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AN EXAMPLE OF INFINITELY MANY
SINKS FOR SMOOTH INTERVAL MAPS

A. F. IVANOV

Abstract. We show, for arbitrary (3 0, the existence of a C2~Hinimodal interval
map with infinitely many sinks outside a neighbourhood of the critical point. It is
known that such C2 maps do not exist.

1. Introduction

Let a continuous map F of a closed interval | be given. Recall that ttracting
cycle of f is called a sink, and an interval J [Ilsuch that f"(J) f™(J) =[]
n 8 m, and J is not attracted by a sink, is called a wandering interval.

C*=° interval maps having wandering intervals or infinitely many sinks can be
constructed by using similar procedures [6]. Note that C* circle map with wan-
dering intervals was first constructed by Hall [2] as an improvement of the classical
Denjoy example. Using a procedure suggested by Coven and Nitecki [1] it can be
easily transformed into C*° interval map with wandering intervals. Some other
examples were given by de Melo [5].

In [3] Mafié proved that C? interval maps cannot possess infinitely many sinks
or wandering intervals outside a neighbourhood of the critical set (see also [7]).
Recall that the critical set K for a smooth interval map f is defined by K =
{x CIfY{x) = 0}. Martens, de Melo, and van Strien have shown [4] that C?
interval maps which are C3 in some neighbourhood of the critical set® cannot
have wandering intervals or infinitely many sinks provided all critical points are
nonflat. Given f(x), a critical point ¢ [Kl is called nonflat if there exists an integer
k = 2 such that f(x) [T in some neighbourhood of x = ¢ and £®)(c) & 0. This
means that typical (in C3 topology) interval maps have finitely many sinks and
do not have wandering intervals.

We construct, for any given 0 < [ 1, an example of a unimodal interval map
which has infinitely many sinks outside a neighbourhood of the critical point and
which is C* everywhere except at one point where it is C2~ 5 A similar example
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of C?~Hmap with wandering intervals can be constructed. However, the proof is
dilerent (unlike [6] where both examples are treated along the same line), and
we plan to discuss it in a forthcoming paper. This shows, in particular, that C?
smoothness for the above results by Mafé and Martens et.al. can not be decreased.

Recall that given 0 < [ 1 and a set M [CR] f(x) is said to belong to Cbn
M if supy y o [F(X) — f(y)|/|x —y|"< oo. Given k [N and 0 < [X 1 it is said
that f(x) COK*SCA®(x) CA'We say that £(x) CAX*hat a point if it is of
this class in some neighbourhood of the point.

2. Auxiliary Functions

Consider on the interval [0, 1] the following function

N ="
o(x) = exp{1l/t(t— 1)} dt exp{1/t(t — 1)} dt,x [(0,1),
0 0

9(0) =0, (1) =1.

It is an easy exercise to verify that @(x) has the following properties:

— @(X) strictly increases for x []Q, 1];
— @() CT=[0,1], 9®(0) = e®(1) =0, k [N
— forevery k [N sup{|o®(x)|,x 0, 1]} = c, ck isa constant depending
on k only.
Given an interval J = [a,b] and prescribed values g1 8 g», suppose it is required
to construct a smooth function g(x), x []d,b], such that g(a) = g1,g9(b) = g». For
this purpose the above @(x) can be used. We set

X—a
b—a)

g(x) = 0(x,J) =091 + (92 — 91)¢(

The properties of @(x) imply that ¢(a,J) = g1, 0(b,J) = g2, 9(x,J) is strictly
monotone and infinitely di [efentiable on J = [a, b] with 9™ (a,J) = ¢® (b, J) =0
forallk =1, and

(1) sup{|e™ (x, )|, x CI} = cklg> — ga /b — al*

where ck are the above constants depending on k only.

Let an, n [N be a monotone sequence such that limy, _, - an = ag exists. Define
Jn to be intervals with endpoints a, and an+1. The function @(x,J) will be used
on the sequence of intervals J, with given values g, at the endpoints. Suppose
in addition that limn_ - gn = go exists. Then a function g(x) is defined on the
whole interval [a1, ag] (or [ap, a1]) by

g(x) = (p(Xan)a X IE’ll g(ao) = gO
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Proposition 1. Suppose given J, and gn satisfy limp_ oo [gn+1 — gnl/|an+1 —
an|k = 0 for every k [N Then g(x) is of C°® class on [a, ao] ([ao, a1]).

Proof is an immediate consequence of the equality (1).
We shall need also the following

Proposition 2. Suppose g(x) [QX*! k = 1, in some neighborhood of x = a
and g®™(@) = 0,i = 1,...,k. Then limy_a(g(b) — g(a))/(b — a)' = 0 for all
i=1,....k

Proof follows from the Taylor expansion of g(x) in the neighborhood of x = a.

Proposition 2 includes also the case g(x) A%, g®(a) =0, k [N, in which
limy_a(g(b) —g(a))/(b —a)' =0 for every i [N

Let zm, m [N, be an increasing sequence with 0 < z3, and limm _ oo zm = 1.
With zo = 0 denote [zm—1,Zm] = Im, and consider @(X, Jm) with prescribed values
0(Zm—1), 9(zm) at the endpoints. Define n(x) = @(X,Im),x I, and n(1) = 1.
The function n(x) depends on @(x) and particular choice of z,, m [N

Proposition 3. Let k [CNlbe given. There exist constantsL >0and0<d <1
which depend on k only and such that

) sup{In@ )|, x CI0, 1} < Lci, i=1,...,k

provided |1 —z,| <.

Proof. Let a (D, 1) be given. Consider @(x, [0, a]) and @(x, [a, 1]) with pre-
scribed values @(0), @(a), and @(1) at the endpoints. Define (X) = o(x, [0, a]),x [
[0,a], P(X) = o(X,[a,1]),x []a, 1]. Then there exists a positive constant L inde-
pendent of a such that

sup{ly@P ()], x 0, 1]} < LSup{|e®@ ), x OO, 1} =L, i=1,... k.

To prove this assume I = 1 (case i = 2 is anologous). For a [{0,1),
sup{|(pE(x, [0,a])|, x [0, al} = cie(a)/a. Since g(a)/a - 0 as a — 0 one has
@(a)/a < L"for some L™= 0.

Consider now n(x) and Y(x) with a = z;. For every k [Nl the functions g (x)
and n(x) are close in uniform CX metric provided z, is close to 1. This follows
from Proposition 2 and equality (1). Therefore, for every L > L Pthere exists § > 0
such that inequality (2) holds provided |1 — z;] <. 1

Let an interval J = [a,b] and a sequence a < U; < Uy < -+ < Up < Up+1 <

- - b be given with prescribed values g1 & g, at the endpoints a and b re-
spectively. Define n(x,J) = g1 + (92 — 91)n(3=2), x I}, where n(t),t [Q,1], is
constructed as above with z; = (u; —a)/(b — a).
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Proposition 4. Let k [CNlbe given. There exist constantsL >0and0<d <1
which depend on k only and such that

sup{In®(x, 3)|, x I} < %Lci, i=1,...,k
provided |b —z;| < d(b — a).
Proof. By dilerentiation n(x,J) and using (2) the proof follows. 1
3. Example

3.1 Construction.

Take a sequence Xn, n = 0, such that xo = 1 and X, monotonically approaches
zero (particular choices of x, will be specified later). Define f(x,) = Xp—1,n [N
Set g(Xn) = Xn—1 — Xn = gn and consider intervals I, = [Xn+1,Xn] With given
values gn+1,0n at the endpoints. Define g(x) = @(x, In),x Ih,n [N, and
g(0) =0.

Take arbitrary (but fixed) z (X1, 1), A [{0, 1), and define f(X) in the following
way:

— F(x) =x+g(x), x L0, x4];
— f(X)=A1—X), x=1z
— f(X) is an arbitrary unimodal C*° function on [xy, z] such that f(x;) =
1, fi{x) =1, F@) =M1 —2), fz) = =\, fO(x)) =FD(z) =0, i =
2,3,...;
— f(X)=x, x=0.
We note that given interval [a, ] it is always possible to construct C<[a, (3]
function f(x) which takes prescribed values f®(a) = £, fO@) = £F, i =
0,1,...,N, at the endpoints, and f®(a) = F®(B) =0, i > N. In our case such
T (X) may be chosen as follows. Take arbitrary x(—{ (31, z) and define

)

FOO =1+ (—x) =@ +A) | @l —o)dt x Dby, xil

Set f—= f(xhand define next

27Xy X [Pl

f(X) =M1 —x) + [f A1 — xpD]o(
Z— X
It is an easy exercise to verify that f is unimodal for x— x; small enough and is
Cin [Xy, z].
If we define b = max{f(x),x [Jki,z]} and set a = A(1 — bh), the interval
I = [a,b] is mapped by f onto itself.
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Since @(x, In) A it is straightforward that f(x) Q> everywhere on [a, b]
except possibly the point x = 0.

Next we are going to choose a sequence of cycles of f(x) with unbounded peri-
ods. These cycles will be transformed, by a further change of f(x), into attracting
ones. To guarantee required smoothness of the resulting map we choose the se-
guence in a special way.

Due to the construction we have: f(l,) = Ih—1,n [N, and f(lp) []Q,1]
(here 1p = [xl, 1]). Therefore, for every n [N there exists a cycle B = B(n) =
£z, ..., 28} of period n such that z{™ 19,z 13,...,z{", [T4_;. Since
Ilmm()(,xn = 0 there exists ng [N with z(”) 124, 1] for all n = ny.

Take some n; = ng and consider the cycle By = {z{",z{™), ... ,(1':1_)1 of
period n; as the first chosen one. Let L > 1 and 0 < 6 < 1 be fixed constants
(their further choice is specified in subsection 3.2). Take next n, > n; in such a
way that the cycle B, = {z{"?,z{"?, ... 5,22)1} has the following property:

Xi — zi(nZ) < d diam I;,

l9@"™) —9@™)l _ | lota) —9(zi™)]

12" = 2{"™) i — 2™

i=1,2,. — 1. In view of Proposition 2 such a choice is always possible, since
point z(”) of the cycle B(n) satisfies Ilmnﬁoozo = 1. This implies z; m Xj as
n - oo for arbitrary i

In the next step choose N3 > N, in such a way that the cycle B3 = {z(()”:’), .

2"} has the property:

Xi — zi(”3) < d diam I;,

l9z"™) = 9@ _ | lat) —9(z")]

|Z(n3) (n2)|2 - i — Z_(nz)lz

1
i=12,... — 1. Note that we have to care about inequalities x; — z(”3) =
0 diam I; for i= nl, . — 1 only since they are satisfied fori =1,2,... -1

because x; > z") > z(”Z)
In the k™ step we choose nx > ny—; in such a way that the cycle Bx =

{28 f,’;k)l} has the property:

©) xi —z{™) < & diam I;,
@) 9@"™) = 9@™ ) _ | laexi) = 9@ ™)l
Izi(nk) _Zi(nk_l)lk_l = Ixi — (nk 1)|k 1’
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Proceeding in this way we obtain on each of the intervals I,,n [N, a se-

quence z&"™,m = I, for some | = I(n) satisfying Xn+1 < z™ < z{M") <
22 < < 2™ < .. 5 x,. Denote [Xn+1,z™M] = I, 250, 250 =
Jnl+1, .- ,[z,ﬁ”"“l), z,ﬂnm)] =Jnm,--. , with prescribed values of given g(x) at the

endpoints. Redefine g(x) on I, by setting:

930 = @(x, Ini), x CIhi, i =1(n), and, g"n) = g(xn).
Consider now new f(x) as defined above with g(x) replaced by g*(k). Since

d d o
&f(x)lxzzénk) = —A, &f(x)lxzzi(nk) =1, 1=12,...,ng—1,
the multiplicator of the cycle By = {z™,z{™), ..., zf,';k_)l} equals —A. This shows

that every cycle Bk, k [N, is attracting one.
3.2 Smoothness of f(x).

Theorem. For arbitrary 0 < [ 1 the sequence X, and cycles B, n [N, may
be chosen in such a way that f(x) [CC* for x [[d,b]\ {0}, and f(x) CCP~or
x =0.

Proof. Choose L > 1 and 0 < 0 < 1 for inequalities (3), (4) and Propositions
3, and 4 with J = I, to hold.

Claim 1. g&k) is of C° class on every interval I,,n = 1.

Proof. It is enough to show that lim;_ o sup{|@®(x,Jni)|} = 0 for every
k = 1. Using (1) and (4) we have sup{|o® (X, Ini)l,Xx Tdni} = cklg@$"™) —
9@ 2 — 21K < ellg(xn) — 928 Ixa — 28V for i suf-
ficiently large. Proposition 2 gives [g(Xn) — 9" )/ |xn — 2z Pk - 0 as
i -~ oo. Therefore, Proposition 1 applies to conclude g"(k) Q> for x [} for
every finite n.

Choose the sequence x»,n [N, in such a way that Ax, = xrliﬁﬂ =d/ni*T
for large N where 0 < d and T > 0 are constants. Then x, = ;Z, Ax; [d#/n*®
as n — oo for some d; > 0.

Claim 2. For every T > 0 f{x) is continuous for all x [[&,b], moreover,
sup{|g"x)|, x CT}} < do/n for some dy > 0.

Proof. It is enough to show the continuity at x = 0 only. With constants L
and 0 < & < 1 chosen above one has sup{|g™x)|, x [TA} < Lsup{|g{x)|,x CT4}
provided |x, — zﬁ,”')| < 6 diam I,. This follows from Proposition 4. Using this and
(1) we obtain sup{|g™¢x)|,x [T} < c1L|AXn—1 — AXp|/AX, [dI/nasn - oo
for some d, > 0. Therefore, limy_ o f{¢x) = 1 = K0).

Claim 3. For arbitrary 0 < [ 1 there exists T = t(Jsuch that f{{x) CC*~H
at x =0.
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Proof. We have to show that for every [ 3 0 there exists T > 0 such that

. [f'{x) — ()l
5 limsup —————> < o0
©) x,yﬂ+[3 [x —y[~H
Suppose first X,y [T4. Then |x —y| < Axn, g5X) = n(x, 1,1) for a respective n.
Using intermediate value theorem and Proposition 3 we obtain

[F0) — F' )| _ I9n — gn+al X— Xn+1 _ Y — Xn+1 —yi—Ck
|X_y|1_|:| |Xn _Xn+l||r|I¥ — Xn n% _Xn+1)|/IX yl a

— 1 3
<d, |9n_ 9n+ |2 Ix — y|k dsn® Hl+r),
[Xn — Xn+1l

for some d4 > 0 and large n. By choosing 0 < 1 < [(5) follows.
Suppose next x 14,y [T3+1. Then

IF100) = £ _ [T = Fitxnra)l |, [FHY) — FiXn+a)]

x=yPrH 7 X = Xper|tTH ly = Xpea |t 75

and by the first case considered, (4) follows.
Suppose finally x [T},y [CIh,n+1<m. Then |[X —y| = AXn+1, and in view
of Claim 2 we have
[fx) — Fity)l
S
for some ds > 0 and large n. By choosing 0 < t < [1(4) follows.
The remaining case x [T},y = 0 follows from the above with 1/m = 0. This
completes the proof. 1

[1/n+1/m|
1/(n+ 1)@+ 0a-n1~=

<d, =dsn'" IIH-T)

Acknowledgement. | am thankful to the referee for his careful reading the
manuscript and helpful suggestions to improve the paper.

References

1. Coven E. M. and Nitecki Z., Non-wandering sets of the powers of maps of the interval,
Ergod. Th.& Dynam. Sys. 1 (1981), 9-31.

2. Hall G. R., A C* Denjoy counterexample., Ergod. Th.& Dynam.Sys. 1 (1981), 261-272.

3. Mané R., Hyperholicity, sinks, and measure in one-dimensional dynamics., Commun. Math.
Phys. 100 (1985), 495-524.

4. Martens M., de Melo W., and van Strien S., Julia-Fatou-Sullivan theory for real one-dimen-
sional dynamics, Preprint no. 88-100, Delft University (1988).

5. de Melo W., A finiteness problem for one-dimensional dynamics., Proc. Amer. Math. Soc.
101 (1987), 721-727.

6. Sharkovsky A. N. and Ivanov A. F., C*° interval maps with attracting cycles of arbitrarily
large periods, Ukrainian Math. J. 35 no. 4 (1983), 537-539. (Russian)

7. van Strien S., Hyperbolicity and invariant measures for general C2 interval maps satisfying
the Misiurewicz condition, Commun. Math. Phys. 128 (1990), 437-495.

A. F. lvanov, Institute of Mathematics of the Ukrainian Academy of Sciences, Kiev, Ukraine;
current address: Alexander von Humboldt Fellowship at Mathematisches Institut der Universitat
Miinchen, Germany



