighbourhood of the critical set1 cannot

have wandering intervals or infinitely many sinks provided all critical points are

nonflat. Given f(x), a critical point c ∈ K is called nonflat if there exists an integer

k ≥ 2 such that f(x) ∈ Ck in some neighbourhood of x = c and f (k)(c) 6= 0. This

means that typical (in C3 topology) interval maps have finitely many sinks and

do not have wandering intervals.

We construct, for any given 0 < ε < 1, an example of a unimodal interval map

which has infinitely many sinks outside a neighbourhood of the critical point and

which is C∞ everywhere except at one point where it is C2−ε. A similar example
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of C2−ε map with wandering intervals can be constructed. However, the proof is

different (unlike [6] where both examples are treated along the same line), and

we plan to discuss it in a forthcoming paper. This shows, in particular, that C2

smoothness for the above results by Mañé and Martens et.al. can not be decreased.

Recall that given 0 < ε < 1 and a set M ⊂ R, f(x) is said to belong to Cε on

M if supx,y∈M |f(x) − f(y)|/|x− y|ε < ∞. Given k ∈ N and 0 < ε < 1 it is said

that f(x) ∈ Ck+ε iff f (k)(x) ∈ Cε. We say that f(x) ∈ Ck+ε at a point if it is of

this class in some neighbourhood of the point.

2. Auxiliary Functions

Consider on the interval [0, 1] the following function

φ(x) =

∫ x

0

exp{1/t(t− 1)} dt
/ ∫ 1

0

exp{1/t(t− 1)} dt, x ∈ (0, 1),

φ(0) = 0, φ(1) = 1.

It is an easy exercise to verify that φ(x) has the following properties:

— φ(x) strictly increases for x ∈ [0, 1];

— φ(x) ∈ C∞[0, 1], φ(k)(0) = φ(k)(1) = 0, k ∈ N;

— for every k ∈ N, sup{|φ(k)(x)|, x ∈ [0, 1]} = ck, ck is a constant depending

on k only.

Given an interval J = [a, b] and prescribed values g1 6= g2, suppose it is required

to construct a smooth function g(x), x ∈ [a, b], such that g(a) = g1, g(b) = g2. For

this purpose the above φ(x) can be used. We set

g(x) = φ(x, J) = g1 + (g2 − g1)φ(
x− a

b− a
)

The properties of φ(x) imply that φ(a, J) = g1, φ(b, J) = g2, φ(x, J) is strictly

monotone and infinitely differentiable on J = [a, b] with φ(k)(a, J) = φ(k)(b, J) = 0

for all k ≥ 1, and

(1) sup{|φ(k)(x, J)|, x ∈ J} = ck|g2 − g1|/|b− a|
k

where ck are the above constants depending on k only.

Let an, n ∈ N, be a monotone sequence such that limn→∞ an = a0 exists. Define

Jn to be intervals with endpoints an and an+1. The function φ(x, J) will be used

on the sequence of intervals Jn with given values gn at the endpoints. Suppose

in addition that limn→∞ gn = g0 exists. Then a function g(x) is defined on the

whole interval [a1, a0] (or [a0, a1]) by

g(x) = φ(x, Jn), x ∈ Jn, g(a0) = g0
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Proposition 1. Suppose given Jn and gn satisfy limn→∞ |gn+1 − gn|/|an+1 −
an|k = 0 for every k ∈ N. Then g(x) is of C∞ class on [a1, a0] ([a0, a1]).

Proof is an immediate consequence of the equality (1).

We shall need also the following

Proposition 2. Suppose g(x) ∈ Ck+1, k ≥ 1, in some neighborhood of x = a

and g(i)(a) = 0, i = 1, . . . , k. Then lim b→a(g(b) − g(a))/(b − a)i = 0 for all

i = 1, . . . , k.

Proof follows from the Taylor expansion of g(x) in the neighborhood of x = a.

Proposition 2 includes also the case g(x) ∈ C∞, g(k)(a) = 0, k ∈ N, in which

lim b→a(g(b)− g(a))/(b− a)i = 0 for every i ∈ N.
Let zm,m ∈ N, be an increasing sequence with 0 < z1, and limm→∞ zm = 1.

With z0 = 0 denote [zm−1, zm] = Jm, and consider φ(x, Jm) with prescribed values

φ(zm−1), φ(zm) at the endpoints. Define η(x) = φ(x, Jm), x ∈ Jm, and η(1) = 1.

The function η(x) depends on φ(x) and particular choice of zm,m ∈ N.

Proposition 3. Let k ∈ N be given. There exist constants L > 0 and 0 < δ < 1

which depend on k only and such that

(2) sup{|η(i)(x)|, x ∈ [0, 1]} ≤ Lci, i = 1, . . . , k

provided |1− z2| ≤ δ.

Proof. Let α ∈ (0, 1) be given. Consider φ(x, [0, α]) and φ(x, [α, 1]) with pre-

scribed values φ(0), φ(α), and φ(1) at the endpoints. Define ψ(x) = φ(x, [0, α]), x ∈
[0, α], ψ(x) = φ(x, [α, 1]), x ∈ [α, 1]. Then there exists a positive constant L′ inde-

pendent of α such that

sup{|ψ(i)(x)|, x ∈ [0, 1]} ≤ L′ sup{|φ(i)(x)|, x ∈ [0, 1]} = L′ci, i = 1, . . . , k.

To prove this assume i = 1 (case i ≥ 2 is anologous). For α ∈ (0, 1),

sup{|φ
′

(x, [0, α])|, x ∈ [0, α]} = c1φ(α)/α. Since φ(α)/α → 0 as α → 0 one has

φ(α)/α ≤ L′ for some L′ > 0.

Consider now η(x) and ψ(x) with α = z1. For every k ∈ N the functions ψ(x)

and η(x) are close in uniform Ck metric provided z2 is close to 1. This follows

from Proposition 2 and equality (1). Therefore, for every L > L′ there exists δ > 0

such that inequality (2) holds provided |1− z2| ≤ δ. �

Let an interval J = [a, b] and a sequence a < u1 < u2 < · · · < un < un+1 <

· · · → b be given with prescribed values g1 6= g2 at the endpoints a and b re-

spectively. Define η(x, J) = g1 + (g2 − g1)η(
x−a
b−a ), x ∈ J , where η(t), t ∈ [0, 1], is

constructed as above with zi = (ui − a)/(b− a).
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Proposition 4. Let k ∈ N be given. There exist constants L > 0 and 0 < δ < 1

which depend on k only and such that

sup{|η(i)(x, J)|, x ∈ J} ≤
|g2 − g1|

|b− a|i
Lci, i = 1, . . . , k.

provided |b− z2| ≤ δ(b− a).

Proof. By differentiation η(x, J) and using (2) the proof follows. �

3. Example

3.1 Construction.

Take a sequence xn, n ≥ 0, such that x0 = 1 and xn monotonically approaches

zero (particular choices of xn will be specified later). Define f(xn) = xn−1, n ∈ N.
Set g(xn) = xn−1 − xn = gn and consider intervals In = [xn+1, xn] with given

values gn+1, gn at the endpoints. Define g(x) = φ(x, In), x ∈ In, n ∈ N, and

g(0) = 0.

Take arbitrary (but fixed) z ∈ (x1, 1), λ ∈ (0, 1), and define f(x) in the following

way:

— f(x) = x+ g(x), x ∈ [0, x1];

— f(x) = λ(1− x), x ≥ z;
— f(x) is an arbitrary unimodal C∞ function on [x1, z] such that f(x1) =

1, f ′(x1) = 1, f(z) = λ(1 − z), f ′(z) = −λ, f (i)(x1) = f (i)(z) = 0, i =

2, 3, . . . ;

— f(x) ≡ x, x ≤ 0.

We note that given interval [α, β] it is always possible to construct C∞[α, β]

function f(x) which takes prescribed values f (i)(α) = fαi , f
(i)(β) = fβi , i =

0, 1, . . . , N, at the endpoints, and f (i)(α) = f (i)(β) = 0, i > N. In our case such

f(x) may be chosen as follows. Take arbitrary x∗ ∈ (x1, z) and define

f(x) = 1 + (x− x1)− (1 + λ)

∫ x

x1

φ(
t− x1

x∗ − x1
) dt, x ∈ [x1, x∗].

Set f∗ = f(x∗) and define next

f(x) = λ(1− x) + [f∗ − λ(1− x∗)]φ(
z − x

z − x∗
), x ∈ [x∗, z].

It is an easy exercise to verify that f is unimodal for x∗ − x1 small enough and is

C∞ in [x1, z].

If we define b = max{f(x), x ∈ [x1, z]} and set a = λ(1 − b), the interval

I = [a, b] is mapped by f onto itself.
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Since φ(x, In) ∈ C∞ it is straightforward that f(x) ∈ C∞ everywhere on [a, b]

except possibly the point x = 0.

Next we are going to choose a sequence of cycles of f(x) with unbounded peri-

ods. These cycles will be transformed, by a further change of f(x), into attracting

ones. To guarantee required smoothness of the resulting map we choose the se-

quence in a special way.

Due to the construction we have: f(In) = In−1, n ∈ N, and f(I0) ⊃ [0, 1]

(here I0 = [x1, 1]). Therefore, for every n ∈ N there exists a cycle β = β(n) =

{z(n)
0 , . . . , z

(n)
n−1} of period n such that z

(n)
0 ∈ I0, z

(n)
1 ∈ I1, . . . , z

(n)
n−1 ∈ In−1. Since

limn→∞ xn = 0 there exists n0 ∈ N with z
(n)
0 ∈ [z, 1] for all n ≥ n0.

Take some n1 ≥ n0 and consider the cycle β1 = {z(n1)
0 , z

(n1)
1 , . . . , z

(n1)
n1−1} of

period n1 as the first chosen one. Let L > 1 and 0 < δ < 1 be fixed constants

(their further choice is specified in subsection 3.2). Take next n2 > n1 in such a

way that the cycle β2 = {z(n2)
0 , z

(n2)
1 , . . . , z

(n2)
n2−1} has the following property:

xi − z
(n2)
i ≤ δ diam Ii,

|g(z(n2)
i )− g(z(n1)

i )|

|z(n2)
i − z(n1)

i |
≤ L
|g(xi)− g(z

(n1)
i )|

|xi − z
(n1)
i |

,

i = 1, 2, . . . , n1−1. In view of Proposition 2 such a choice is always possible, since

point z
(n)
0 of the cycle β(n) satisfies limn→∞ z

(n)
0 = 1. This implies z

(n)
i → xi as

n→∞ for arbitrary i ∈ N.
In the next step choose n3 > n2 in such a way that the cycle β3 = {z(n3)

0 , . . . ,

z
(n3)
n3−1} has the property:

xi − z
(n3)
i ≤ δ diam Ii,

|g(z(n3)
i )− g(z(n2)

i )|

|z(n3)
i − z(n2)

i |2
≤ L
|g(xi)− g(z

(n2)
i )|

|xi − z
(n2)
i |2

,

i = 1, 2, . . . , n2 − 1. Note that we have to care about inequalities xi − z
(n3)
i ≤

δ diam Ii for i = n1, . . . , n2− 1 only since they are satisfied for i = 1, 2, . . . , n1− 1

because xi > z
(n3)
i > z

(n2)
i .

In the kth step we choose nk > nk−1 in such a way that the cycle βk =

{z(nk)
0 , . . . , z

(nk)
nk−1} has the property:

xi − z
(nk)
i ≤ δ diam Ii,(3)

|g(z
(nk)
i )− g(z

(nk−1)
i )|

|z(nk)
i − z

(nk−1)
i |k−1

≤ L
|g(xi)− g(z

(nk−1)
i )|

|xi − z
(nk−1)
i |k−1

,(4)

i = 1, 2, . . . , nk−1 − 1.
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Proceeding in this way we obtain on each of the intervals In, n ∈ N, a se-

quence z
(nm)
n ,m ≥ l, for some l = l(n) satisfying xn+1 < z

(nl)
n < z

(nl+1)
n <

z
(nl+2)
n < . . . < z

(nm)
n < . . . → xn. Denote [xn+1, z

(nl)
n ] = Jnl, [z

(nl)
n , z

(nl+1)
n ] =

Jnl+1, . . . , [z
(nm−1)
n , z

(nm)
n ] = Jnm, . . . , with prescribed values of given g(x) at the

endpoints. Redefine g(x) on In by setting:

g∗(x) = φ(x, Jni), x ∈ Jni, i ≥ l(n), and, g∗(xn) = g(xn).

Consider now new f(x) as defined above with g(x) replaced by g∗(x). Since

d

dx
f(x)|

x=z
(nk)
0

= −λ,
d

dx
f(x)|

x=z
(nk)

i

= 1, i = 1, 2, . . . , nk − 1,

the multiplicator of the cycle βk = {z(nk)
0 , z

(nk)
1 , . . . , z

(nk)
nk−1} equals −λ. This shows

that every cycle βk, k ∈ N, is attracting one.

3.2 Smoothness of f(x).

Theorem. For arbitrary 0 < ε < 1 the sequence xn and cycles βn, n ∈ N, may

be chosen in such a way that f(x) ∈ C∞ for x ∈ [a, b] \ {0}, and f(x) ∈ C2−ε for

x = 0.

Proof. Choose L > 1 and 0 < δ < 1 for inequalities (3), (4) and Propositions

3, and 4 with J = In to hold.

Claim 1. g∗(x) is of C∞ class on every interval In, n ≥ 1.

Proof. It is enough to show that limi→∞ sup{|φ(k)(x, Jni)|} = 0 for every

k ≥ 1. Using (1) and (4) we have sup{|φ(k)(x, Jni)|, x ∈ Jni} = ck|g(z
(ni)
n ) −

g(z
(ni−1)
n )|/|z(ni)

n − z
(ni−1)
n |k ≤ ckL|g(xn) − g(z

(ni−1)
n )|/|xn − z

(ni−1)
n |k for i suf-

ficiently large. Proposition 2 gives |g(xn) − g(z
(ni−1)
n )|/|xn − z

(ni−1)
n |k → 0 as

i → ∞. Therefore, Proposition 1 applies to conclude g∗(x) ∈ C∞ for x ∈ In for

every finite n.

Choose the sequence xn, n ∈ N, in such a way that ∆xn = xn−xn+1 = d/n1+τ

for large N where 0 < d and τ > 0 are constants. Then xn =
∑∞
i=n∆xi ∼ d1/n

τ

as n→∞ for some d1 > 0.

Claim 2. For every τ > 0 f ′(x) is continuous for all x ∈ [a, b], moreover,

sup{|g∗′(x)|, x ∈ In} ≤ d2/n for some d2 > 0.

Proof. It is enough to show the continuity at x = 0 only. With constants L

and 0 < δ < 1 chosen above one has sup{|g∗′(x)|, x ∈ In} ≤ L sup{|g′(x)|, x ∈ In}
provided |xn− z

(nl)
n | ≤ δ diam In. This follows from Proposition 4. Using this and

(1) we obtain sup{|g∗′(x)|, x ∈ In} ≤ c1L|∆xn−1 −∆xn|/∆xn ∼ d2/n as n→ ∞
for some d2 > 0. Therefore, limx→0 f

′(x) = 1 = f ′(0).

Claim 3. For arbitrary 0 < ε < 1 there exists τ = τ(ε) such that f ′(x) ∈ C1−ε

at x = 0.
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Proof. We have to show that for every ε > 0 there exists τ > 0 such that

(5) lim sup
x,y→+0

|f ′(x)− f ′(y)|

|x− y|1−ε
<∞.

Suppose first x, y ∈ In. Then |x− y| ≤ ∆xn, g
∗(x) = η(x, In) for a respective η.

Using intermediate value theorem and Proposition 3 we obtain

|f ′(x) − f ′(y)|

|x− y|1−ε
=
|gn − gn+1|

|xn − xn+1|
|η′(

x− xn+1

xn − xn+1
)− η′(

y − xn+1

xn − xn+1
)|/|x− y|1−ε ≤

≤ d4
|gn − gn+1|

|xn − xn+1|2
|x− y|ε ≤ d4n

τ−ε(1+τ),

for some d4 > 0 and large n. By choosing 0 < τ < ε (5) follows.

Suppose next x ∈ In, y ∈ In+1. Then

|f ′(x)− f ′(y)|

|x− y|1−ε
≤
|f ′(x)− f ′(xn+1)|

|x− xn+1|1−ε
+
|f ′(y)− f ′(xn+1)|

|y − xn+1|1−ε
,

and by the first case considered, (4) follows.

Suppose finally x ∈ In, y ∈ Im, n+ 1 < m. Then |x− y| ≥ ∆xn+1, and in view

of Claim 2 we have

|f ′(x)− f ′(y)|

|x− y|1−ε
≤ d2

|1/n+ 1/m|

1/(n+ 1)(1+τ)(1−ε)
≤ d5n

τ−ε(1+τ),

for some d5 > 0 and large n. By choosing 0 < τ < ε, (4) follows.

The remaining case x ∈ In, y = 0 follows from the above with 1/m = 0. This

completes the proof. �
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