
Acta Math. Univ. Comenianae
Vol. LXI, 1(1992), pp. 101–115

101

DIVISOR PROBLEMS IN SPECIAL

SETS OF POSITIVE INTEGERS

W. G. NOWAK∗

1. Introduction

For infinite sets of natural numbers S1, S2, we define the arithmetic function

τS1,S2(n) = # {(m1,m2) ∈ S1 × S2 : m1m2 = n} (n ∈ N) .

To study its average order, it is usual to consider the corresponding Dirichlet’s

summatory function ∑
n≤x

τS1,S2(n)

where x is a large real variable. For S1 = S2 = N, this is just the classical Dirichlet

divisor problem: See Krätzel [7] for a survey of its history and Huxley [4, 5] for the

hitherto sharpest results. In recent times, Smith and Subbarao [19], the author

[13], and Varbanec and Zarzycki [20] investigated the case S1 = N, S2 = A, where

A denotes throughout the sequel an arithmetic progression

A = A(a, q) = {m ∈ N : m ≡ a (mod q) } (1 ≤ a ≤ q) .

Articles by Mercier and the author [10, 11] discuss the situation that S1, S2 are

the images of N under certain (monotonic) polynomial functions p1, p2 with integer

coefficients.

In the present paper, we will consider (in fact in a more general context) the

case that one or both of S1, S2 is equal to the set B = BQ(i) consisting of those

natural numbers which can be written as a sum of two integer squares.

For a given natural number n, there arise two questions in a natural way:

(i) How many divisors of n belong to the set B?

(ii) In how many ways can n be written as a product of two elements of B?

Question (i) leads to the arithmetic function τB,N(n). A result on this is contained

in a quite recent paper of Varbanec [21] who actually considered the more general
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function τB,A(n), obtaining an estimate uniform in a and q. Our first aim is to

improve his result up to an error term which can be called “final” on the basis

of our present knowledge about zero-free regions of the Riemann and Dedekind

zeta-functions (Theorem 1).

Since B forms a semigroup with respect to multiplication, question (ii) can also

be viewed as a “Dirichlet divisor problem in the set B”. We will establish an

asymptotic formula for
∑
n≤x τB,B(n) with an order term corresponding to the

hitherto sharpest one in the Prime Number Theorem (Theorem 2).

2. Statement of Results

Theorem 1. For an algebraic number field K which is a Galois extension of

the rationals of degree [K : Q ] = r ≥ 2, let OK denote the set of integer ideals in

the ring of algebraic integers in K, and define B = BK as the set of all positive

integers n for which there exists at least one ideal I ∈ OK with norm equal to n.

Let A = A(a, q) be an arithmetic progression (1 ≤ a ≤ q), then the asymptotic

formula

∑
n≤x

τB,A(n) =
x

a

M( xa )∑
k=0

A
(1)
k (log

x

a
)−k−1+1/r +

x

q

M( xq )∑
k=0

A
(2)
k (log

x

q
)−k+1/r

+O(
x

a
exp(−c(log(

3x

a
))3/5(log log(

3x

a
))−1/5))

holds uniformly in 1 ≤ a ≤ q ≤ x, where

(2.1) M(w)
def
= [c′(log 3w)3/5(log log 3w)−6/5] ,

c > 0, c′ > 0 and the O-constant depend at most on the field K but not on a and q.

The coefficients A
(1)
k and A

(2)
k are computable and satisfy

(2.2) A
(i)
k ≤ (b∗k)

k

(for k ≥ 1) with some constant b∗ > 0 independent of A(a, q).

Theorem 2. Let K = Q (
√
D) be a quadratic number field with discriminant

D, and define B = BK as before, then we have the asymptotic formula

∑
n≤x

τB,B(n) = A∗x+ x
1
2

M(x)∑
k=0

Ak(logx)−
1
2−k

+O(x
1
2 exp(−c(logx)3/5(log log x)−1/5))
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where M(x) is defined in (2.1), the Ak’s are computable and satisfy (2.2). The

leading coefficient A∗ can be given explicitly as

A∗ = ρ
∏
p|D

(1−
1

p
)−1

∏
p∈P2

(1−
1

p2
)−1

where ρ is the residue of the Dedekind zeta-function ζK(s) at s = 1 and P2 denotes

the set of all rational primes p such that (p) is a prime ideal in OK .

Remarks.

1. The bound (2.2) for the coefficients A
(i)
k ensures that later terms in our

expansions cannot exceed the size of the first terms. Furthermore, it shows that,

for every N ≤M(x), we could break up the expansion in Theorem 2 after the term

with (log x)−
1
2−N , obtaining an order term O(x1/2(logx)−3/2−N ). Of course, the

corresponding assertion holds for the two expansions in Theorem 1; in particular,

the upper limit M(x
q
) in the second sum can be replaced by M(x

a
), without getting

a new error term.

2. It should be pointed out that the restriction on the quadratic case in Theorem

2 is natural and necessary: As we can see from the proof below, the generating

function of τB,B(n) contains a factor (ζK(s))2/r. For r = [K : Q ] = 2, this has a

simple pole at s = 1 which can be “isolated” in a way that we obtain the leading

term A∗x and an expansion in terms which are o(x1/2). If r > 2, the point s = 1

would be a branch point of the generating function: We do not see a way to get a

better error term than O(x exp(−c(log x)3/5(log log x)−1/5)) in this case.

3. Our proofs are based on a well-established method of analytic number theory.

This can be traced back to a classic paper of Selberg [17], and articles by Rieger

[16], Kolesnik and Straus [6] and others. An enlightening account on the theory

can be found in the book of De Koninck and Ivić [2].

3. Preliminaries

Throughout the paper, b and c (also with a subscript or a dash) denote positive

constants which may depend on the field K but not on the progression A(a, q).

(This applies to all O- and �-constants as well, throughout the paper.)

Let H(s) be any analytic function without zeros on a certain simply connected

domain S of C which contains the real line to the right of s = σ0 where σ0 = 1

or 1
2 . Suppose that H(s) ∈ R+ for real s > σ0, and let α ∈ R arbitrary. Then we

define (H(s))α on S by

(H(s))α = exp
(
α(log(H(2)) +

∫ s

2

H ′(z)

H(z)
dz)
)
,

the path of integration being completely contained in S but otherwise arbitrary.
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In our analysis, S will usually be a domain symmetric with respect to the real

line, with a “cut” along L = {s ∈ R : s ≤ σ0} (such that S ∩ L = Ø). We will

join in the common abuse of terminology to think of an “upper” and “lower edge”

of L ∩ ∂S, on which (H(s))α are attributed two different values, depending on

whether L is approached from above or from below.

In our first Lemma, we summarize the present state of art about zero-free

regions of Dedekind zeta-functions.

Lemma 1 (See T. Mitsui [12]). Let ζK(s) denote the Dedekind zeta-function

of an arbitrary algebraic number field K. Define for short

ψ(t) = (log t)2/3(log log t)1/3 (t ≥ 3)

and, for positive constants b1 ≥ 3 and b2,

λ(t) =

{
1− b0

def
= 1− b2

ψ(b1)
, for |t| ≤ b1 ,

1− b2
ψ(|t|) , for |t| ≥ b1 .

Then there exist values of b1, b2, b3 such that for all s = σ + it with

σ ≥ λ(t) , |s− 1| ≥ ε , (0 < ε < 1)

it is true that

ζK(s) 6= 0 ,
ζ′K(s)

ζK(s)
� ψ(|t|+ 3) +

1

ε

and

(ζK(s))±1 � (log(2 + |t|))b3 +
1

ε
.

Proof. This is essentially Lemma 11 of Mitsui [12]. The very last assertion is

readily derived on classical lines; see e.g. Prachar [15, p. 71.] �

Our next auxiliary result provides an asymptotic expansion for a certain contour

integral which is essential in the type of problem under consideration.

Lemma 2. Let H(s) be a holomorphic function on the disk

{s ∈ C : |s− 1| < 2b0} (b0 > 0 fixed)

and let α ∈ R \ Z. Let C0 denote the circle |s− 1| = b0, with positive orientation,

starting and ending at 1− b0. For a large real variable w, it follows that

1

2πi

∫
C0

(s− 1)−αH(s)ws ds = w

M(w)∑
k=0

βk

Γ(α− k)
(logw)α−k−1

+O(w exp(−c′′(logw)3/5(log logw)−1/5)) (c′′ > 0)
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where M(w) is defined as in (2.1), βk are the coefficients in the Taylor expansion

of H(s) at s = 1. By Cauchy’s estimates and standard results on the Gamma-

function, they satisfy

(3.1)
βk

Γ(α− k)
� b−k0 Γ(1− α+ k) max

|s−1|=b0
|H(s)| � (b−1

0 k)k max
|s−1|=b0

|H(s)| .

The constant c′′ and the O- and �-constants depend only on α.

Proof. Results of this type are essentially well-known to experts. The details

of the argument for the present statement may be found (in a special context,

w.l.o.g.) in [14], formula (3.5) and sequel. �

Our next lemma summarizes what is known about the density of the sets BK in N.

Lemma 3. For an algebraic number field K which is a Galois extension of the

rationals of degree [K : Q ] = r ≥ 2, and large real x,

B(x)
def
= #{n ∈ B : n ≤ x } =

1

2πi

∫
C0

(s− 1)−1/rH(s)xs ds

+O(x exp(−c∗(logx)3/5(log log x)−1/5)) (c∗ > 0)

where C0 is defined as in Lemma 2 (with b0 > 0 suitable), and H(s) is holomorphic

in a neighbourhood of s = 1.

Proof. Although this assertion does not contain too much of novelty either, at

least for K = Q (i) (see Landau [8] and Shanks [18]), we sketch the argument for

convenience of the reader.

Let us denote by iS(·) the indicator function of any set S ⊂ N. It follows from

the decomposition laws in OK (cf. Hecke [3]) that, for all rational primes p which

do not divide the discriminant D of K, iB(p) = 1 if and only if p splits into r

distinct prime ideals in OK . Consequently, for Re s > 1,

(3.2) F0(s)
def
=
∞∑
n=1

iB(n)n−s = (ζK(s))1/rH1(s) ,

where H1(s) has a Dirichlet series absolutely convergent for Re s > 1
2 . In view

of Lemma 1, F0(s) possesses thus an analytic continuation into a certain simply

connected domain part of which is to the left of the line Re s = 1. By the truncated

Perron’s formula (see e.g. Prachar [15], p. 376 f, in particular formula (3.5)), we

obtain for large x, 1 ≤ T ≤ x and ω = 1 + 1
log x ,

B(x) =
1

2πi

∫ ω+iT

ω−iT
F0(s)x

s ds

s
+O(

x

T
log x) .
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Now let C1 denote the path from λ(T )− iT to 1− b0 along σ = λ(t) (b0 and λ(.)

as defined in Lemma 1), and let C2 lead from 1 − b0 to λ(T ) + iT , again along

σ = λ(t). By Lemma 1, it is clear that∫ ω±iT

λ(T )±iT
F0(s)x

s ds

s
�

x

T
(log T )b4 ,

and, for j = 1, 2, and T sufficiently large,∫
Cj

F0(s)x
s ds

s
� xλ(T )(logT )1+b4 .

For positive constants c1, c2, . . . , we define for short

δj(x)
def
= exp(−cj(log x)3/5(log log x)−1/5)

(to be used throughout the sequel), and choose T = (δ1(x))
−1 (with suitable c1).

We thus obtain

B(x) =
1

2πi

∫
C0

F0(s)x
s ds

s
+O(xδ2(x)) ,

which together with (3.2) gives the assertion of Lemma 3. �
Lemma 4. Let d∗(a, q;n) denote the number of (positive) divisors of n ∈ N

which lie in the arithmetic progression A(a, q) and are greater than q. For a large

real variable x, ∑
n≤x

d∗(a, q;n) =
x

q
log

x

q
+ γ∗(

a

q
)
x

q
+O((

x

q
)1/3)

uniformly in 1 ≤ a ≤ q ≤ x, where γ∗(·) is continuous on the compact unit interval.

Proof. This follows by a short and simple computation (using the Euler sum-

mation formula) from the author’s result in [13]. �

4. Proof of Theorem 1

In order to obtain an estimate uniform in a and q, it is important to isolate

the contribution of the possibly “small” divisor a to
∑
n≤x τB,A(n). We put A∗ =

A \ {a} and τ∗(n) = τB,A∗(n), then it is clear that

(4.1)
∑
n≤x

τB,A(n) = B(
x

a
) + T ∗(x) , T ∗(x)

def
=
∑
n≤x

τ∗(n) .

For Re s > 1, it is clear that

∞∑
n=1

τ∗(n)n−s = F0(s)ζ
∗(s,

a

q
)q−s ,
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where F0(s) has been defined in (3.2) and ζ∗(s, ξ) = ζ(s, ξ) − ξ−s, ζ(s, ξ) the

Hurwitz zeta function for 0 < ξ ≤ 1. For later reference we note that ζ∗(s, ξ) can

be represented by

(4.2) ζ∗(s, ξ) = (1 + ξ)−s +
(1 + ξ)1−s

s− 1
− s

∫ ∞
1

{u}(u+ ξ)−s−1 du ,

in the halfplane Re s > 0 with the exception of s = 1. (Here {·} denotes the

fractional part. Cf. Apostol [1, p. 269].) By a version of Perron’s formula,

(4.3) T ∗1 (x)
def
=

∫ x

0

T ∗(qu) du =
1

2πi

∫ 2+i∞

2−i∞
F0(s)ζ

∗(s,
a

q
)xs+1 ds

s(s+ 1)
.

Now let C∗1 denote the path from 1 − i∞ to 1 − b0, C∗2 the path from 1 − b0 to

1+ i∞, both along σ = λ(t), and put C = C∗1 ∪C0∪C
∗
2 . (b0, λ(t) and C0 are defined

as in section 3.) We observe that, for 1− b0 ≤ Re s ≤ 2,

(4.4) F0(s)ζ
∗(s,

a

q
)� (1 + | Im s|)2b0 ,

uniformly in a and q. (This is an immediate consequence of Lemma 1 and (3.2),

as far as the factor F0(s) is concerned. For ζ∗(s, a
q
), the necessary bound can be

found in Apostol [1, p. 270].) Consequently,

T ∗1 (x) =
1

2πi

∫
C
F0(s)ζ

∗(s,
a

q
)xs+1 ds

s(s+ 1)
.

Furthermore, defining T = (δ3(x))
−1 and appealing to (4.4) again, we see that (for

j = 1, 2) ∫
C∗j

F0(s)ζ
∗(s,

a

q
)xs+1 ds

s(s+ 1)
=

∫
| Im s|≥T

+

∫
| Im s|≤T

� x2 T 2b0−1 + x1+λ(T ) � x2δ4(x) ,

hence

(4.5) T ∗1 (x) = I∗(x) +O(x2δ4(x)) ,

where

(4.6) I∗(x)
def
=

1

2πi

∫
C0

F0(s)ζ
∗(s,

a

q
)xs+1 ds

s(s+ 1)

Employing a technique due to Rieger [16], we now put, for u ≥ 1,

f(u) = T ∗(qu)− I ′∗(u) ,
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then (4.5) implies that

(4.7)

∫ x

1

f(u)du� x2δ4(x) .

(Note that T ∗(qu) = 0 for u < 1.) In order to estimate the difference f(x)− f(y),

for 1 ≤ y ≤ x, we first observe that

I ′∗(x) − I
′
∗(y) =

∫ x

y

I ′′∗ (u) du =

∫ x

y

( 1

2πi

∫
C0

F0(s)ζ
∗(s,

a

q
)us−1 ds

)
du

� (x− y)(logx)1+1/r .

(4.8)

This follows by replacing C0 by C∗0 (u) which we define as the boundary of{
s ∈ C : |s− 1| ≤ b0 , Re s ≤ 1 +

1

log(2u)

}
,

(with positive orientation, starting and ending at 1− b0), in view of the bound

F0(s)ζ
∗(s,

a

q
)� |s− 1|−1−1/r

as s→ 1, uniformly in a and q. This in turn is an immediate consequence of (3.2)

and (4.2). Furthermore, we readily derive from Lemma 4 that

(4.9) 0 ≤ T ∗(qx) − T ∗(qy) ≤
∑

qy<n≤qx

d∗(a, q;n)� (x− y) log x+ x1/3 ,

uniformly in a and q. Now (4.7)–(4.9) are just the requirements of Hilfssatz 2 in

Rieger [16]. Applying the latter, we obtain

f(u)� uδ5(u) ,

or

T ∗(x) = I ′∗(
x

q
) +O(

x

q
δ5(

x

q
)) ,

with

I ′∗(u) =
1

2πi

∫
C0

F0(s)ζ
∗(s,

a

q
)us

ds

s
.

We insert this into (4.1), evaluate B(x
a
) by Lemmas 2 and 3, and I ′∗(

x
q
) on the basis

of (3.2) and Lemma 2. This completes the proof of Theorem 1. (The uniformity

in a and q of the bound (2.2) for the coefficients A
(2)
k follows from (3.1) and (4.2)

which in turn shows that (s− 1)ζ∗(s, ξ) is uniformly bounded in a neighbourhood

of s = 1.) �
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5. Proof of Theorem 2

For K a quadratic field, we denote by P1 the set of all rational primes which do

not divide the discriminant D and split into two prime ideals, and by P2 the set of

all other rational primes not dividing D. Then it is well-known that (for Re s > 1)

ζK(s) =
∏
p|D

(1−
1

ps
)−1

∏
p∈P1

(1−
1

ps
)−2

∏
p∈P2

(1−
1

p2s
)−1

and

F0(s)
def
=
∞∑
n=1

iB(n)n−s =
∏
p|D

(1−
1

ps
)−1

∏
p∈P1

(1−
1

ps
)−1

∏
p∈P2

(1−
1

p2s
)−1 .

Consequently,

(5.1) (F0(s))
2 =

∞∑
n=1

τB,B(n)n−s = ζK(s)ϕ(s) ,

where

(5.2) ϕ(s) =
∏
p|D

(1−
1

ps
)−1

∏
p∈P2

(1−
1

p2s
)−1 def

=
∞∑
n=1

g(n)n−s ,

for Re s > 1
2 , the last series converging absolutely in this halfplane. Furthermore,

(5.3) ϕ(s) = ζ(2s)(ζK(2s))−1/2H2(s)

where H2(s) has a Dirichlet series which converges absolutely for Re s > 1
4 .

We note a few important properties of the coefficients g(n) for later use:

(i) g(n) is either 0 or 1 for every n ∈ N.

(ii) If P(D) denotes the product of all primes that divide the discriminant D,

g(n) = 1 implies that n can be written n = m1m2 where m1 divides P(D) and

m2 is square-full∗.

(iii) If u is a large real variable and Q(u) denotes the number of square-full

positive integers ≤ u, we have

G(u)
def
=
∑
n≤u

g(n) ≤
∑

m|P(D)

Q(
u

m
)� u1/2 .

(iv) For 1 ≤ y < x,

|G(x2)−G(y2)| ≤
∑

m|P(D)

(
Q(
x2

m
)−Q(

y2

m
)
)
� x− y + x1/3 .

∗A positive integer m is called square-full if p2 divides m for every prime divisor p of m.
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The assertions (i) and (ii) are clear by (5.2), while (iii) and (iv) follow readily from

(i), (ii), and the known asymptotic formula for Q(u) (see Krätzel [7, p. 280]).

Let a(n) denote the number of integer ideals in OK with norm equal to n. It is

well-known∗∗ that

(5.4) A(u)
def
=
∑
n≤u

a(n) = ρu+ P (u) , P (u) = O(u1/3) ,

where ρ is the residue of the Dedekind zeta-function ζK(s) at s = 1. (See Landau

[9, p. 135].) By (5.1) and (5.2), it is clear that

(5.5) τB,B(n) =
∑
lm=n

a(l)g(m) .

The main difficulty in the proof of Theorem 2 is provided by the fact that (if

one wants to get a sufficiently “good” error term) contour integration apparently

cannot be applied to
∑
τB,B(n) itself, but only to

∑
g(m): We will combine this

technique with an elementary convolution argument based on (5.5).

Lemma 5. For u→∞,

G(u)
def
=
∑
m≤u

g(m) = I(u) +R(u)

where

I(u) =
1

2πi

∫
C0

ϕ(
s

2
)us/2

ds

s
,

and

R(u)� u
1
2 δ6(u)

for some c6 > 0.

Proof. We use the same technique as in the proof of Theorem 1. Again by

Perron’s formula, it follows that

G1(u)
def
=

∫ u

1

G(w2)dw =
1

2πi

∫ 2+i∞

2−i∞
ϕ(
s

2
)

us+1

s(s+ 1)
ds .

Repeating our argument between (4.3) and (4.6) almost word by word, we obtain

(5.6) G1(u) = I1(u) +O(u2δ7(u)) ,

∗∗In fact, the exponent 1
3

in the order term can be replaced at least by 23
73

+ ε: See Huxley
[5]. But this is unimportant in our context.
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where

(5.7) I1(u)
def
=

1

2πi

∫
C0

ϕ(
s

2
)
us+1

s(s+ 1)
ds .

We put, for w ≥ 1,

f(w) = G(w2)− I(w2) ,

then (5.6) implies that

(5.8)

∫ u

1

f(w)dw � u2δ7(u) .

In order to estimate the difference f(w1) − f(w2) for w1 > w2 ≥ 1, we observe

that

(5.9) I(w2
1)− I(w

2
2) =

∫ w1

w2

( 1

2πi

∫
C0

ϕ(
s

2
)us−1 ds

)
du� (w1 −w2)(log(2w1))

1/2 .

This follows on replacing C0 by C∗0 (u) (which was defined under (4.8)), since

(5.10) ϕ(
s

2
)� |s− 1|−1/2 (s→ 1) ,

which in turn is clear by (5.3). Combining (5.8), (5.9) and (iv) above, we again

are ready to apply Rieger’s Hilfssatz 2 from [16]. The latter implies that

G(w2) = I(w2) +O(wδ8(w)) .

Putting u = w2, we complete the proof of Lemma 5. �

We now define

(5.11) y = y(x) = xδ9(x) , z = z(x) =
x

y
= (δ9(x))

−1 ,

with a positive constant c9 remaining at our disposition. From (5.5) we derive by

a usual device (“hyperbola method”) that∑
n≤x

τB,B(n) =
∑
m≤y

g(m)A(
x

m
) +

∑
l≤z

a(l)G(
x

l
) − G(y)A(z) .

By (5.4), Lemma 5, and (ii), this may be simplified to∑
n≤x

τB,B(n) =
∑
m≤y

g(m)
(
ρ
x

m
+O((

x

m
)1/3)

)
+
∑
l≤z

a(l)
(
I(
x

l
) +R(

x

l
)
)

− ρzI(y) +O(y1/2 z1/3) +O(y1/2 δ6(y) z)
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Observing that, by (ii) and summation by parts,∑
m≤y

g(m)(
x

m
)1/3 � x1/3 y1/6 � x1/2δ10(x) ,

and ∑
l≤z

a(l)R(
x

l
)� x1/2δ6(y)

∑
l≤z

a(l)l−1/2 � x1/2δ6(y)z
1/2 � x1/2δ10(x)

(cf. Landau [9, p. 128], for the next-to-last �-step), we arrive at

(5.12)
∑
n≤x

τB,B(n) = ρx
∑
m≤y

g(m)

m
+
∑
l≤z

a(l)I(
x

l
)− ρz I(y) +O(x1/2δ10(x)) ,

after an appropriate choice of c9 and c10. Appealing again to Lemma 5, we see

that ∑
m>y

g(m)

m
=

∫ ∞
y+

1

u
dG(u)

=

∫ ∞
y

1

u
I ′(u) du+

∫ ∞
y+

1

u
dR(u)(5.13)

=

∫ ∞
y

1

u
I ′(u) du −

1

y
R(y) +

∫ ∞
y

1

u2
R(u) du

=

∫ ∞
y

1

u
I ′(u) du + O(y−

1
2 δ6(y)) .

Furthermore,∑
l≤z

a(l)I(
x

l
) =

∫ z

1
2

I(
x

u
) dA(u)

= A(z)I(
x

z
) +

∫ z

1

A(u) I ′(
x

u
)
x

u2
du

= ρzI(y) +O(y1/2 z1/3) + ρx

∫ x

y

I ′(w)
dw

w
+ x

∫ z

1

P (u) I ′(
x

u
)
x

u2
du ,

by the substitution w =
x

u
in the last but one integral. Inserting this together

with (5.13) into (5.12), we obtain∑
n≤x

τB,B(n) = A∗x− ρx

∫ ∞
x

I ′(w)
dw

w
(5.14)

+ x

∫ z

1

P (u) I ′(
x

u
)
du

u2
+O(x1/2δ10(x)) .
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Here

A∗ = ρ

∞∑
m=1

g(m)

m
= ρϕ(1)

and can thus be represented as stated in Theorem 2 (cf. (5.2)), while

(5.15) I ′(w) =
1

2πi

∫
1
2C0

ϕ(s)ws−1 ds .

To evaluate the two remaining integrals, we define

S(w, s)
def
=

∫ ∞
w

P (u)u−s−1 du

and

U(x,w)
def
=

1

2πi

∫
1
2C0

ϕ(s)S(w, s)xs ds ,

for positive reals w and x and complex s with Re s > 1
3 . Interchanging the order

of integration, we see from (5.15) that

U(x,w) = x

∫ ∞
w

P (u)I ′(
x

u
)
du

u2
.

Consequently, we obtain for the last integral in (5.14)

x

∫ z

1

P (u) I ′(
x

u
)
du

u2
= U(x, 1)− U(x, z)

=
1

2πi

∫
1
2C0

ϕ(s)S(1, s)xs ds − U(x, z) .

Similarly,

x

∫ ∞
x

I ′(u)
du

u
= x

∫ ∞
x

( 1

2πi

∫
1
2C0

ϕ(s)us−1 ds
)du
u

= x
1

2πi

∫
1
2C0

ϕ(s)
(∫ ∞
x

us−2du
)
ds = −

1

2πi

∫
1
2C0

1

s− 1
ϕ(s)xs ds .

In view of the identity
ρ

s− 1
+ S(1, s) =

1

s
ζK(s)

(which is immediate for Re s > 1 via integration by parts, and thus true (at least)

for Re s > 1
3 , s 6= 1, by analytic continuation), we may thus simplify (5.14) to

(5.16)
∑
n≤x

τB,B(n) = A∗x+
1

2πi

∫
1
2C0

ϕ(s)ζK(s)xs
ds

s
− U(x, z) + O(x1/2δ10(x)) .
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The penultimate step is to estimate U(x, z). It is clear from the definition that

S(w, σ + it)� w
1
3−σ (σ >

1

3
) ,

hence

U(x, z) =
1

2πi

∫
1
2C
∗
0 (x)

ϕ(s)S(z, s)xs ds� x1/2 (logx)1/2z
1
3−

1
2 (1−b0) � x

1
2 δ10(x) ,

again by (5.10), with C∗0 (x) defined under (4.8). Recalling (5.1), (5.3), and making

the substitution 2s→ s, we see that the integral remaining in (5.16) is equal to

1

2πi

∫
C0

ζ(s)(ζK(s))−1/2ζK(
s

2
)H2(

s

2
)(x1/2)s

ds

s

and can thus be evaluated by Lemma 2. This completes the proof of Theorem 2.�

Concluding remark. It might be worthwhile to provide numerical values for

the leading coefficients A∗, A0, at least in the (perhaps most important) case

K = Q (i). It is an immediate consequence of the representation given in Theorem

2 and of the decomposition laws in OQ(i) that

A∗ =
π

2

∏
p≡3 (mod 4)

(1−
1

p2
)−1 ∼ 1, 835 ,

since the residue of ζQ(i)(s) at s = 1 is π
4 . Moreover, it follows from Lemma 2,

(5.2) and (5.3), that in general

A0 = (
2ρ

π
)1/2ζK(

1

2
)
∏
p|D

(
(1−

1

p1/2
)−1(1−

1

p
)1/2

) ∏
p∈P2

(1−
1

p2
)−1/2 .

For K = Q (i), this gives

A0 =
1

2
(1−

1
√

2
)−1ζ(

1

2
)
( ∞∑
n=1

(−1)n

(2n− 1)1/2
) ∏
p≡3 (mod 4)

(1−
1

p2
)−1/2 ∼ −1, 799 .
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