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ON THE TREE–WIDTH OF A GRAPH

J. CHLEBÍKOVÁ

Abstract. Robertson and Seymour introduced the concept of the tree-width of
a graph. It plays an important role in their results on graph minors culminating
in their proof of Wagner’s conjecture. This concept seems to be interesting from
the algorithmic point of view as well: many graph problems that are NP-complete
in general can be polynomially solvable if graphs are constrained to have bounded
tree-width [2].

In the present paper several equivalent definitions of tree-width are discussed
and tree-width of several families of graphs is determined.

All graphs in this paper are nonempty, finite and may have loops or multiple

edges. V (G) and E(G) denote the set of vertices and the set of edges of the

graph G, respectively. ω(G) denotes the cardinality of the maximal clique of G.

Kk stands for the complete graph on k-vertices.

For any subset X of V (G) we denote by G−X the graph obtained from G by

deleting the vertices of X (and all the edges adjacent with them). For any edge

e ∈ E(G) let G−e stand for the graph obtained from G by deleting e.

In this paper the difference between isomorphism and equality of graphs is

ignored.

Definition 1. A tree-decomposition of a graph G is a pair (T, ), where T

is a tree and = (Xt, t ∈ V (T )) is a family of subsets of V (G) with the following

properties:

(i) ∪(Xt, t ∈ V (T )) = V (G);

(ii) for every edge e ∈ E(G) there exists t ∈ V (T ) such that e has both ends

in Xt;

(iii) for t, t′, t′′ ∈ V (T ), if t′ is on the path of T between t and t′′ then

Xt ∩X
′′
t ⊆ X

′
t.

The width of the tree-decomposition (T, ) is

max
t∈V (T )

(|Xt| − 1).
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A tree-width of the graph G, TW (G), is a minimal nonnegative integer k such

that G has a tree-decomposition of the width k.

A tree-decomposition (T, ) of the graph G is said to be fundamental, if

(T, ) has width TW (G) and for any tree-decomposition (T ′, ′) of G whose

width is TW (G), the inequality |V (T ′)| ≥ |V (T )| holds.

Lemma 2. Let (T, ) be a fundamental tree-decomposition of a graph G,

where = (Xt, t ∈ V (T )). If vertices t1, t2 ∈ V (T ) are adjacent in T , then

Xt1−Xt2 6= ∅.

Proof. If Xt1−Xt2 = ∅ for some vertices t1 and t2 adjacent in T , then define a

new tree-decomposition of G in the following way: let t0 denote the vertex obtained

by contraction of the edge {t1, t2} in T and let T ′ denote the tree obtained in this

way. Set Xt0 = Xt2 and ′ = (Xt, t ∈ V (T ′)). Clearly, the tree-decomposition

(T ′, ′) of G has width TW (G) but has less then |V (T )| vertices, a contradic-

tion. �

Definition 3. Let (T, ) be a tree-decomposition of a graph G, where =

(Xt, t ∈ V (T )). For each t ∈ V (T ) the connected components of T−t are called

the branches of T at t.

For any t ∈ V (T ) and any v ∈ V (G) for which v /∈ Xt there is a (unique) branch

of T at t containing all t′ ∈ V (T ) with v ∈ Xt′ (due to the property (iii) from

Definition 1). Let Tt(v) denote this branch.

Definition 4. Let G be a graph, X, Y , Y ′ ⊆ V (G). The sets Y and Y ′ are

separated in G by the set X, if every path from Y to Y ′ in G contains a vertex

of X.

Lemma 5. Let (T, ) be a tree-decomposition of a graph G, where =

(Xt, t ∈ V (T )).

(i) If v, v′ /∈ Xt and v, v′ are not separated in G by Xt, then Tt(v) = Tt(v
′).

(ii) Let e be an edge of T with ends t, t′ and let N , N ′ be the vertex sets of

the two components of T−e. Then Xt ∩Xt′ separates ∪(Xn, n ∈ N) and

∪(Xn, n ∈ N ′).
(iii) Let |V (T )| ≥ 2 and for each t ∈ V (T ) let Gt be a connected subgraph of

G with V (Gt)∩Xt = ∅. Then there exist t, t′ ∈ V (T ) adjacent in T such

that Xt ∩Xt′ separates V (Gt) and V (Gt′) in G.

Proof. See [3]. �

Lemma 6. Let (T, ) be a tree-decomposition of a graph G, where =

(Xt, t ∈ V (T )). For any clique H ⊆ G there exists a vertex t0 ∈ V (T ) such

that V (H) ⊆ Xt0. In particular, TW (G) ≥ ω(G)− 1.

Proof. If |V (H)| ≤ 2 then the statement easily follows from the definition of

the tree-decomposition of G.
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Suppose to the contrary that there exists a clique H ⊆ G (|V (H)| ≥ 3) such

that for every t ∈ V (T ) the vertex set V (H)−Xt is nonempty. Then obviously

|V (T )| ≥ 2. For every t ∈ V (T ) set Gt = H−Xt. Then

(1) V (Gt) ∩Xt = ∅ .

Due to Lemma 5 there are vertices t1, t2 adjacent in T such that the subsets

V (Gt1) and V (Gt2) are separated in G by the set Xt1 ∩Xt2 . By virtue of (1) we

get, in particular, V (Gt1) ∩ V (Gt2) = ∅. Choose arbitrary vertices v1 ∈ V (Gt1)

and v2 ∈ V (Gt2). Since v1 and v2 are separated in G by the set Xt1 ∩Xt2 and v1,

v2 /∈ Xt1 ∩Xt2 , we get that v1 and v2 are not adjacent in G. But v1 and v2 are

vertices of the clique H ⊆ G, a contradiction. �

Theorem 7.

(i) TW (G) = 0 if and only if G is a discrete graph.

(ii) TW (C) = 2 for any cycle C.

(iii) TW (G) ≤ 1 if and only if G is a forest.

(iv) TW (Kn) = n− 1 for any positive integer n.

Proof. Part (i) is trivial.

(ii) Let C be a cycle, C = v1v2 . . . vnv1 and n ≥ 3. To prove that TW (C) ≤ 2,

we define a tree T , where V (T ) = {1, . . . , n−2}, E(T ) = {{i, i+1} : 1 ≤ i ≤ n−3}
and the family = (Xt, t ∈ V (T )), where Xt = {v1, vt+1, vt+2} for any vertex

t ∈ V (T ). Then (T, ) is a tree-decomposition of C with width 2.

To prove that TW (C) ≥ 2, we assume, to the contrary, that (T, ) is a funda-

mental tree-decomposition of C with width at most 1. Then we can find vertices

t1, t0 ∈ V (T ) such that Xt1 = {v1, v2} and Xt0 = {v1, vn}. Let t2 ∈ V (T ) be the

first vertex different from t1 on the path from t1 to t0 in T . By Lemma 2 v2 /∈ Xt2

and hence Xt1 ∩ Xt2 = {v1}. Delete from T the edge e joining the vertices t1
and t2. For i = 1, 2 let Ni denote the vertex set of the component of T−e which

contains ti. By Lemma 5, the sets M1 = ∪(Xt, t ∈ N1) and M2 = ∪(Xt, t ∈ N2)

are separated in C by {v1}. But vertices v2 ∈M1 and vn ∈M2 are not separated

by {v1} in C, a contradiction.

(iii) If G is a forest it is easy to find a tree-decomposition of G with width at

most 1. If G is not a forest, then TW (G) ≥ 2 by (ii).

(iv) The inequality TW (Kn) ≥ n−1 is a consequence of Lemma 6. The opposite

inequality easily follows from the definition of a tree-decomposition of G. �

Definition 8. A graph G is said to be chordal, if every cycle in G of length

at least 4 has a chord.

A graph G has chord-width k, ChW (G) = k, if k is the smallest nonnegative

integer such that G is a subgraph of some chordal graph H which contains no

(k + 2)-clique as a subgraph.
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Definition 9. Let G1 and G2 be disjoint graphs. Choose cliques (without

multiple edges and loops) from each of G1 and G2 of the same size k and a

bijection between them. Identify each vertex of the first clique with the associated

vertex of the second one.

1. If we delete the edges of both cliques, the result is said to be a k-sum of G1

and G2 (see Fig. 1).

v1 v2

v3G1

v1 v2

v3G2

v1 v2

v3

G is 3-sum of G1 and G2

Figure 1.

2. If we delete the edges of only one of the cliques, the result is said to be a

k-linkage of G1 and G2 (see Fig. 2).

v1 v2

v3G1

v1 v2

v3G2

v1 v2

v3

G is 3-linkage of G1 and G2

Figure 2.

Remark. 0-sum and 0-linkage correspond to the disjoint union of graphs.

1-sum has the same meaning as 1-linkage.
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Notation. If is a set of graphs, we denote by 〈 〉k, 〈〈 〉〉k and 〈〈 〉〉∗k the

sets of graphs, which can be constructed by repeatedly applying the operation

of a ≤k-sum, ≤k-linkage and a k-linkage starting from graphs belonging to ,

respectively.

Let denote the set of all complete graphs and 〈〈 〉〉 =
∞⋃
k=0

〈〈Kk+1〉〉k.

Definition 10. Let k+1 be the set of all graphs with ≤ (k + 1) vertices. A

graph G is said to have

1. sum-width k (SW (G) = k), if k is the smallest nonnegative integer such

that G ∈ 〈 k+1〉k;
2. linkage-width k (LW (G) = k) if k is the smallest nonnegative integer for

which there exists a supergraph H ⊇ G such that H ∈ 〈〈 k+1〉〉k;
3. clique-width k (CW (G) = k) if k is the smallest nonnegative integer for

which there exists a supergraph H ⊇ G such that H ∈ 〈〈Kk+1〉〉
∗
k.

We prove that all the above mentioned variants of the width of a graph are

equivalent. The following characterization of chordal graph was first given by

Dirac [1].

Lemma 11. A graph G is chordal if and only if G ∈ 〈〈 〉〉.

Proof. Necessity: If G ∈ , then G is chordal. Further, we prove that if G is

obtained by using operation of linkage two chordal graphs G1, G2 ∈ 〈〈 〉〉 then

G is chordal.

Let C be a cycle in the graph G of length at least 4. If V (C) ⊆ V (Gi) for some

i = 1, 2, then there is a chord of C in G, for G1 and G2 are chordal. Otherwise,

V (C) ∩ (V (G1)−V (G2)) 6= ∅ and V (C) ∩ (V (G2)−V (G1)) 6= ∅. Then it is easy to

see that there is a pair of different vertices u, v ∈ V (C) such that u, v ∈ V (G1) ∩
V (G2) and {u, v} /∈ E(C). Since u and v are vertices of a clique in G, the edge

{u, v} is a chord of C in G.

Sufficiency: Assume to the contrary that there are chordal graphs which do

not belong to 〈〈 〉〉. Let G have the minimum number of vertices among all

such graphs. The minimality condition implies that G is a block. We denote by

R = {v1, . . . , vr} a minimal vertex-cut of G. The assumptions made about G

imply that 2 ≤ r ≤ |V (G)| − 2. Let F denote the subgraph of G induced by the

set R. Let H1, . . . ,Hs, s ≥ 2, be components of G−R. For every i, 1 ≤ i ≤ s, let

H̃i denote the subgraph of G induced by V (Hi) ∪ R. The graphs H̃i are chordal

and since |V (H̃i)| < |V (G)| we obtain that H̃i ∈ 〈〈 〉〉, for 1 ≤ i ≤ s.
First of all, we prove that F ∈ . Assume to the contrary, that there are

vertices v and v′ ∈ R which are not adjacent in G. Choose arbitrary vertices

v1 ∈ V (H1) and v2 ∈ V (H2). Any path from v1 to v2 in G−{R−{v}} (resp.

G−{R−{v′}} contains v′ (resp. v). Therefore there exists a cycle C in G with the

following properties:
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(2)
v, v′ ∈ C, V (C)−{v, v′} ⊆ V (H1)∪ V (H2) and V (C)∩ V (Hi) 6= ∅
for every i ∈ {1, 2}.

Let C0 denote the shortest cycle satisfying (2). Since G is chordal, we can find a

chord, say {x, y}, of C0 in G. The vertices x and y both belong either to H1 or to

H2, because H1 and H2 are components of G−R and x, y /∈ R. Now, C0 contains

a path P from x to y containing vertices v and v′. Thus P together with the edge

{x, y} form a cycle satisfying (2) with less than |V (C0)| vertices, a contradiction.

Consequently, F ∈ . However, G can be constructed by linking chordal graphs

H̃1, . . . , H̃s ∈ 〈〈 〉〉, hence G ∈ 〈〈 〉〉, a contradiction. �

Theorem 12. For any G, the following equalities hold:

TW (G) = ChW (G) = LW (G) = CW (G) = SW (G).

Proof. For any nonnegative integer k is sufficient to prove the equivalence of

the following five statements:

TW (G) ≤ k ⇔ ChW (G) ≤ k ⇔ LW (G) ≤ k ⇔ CW (G) ≤ k ⇔ SW (G) ≤ k.

TW (G) ≤ k =⇒ ChW (G) ≤ k:

Let (T, ) be a tree-decomposition of G with width at most k, where =

(Xt, t ∈ V (T )). We define a supergraph H of G as follows: V (H) = V (G),

E(H) =
⋃
t∈V (T ){{u, v};u, v ∈ Xt and u 6= v}. Then (T, ) is also a tree-

decomposition of H. We show that H is chordal and does not contain a (k + 2)-

clique as a subgraph. Let C be a cycle of length at least 4 in H and let (T, C),

where C = (Xt∩V (C), t ∈ V (T )), be a tree-decomposition of C. By Theorem 7,

there is a vertex t0 ∈ V (T ) such that |V (C) ∩ Xt0 | ≥ 3. Since |V (C)| ≥ 4, the

set V (C) ∩ Xt0 contains a pair of vertices x and y nonadjacent in C. The edge

{x, y} ∈ H is a chord of C inH. Suppose that the graphH contains a (k+2)-clique

Kk+2. Then the restriction of a tree-decomposition (T, ) of H to the vertices of

Kk+2 is a tree-decomposition of Kk+2 with width k, contradicting to Theorem 7.

Hence H is a chordal supergraph of G containing no (k+ 2)-clique as a subgraph.

ChW (G) ≤ k =⇒ LW (G) ≤ k:

Let H be a chordal supergraph of G containing no (k+2)-clique. By Lemma 11

we have H ∈ 〈〈{Ki : 1 ≤ i ≤ k+1}〉〉. It is easy to see that the graph H fulfils the

following statement:

(3)
H is a 1-clique or a (k + 1)-clique, or there are two nonadjacent

vertices v1, v2 ∈ V (H), v1 6= v2, for which dH(v1), dH(v2) ≤ k.

Now we prove that for any graph H̃ H̃ ∈ 〈〈{Ki, 1 ≤ i ≤ k + 1}〉〉 implies

H̃ ∈ 〈〈 k+1〉〉k. Let H0 ∈ 〈〈{Ki, 1 ≤ i ≤ k + 1}〉〉 be a graph with the smallest
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number of vertices which does not belong to 〈〈 k+1〉〉k. Obviously, |V (H0)| > k+1.

According to (3), there is a vertex v0 ∈ V (H0) for which dH0(v0) ≤ k. Set

Z̃ = {u : {u, v0} ∈ E(H0)} and let Z ⊆ Z̃ be a minimum vertex-cut of H0. The

proof of Lemma 11 shows that the subgraph induced by the set Z in H0 is a clique.

Therefore H0 is a ≤ k-sum of graphs from 〈〈{Ki, 1 ≤ i ≤ k + 1}〉〉 which belong

to 〈〈 k+1〉〉k due to the minimality property of H0. Hence H0 ∈ 〈〈 k+1〉〉k.

LW (G) ≤ k =⇒ CW (G) ≤ k:

We show that for any graph H ∈ 〈〈 k+1〉〉k there exists a supergraph H̃ of

H such that H̃ ∈ 〈〈Kk+1〉〉
∗
k. If H ∈ k+1 that is trivial. Assume that the

graph H is a m-linkage (m ≤ k) of graphs H1 and H2 such that there exist

H̃i ⊇ Hi for which H̃i ∈ 〈〈Kk+1〉〉
∗
k, for any i = 1, 2. We can assume that

V (H̃1)∩V (H̃2) = V (H1)∩V (H2) and E(H̃1)∩E(H̃2) = E(H1)∩E(H2). The graph

M = H̃1 ∩ H̃2 is a clique. Put V (M) = {v1, . . . , vm}. If m = k, then H̃1 ∪ H̃2 ∈
〈〈Kk+1〉〉

∗
k. If m ≤ k − 1 we can easily find graphs Mi such that |V (Mi)| = k

and M ⊆ Mi ⊆ H̃i for any i = 1, 2. Put V (M1)−V (M) = {u1, . . . , uk−m}
and V (M2)−V (M) = {vm+1, . . . , vk}. Now define recurrently a finite sequence

P1, . . . , Pk−m+1 of graphs with the following properties: P1 is equal to H̃2 and for

every 1 ≤ i ≤ k −m: Pi+1 ⊇ Pi, V (Pi+1) = V (Pi) ∪ {ui} and E(Pi+1)−E(Pi) =

{{ui, vj} : m+1 ≤ j ≤ k+1− i}. Then Pi ∈ 〈〈Kk+1〉〉
∗
k for every i, 1 ≤ i ≤ k−m.

The graph H̃ is obtained by a k-linkage of H̃1 and Pk−m+1 through a k-clique

with vertex set {v1, . . . , vm, u1, . . . , uk−m}. Therefore H̃ ∈ 〈〈Kk+1〉〉
∗
k and H̃ ⊇

H̃1 ∪ H̃2 ⊇ H1 ∪H2 = H.

CW (G) ≤ k =⇒ SW (G) ≤ k:

This implication is easy, since the class of graphs 〈 k+1〉k is closed on the

operation of making subgraphs.

SW (G) ≤ k =⇒ TW (G) ≤ k:

We prove that for any G ∈ 〈 k+1〉k we can find a tree-decomposition of G with

width at most k. This is trivial if G ∈ k+1. If not, assume that the graph G is

m-linkage (m ≤ k) of graphs H1 and H2 such that H1, H2 ∈ 〈 k+1〉k and for any

i = 1, 2 there exists a tree-decomposition (Ti, i) of Hi with width at most k,

where i = (Xti , ti ∈ V (Ti)). Due to Lemma 2 there exists a vertex ti ∈ V (Ti)

such that Xti contains vertices of a m-clique for any i ∈ {1, 2}. Connecting trees

T1 and T2 by the edge {t1, t2}, we obtain a tree T . Put = (Xt, t ∈ V (T )). Then

(T, ) is tree-decomposition of G with width at most k.

The proof is complete. �
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2. Tree-width of Some Classes of Graphs

We have determined (Theorem 7) the tree-width of complete graphs, cycles and

trees. In the following section the tree-width of some other classes of graphs is

found.

Recall that a complete n-partite graph Kr1,...,rn is a graph whose vertex set is

a disjoint union ∪ni=1Vi and {u, v} ∈ E(Kr1,...,rn) if and only if there exist distinct

integers i, j such that u ∈ Vi and v ∈ Vj .

Theorem 13. Let Kr1,...,rn be the complete n-partite graph with r1 ≤ r2 ≤
. . . rn. Then TW (Kr1,...,rn) =

∑n−1
i=1 ri.

Proof. Let k =
∑n−1
i=1 ri. We define a supergraph H ⊇ Kr1,...,rn by adding to

Kr1,...,rn all the edges {u, v} such that u, v ∈ Vj and j 6= n. It is easy to see that

the graph H is chordal and does not contain a (k + 2)-clique. This implies that

TW (Kr1,...,rn) ≤ k.
To prove that TW (Kr1,...,rn) ≥ k we need to show that any chordal supergraph

of Kr1,...,rn contains a (k+1)-clique. Let G be an arbitrary chordal supergraph of

Kr1,...,rn . The graph G is either a clique on
∑n
i=1 ri vertices or there exists i′, 1 ≤

i′ ≤ n, and nonadjacent vertices u0, v0 ∈ Vi′ , u0 6= v0, in G. We choose arbitrary

vertices u, v ∈ Vj , u 6= v, 1 ≤ j ≤ n, j 6= i′. Vertices u0, v, v0, v ∈ V (G) induce a

cycle in G. The graph G is chordal and {u0, v0} /∈ E(G), therefore {u, v} ∈ E(G).

This holds for arbitrary u, v ∈ Vj , j 6= i′, 1 ≤ j ≤ n, u 6= v. Therefore the graph

G contains a clique on r1 + · · ·+ ri′−1 + 1 + ri′+1 + · · ·+ rn ≥ (k + 1) vertices.�
Remark. Let Kr1,r2 be a complete bipartite graph, where r1, r2 ∈ N, r1 ≤ r2.

Let K ′r1,r2 be a graph which we obtain be deleting of all the edges of maximum

matching from Kr1,r2 . Then the following assertions hold:

(i) If r1 = r2 = r, then TW (K ′r,r) = r − 1.

(ii) If r2 ≥ r1 + 1, (r1, r2) 6= (2, 3) then TW (K ′r1,r2) = r1 and TW (K ′2,3) = 1.

This can be proved using the same technique as in the proof of Theorem 13,

but the discussion is more complicated.

Definition 14. For any positive integers m ≥ 2, n ≥ 2 the grid Gm,n is the

graph defined as follows:

V (Gm,n) = { (i, j) : 1 ≤ i ≤ m and 1 ≤ j ≤ n },

E(Gm,n) = { {(i, j), (k, r)} : |i− k|+ |j − r| = 1, where

1 ≤ i, k ≤ m and 1 ≤ j, r ≤ n }.

and let G′m,n denote the graph

V (G′m,n) = V (Gm,n),

E(G′m,n) = { {(i, j), (i, k)} : j 6= k, 1 ≤ i ≤ m, 1 ≤ j, k ≤ n }

∪ { {(i, j), (i+ 1, j)} : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n }.
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Lemma 15. TW (G′m,n) ≤ n.

Proof. We prove the lemma by induction on m. For m = 2 we prove, by

induction on n, that for every n the inequality TW (G′2,n) ≤ n holds.

For n = 2 we have TW (G′2,2) = 2. Suppose that for some n ≥ 2 and for

every k ≤ n the inequality TW (G′2,k) ≤ k holds. From Theorem 12 we see that

G′2,k ∈ 〈〈 k+1〉〉k. Define supergraphs H1 and H2 of G′2,n as follows:

V (H1) = V (G′2,n) ∪ {(1, n+ 1)},

E(H1) = E(G′2,n) ∪ { {(1, i), (1, n+ 1)} : 1 ≤ i ≤ n },

V (H2) = V (H1) ∪ {(2, n+ 1)},

E(H2) = E(H1) ∪ { {(2, i), (2, n+ 1)} : 1 ≤ i ≤ n }.

By the induction hypothesis G′2,n ∈ 〈〈 n+1〉〉n. From the construction of graphs

H1 and H2 it follows that H1 ∈ 〈〈 n+1〉〉n and then also H2 ∈ 〈〈 n+1〉〉n. This

shows that TW (H2) ≤ n. The graph G′2,n+1 can be obtained by adding the edge

{(1, n + 1), (2, n + 1)} to the graph H2. This means that TW (G′2,n+1) ≤ n + 1.

Therefore TW (G′2,n) ≤ n for every positive integer n.

Now suppose that for some m ≥ 2 and for any s ≤ m and any positive integer n

the inequality TW (G′s,n) ≤ n holds. We show that TW (G′m+1,n) ≤ n. Fix n ∈ N.

Let H ′2,n denote the induced subgraph of the graph G′m+1,n on the set { (m+r, i) :

0 ≤ r ≤ 1, 1 ≤ i ≤ n }. The graph G′m+1,n can be obtained by using operation

of a m-linkage of graphs G′m,n and H ′2,n. By the induction hypothesis G′m,n ∈
〈〈 n+1〉〉n, H

′
2,n ∈ 〈〈 n+1〉〉n, and therefore G′m+1,n ∈ 〈〈 n+1〉〉n. Theorem 12

implies that TW (G′m+1,n) ≤ n, completing the proof. �

Theorem 16. TW (Gm,n) = min{m,n}.

Proof. Since Gm,n = Gn,m up to the isomorphism, we assume in the following

that m ≥ n. The graph Gm,n is obviously a subgraph of the graph G′m,n. This

implies TW (Gm,n) ≤ TW (G′m,n) ≤ n.

To prove the opposite inequality it is sufficient to prove that TW (Gn,n) ≥
n, since the graph Gn,n is a subgraph of Gm,n. Assume, to the contrary, that

TW (Gn,n) ≤ n− 1 and let (T, ), where (Xt, t ∈ V (T )), be a fundamental tree-

decomposition of Gn,n. Obviously, |V (T )| ≥ 2, otherwise TW (Gn,n) = n2 − 1 ≥
n + 1 > n, a contradiction. For any 1 ≤ i ≤ n we define subgraphs Li and Mi of

Gn,n in the following way:

V (Li) = { (j, i) : 1 ≤ j ≤ n }, E(Li) = { {(j, i), (j + 1, i)} : 1 ≤ j ≤ n− 1 },

V (Mi) = { (i, j) : 1 ≤ j ≤ n }, E(Mi) = { {(i, j), (i, j + 1)} : 1 ≤ j ≤ n− 1 }.

The following two possible cases will be discussed separately:
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1. For every t ∈ V (T ) there is a path Pt either from the set V (L1) to the set

V (Ln) or from the set V (M1) to the set V (Mn) such that

(4) V (Pt) ∩Xt = ∅ .

2. There exists a vertex t0 ∈ V (T ) such that for every path P from the set

V (L1) to the set V (Ln) the set V (P ) ∩Xt0 is nonempty and for every path P

from the set V (M1) to the set V (Mn) the set V (P ) ∩Xt0 is (also) nonempty.

Case 1.

According to Lemma 5, there are vertices t1, t2 ∈ V (T ), {t1, t2} ∈ E(T ) such

that the sets V (Pt1) and V (Pt2) are separated in Gn,n by Xt1 ∩Xt2 . By virtue of

(4) we get, in particular, that V (Pt1) ∩ V (Pt2) = ∅. Hence, either both Pt1 and

Pt2 are paths from V (L1) to V (Ln) or both of them are paths from V (M1) to

V (Mn). We assume that the paths are from V (M1) to V (Mn). (The second case

is analogous.)

Since (T, ) is a fundamental tree-decomposition of Gn,n and {t1, t2} ∈ E(T ),

from Lemma 2.6 we obtain |Xt1∩Xt2 | ≤ n−1. There exists i0, 1 ≤ i0 ≤ n for which

V (Mi0) ∩ (Xt1 ∩Xt2) = ∅. Since V (Pt1) ∩ V (Mi0) 6= ∅ and V (Pt2) ∩ V (Mi0) 6= ∅,
we see that V (Pt1) and V (Pt2) are not separated in Gn,n by the set Xt1 ∩Xt2 , a

contradiction.

Case 2.

In this case, the following is satisfied for every i, 1 ≤ i ≤ n: V (Li) ∩Xt0 6= ∅,
V (Mi)∩Xt0 6= ∅; since |Xt0 | ≤ n, we see that |V (Li)∩Xt0 | = 1 and |V (Mi)∩Xt0 | =
1. Define k(i) ∈ {1, 2, . . . , n} to be the integer for which V (Mi)∩Xt0 = {(i, k(i))}.
Since |V (Li) ∩ Xt0 | = 1 for every 1 ≤ i ≤ n, we have {k(i) : 1 ≤ i ≤ n} =

{1, . . . , n}. We first show that for every i, 1 ≤ i ≤ n−1, |k(i+1)−k(i)| = 1 holds.

Assume to the contrary that there is an integer i, 1 ≤ i ≤ n − 1, such that

|k(i+ 1)− k(i)| ≥ 2, let i0 denote the smallest i with this property. Without loss

of generality suppose that k(i0 +1)−k(i0) ≥ 2 (the second case is analogous). Let

P be a subgraph of Gn,n induced by the set ∪5
i=1Vi = V (P ), where

V1 = { (i, n) : 1 ≤ i ≤ i0 },

V2 = { (i0, j) : k(i0) + 1 ≤ j ≤ n },

V3 = { (i, k(i0) + 1) : i0 ≤ i ≤ i0 + 1 },

V4 = { (i0 + 1, j) : k(i0) ≤ j ≤ k(i0) + 1 },

V5 = { (i, k(i0)) : i0 + 1 ≤ i ≤ n }.

Then P is a path from the set V (L1) to the set V (Ln) and V (P ) ∩Xt0 = ∅. This

contradicts the assumption made about Xt0 , hence |k(i+ 1)− k(i)| = 1 holds for
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every i, 1 ≤ i ≤ n− 1. As {k(i) : 1 ≤ i ≤ n} = {1, . . . , n}, we have either k(i) = i

for every 1 ≤ i ≤ n or k(i) = n + 1 − i, for every 1 ≤ i ≤ n. This means that

Xt0 = { (i, i) : 1 ≤ i ≤ n } or Xt0 = { (i, n + 1 − i) : 1 ≤ i ≤ n }. The graph

Gn,n−Xt0 has two components. If vertices v, v′ belong to the same component,

then Tt0(v) = Tt0(v
′) by Lemma 5. Therefore all the vertices of Gn,n−Xt0 are

contained in at most two branches of T at t0. Since (T, ) is a fundamental

tree-decomposition of Gn,n, we obtain that dT (t0) ≤ 2.

If dT (t0) = 1, set T ′ = T−{t0}. If dT (t0) = 2, let t1, t2 denote the vertices

adjacent to t0 in T . Define the graph T ′ in the following way:

V (T ′) = V (T )−{t0},

E(T ′) = (E(T )−{ {t0, t1}, {t0, t2} })∪ { {t1, t2} }

and put ′ = (Xt, t ∈ V (T ′)). As the set Xt0 is an independent set in the graph

Gn,n, the pair (T ′, ′) is a tree-decomposition of the graph Gn,n with width at

most TW (Gn,n) and |V (T ′)| < |V (T )|. This contradicts the fact that (T, ) is a

fundamental tree-decompositionof Gm,n.

The proof is complete. �
Remark. One can investigate triangle and hexagonal “grids” of size m × n

instead of quadrilateral ones. The examples for m = 3 and n = 4 are given

in Figure 3. The tree-width of such grids is equal to min{m,n}. The proof is

completely analogous to the proof of previous theorem.

Figure 3.
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Problem. Find the tree-width of the n-dimensional cube Qn. So far, we are

able to prove that for any positive integer n,

2b
n
2 c ≤ TW (Qn) ≤

(
n⌊
n−1

2

⌋)+

(
n⌊
n+1

2

⌋)− 1

and TW (Q1) = 1, TW (Q2) = 2, TW (Q3) = 3 and TW (Q4) ≤ 6.
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