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ON THE TREE-WIDTH OF A GRAPH

J. CHLEBIKOVA

Abstract. Robertson and Seymour introduced the concept of the tree-width of
a graph. It plays an important role in their results on graph minors culminating
in their proof of Wagner’s conjecture. This concept seems to be interesting from
the algorithmic point of view as well: many graph problems that are NP-complete
in general can be polynomially solvable if graphs are constrained to have bounded
tree-width [2].

In the present paper several equivalent definitions of tree-width are discussed
and tree-width of several families of graphs is determined.

All graphs in this paper are nonempty, finite and may have loops or multiple
edges. V(G) and E(G) denote the set of vertices and the set of edges of the
graph G, respectively. w(G) denotes the cardinality of the maximal clique of G.
Ky stands for the complete graph on k-vertices.

For any subset X of V (G) we denote by G—X the graph obtained from G by
deleting the vertices of X (and all the edges adjacent with them). For any edge
e [[H(G) let G—e stand for the graph obtained from G by deleting e.

In this paper the dilerknce between isomorphism and equality of graphs is
ignored.

Definition 1. A tree-decomposition of a graph G is a pair (T, 2", where T
isatree and 2" = (X, t LVI(T)) is a family of subsets of V (G) with the following
properties:

(i) A, t VI(T)) =V (G);
(i) for every edge e [[H(G) there exists t [CVI(T) such that e has both ends
in X,
(iii) for t, t5 t™VI(T), if t'is on the path of T between t and t™then

Xe n XX}
The width of the tree-decomposition (T, Z) is

max (|X¢] —1).
max (%] = 1)
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A tree-width of the graph G, TW(G), is a minimal nonnegative integer k such
that G has a tree-decomposition of the width k.

A tree-decomposition (T, Z") of the graph G is said to be fundamental, if
(T, Z) has width TW(G) and for any tree-decomposition (TS 25 of G whose
width is TW (G), the inequality |V (T 5| = |V (T)]| holds.

Lemma 2. Let (T, .2) be a fundamental tree-decomposition of a graph G,
where 2" = (X, t TVI(T)). If vertices t;,t; [CM(T) are adjacent in T, then
Xy, =X, B [

Proof. If X, —X¢, = CIbr some vertices t; and t, adjacent in T, then define a
new tree-decomposition of G in the following way: let to denote the vertex obtained
by contraction of the edge {t1,t,} in T and let T “denote the tree obtained in this
way. Set X¢, = X¢, and 2P= (X, t CMI(TY). Clearly, the tree-decomposition
(T2 of G has width TW (G) but has less then |V (T)| vertices, a contradic-
tion. 1

Definition 3. Let (T, 2) be a tree-decomposition of a graph G, where 2" =
(X, t YI(T)). For each t [CVI(T) the connected components of T—t are called
the branches of T at t.

For any t [CVI(T) and any v [VI(G) for which v X there is a (unique) branch
of T at t containing all t~' [CM(T) with v X (due to the property (iii) from
Definition 1). Let T¢(v) denote this branch.

Definition 4. Let G be a graph, X, Y, YHCVKG). The sets Y and Y Mare
separated in G by the set X, if every path from Y to Y Yin G contains a vertex
of X.

Lemma 5. Let (T, 2) be a tree-decomposition of a graph G, where 2" =
X, t (T)).
(i) If v, voFr X, and v, vHare not separated in G by Xy, then Te(v) = T(v5.
(ii) Let e be an edge of T with ends t, t“and let N, N"be the vertex sets of
the two components of T—e. Then X¢ n X¢oseparates [(X,,, n [N) and
[(An, n [NY.
(iii) Let |V(T)| = 2 and for each t [CVI(T) let G¢ be a connected subgraph of
G with V (Gy) n Xy = [JThen there exist t, t2CVI(T) adjacent in T such
that X n X¢oseparates V (G¢) and V (G in G.

Proof. See [3]. 1

Lemma 6. Let (T, 2) be a tree-decomposition of a graph G, where 2" =
(X¢, t I(T)). For any clique H [Q there exists a vertex tg [CM(T) such
that V (H) CXl,. In particular, TW(G) = w(G) — 1.

Proof. If [V (H)| < 2 then the statement easily follows from the definition of
the tree-decomposition of G.
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Suppose to the contrary that there exists a cligue H Gl (JV (H)| = 3) such
that for every t [CMI(T) the vertex set V (H)—X; is nonempty. Then obviously
[V(T)| = 2. For every t CVI(T) set G = H—X¢. Then

(1) \Y, (Gt) n Xt =[]

Due to Lemma 5 there are vertices t;, t, adjacent in T such that the subsets
V (Gy,) and V (Gy,) are separated in G by the set X, n X¢,. By virtue of (1) we
get, in particular, V (Gy,) n V (Gt,) = [JChoose arbitrary vertices v [CVI(Gy,)
and v, [VI(Gy,). Since vi and vy are separated in G by the set X, n X¢, and vy,
Vo F Ay, n X, We get that v; and v, are not adjacent in G. But v; and v, are
vertices of the cligue H [GI] a contradiction. 1

Theorem 7.
(i) TW(G) =0 if and only if G is a discrete graph.
(i) TW(C) =2 for any cycle C.
(iii) TW(G) =1 if and only if G is a forest.
(iv) TW(K,) =n—1 for any positive integer n.

Proof. Part (i) is trivial.

(ii) Let C be a cycle, C =vivs...vavy and n = 3. To prove that TW(C) < 2,
we defineatree T, whereV(T) ={1,...,n—=2} E(T)={{i,i+1}:1<i<n—-3}
and the family 2" = (X¢, t LYI(T)), where X¢ = {Vvi1, Vi+1, Vi+2} for any vertex
t CVI(T). Then (T, ) is a tree-decomposition of C with width 2.

To prove that TW (C) = 2, we assume, to the contrary, that (T, Z) is a funda-
mental tree-decomposition of C with width at most 1. Then we can find vertices
ty, to CVI(T) such that Xi, = {v1,v2} and Xy, = {v1,vn}. Let t; CVI(T) be the
first vertex diLerent from t; on the path from t; to to in T. By Lemma 2 vo Y X,
and hence Xi, n Xy, = {vi}. Delete from T the edge e joining the vertices t;
and t,. For i = 1,2 let N; denote the vertex set of the component of T —e which
contains tj. By Lemma 5, the sets M; = [{[X¢,t [N;) and Mz = [(A,t [Ny)
are separated in C by {vi}. But vertices vo [M; and v, [M, are not separated
by {vi:} in C, a contradiction.

(iii) If G is a forest it is easy to find a tree-decomposition of G with width at
most 1. If G is not a forest, then TW (G) = 2 by (ii).

(iv) The inequality TW (K) = n—1 is a consequence of Lemma 6. The opposite
inequality easily follows from the definition of a tree-decomposition of G. 1

Definition 8. A graph G is said to be chordal, if every cycle in G of length
at least 4 has a chord.

A graph G has chord-width k, ChW (G) =k, if k is the smallest nonnegative
integer such that G is a subgraph of some chordal graph H which contains no
(k + 2)-clique as a subgraph.



228 J. CHLEBIKOVA

Definition 9. Let G; and G, be disjoint graphs. Choose cliques (without
multiple edges and loops) from each of G; and G, of the same size k and a
bijection between them. ldentify each vertex of the first clique with the associated
vertex of the second one.

1. If we delete the edges of both cliques, the result is said to be a k-sum of G;

and G, (see Fig. 1).

G1 V3 Gz V3

Vi Vo V1¢ Vo

V3

G is 3-sum of G; and G,

Vi V2

Figure 1.

2. If we delete the edges of only one of the cliques, the result is said to be a
k-linkage of G; and G, (see Fig. 2).

Gl V3 C':‘2 V3

21 ) V¢ V2

V3

G is 3-linkage of G; and G»

Vi Vo

Figure 2.

Remark. 0-sum and 0-linkage correspond to the disjoint union of graphs.
1-sum has the same meaning as 1-linkage.
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Notation. If € is a set of graphs, we denote by [@[,] [TH([Jand % I{the
sets of graphs, which can be constructed by repeatedly applying the operation
of a =k-sum, =k-linkage and a k-linkage starting from graphs belonging to %,
respectively.

S |

Let .# denote the set of all complete graphs and ¥ 11+ TR+ D)1

k=0

Definition 10. Let %x+1 be the set of all graphs with < (k + 1) vertices. A
graph G is said to have

1. sum-width k (SW(G) = k), if k is the smallest nonnegative integer such

that G mk+1|;l

2. linkage-width k (LW (G) = k) if k is the smallest nonnegative integer for

which there exists a supergraph H [Glsuch that H [Tl 1 L]

3. clique-width k (CW(G) = k) if k is the smallest nonnegative integer for

which there exists a supergraph H [Glsuch that H IZIZ[IKKHEIE

We prove that all the above mentioned variants of the width of a graph are
equivalent. The following characterization of chordal graph was first given by
Dirac [1].

Lemma 11. A graph G is chordal if and only if G [CTII¥ T

Proof. Necessity: If G [#, then G is chordal. Further, we prove that if G is
obtained by using operation of linkage two chordal graphs G;, G, [IIl¥ [IIthen
G is chordal.

Let C be a cycle in the graph G of length at least 4. If V (C) [\X1G;) for some
i = 1,2, then there is a chord of C in G, for G; and G, are chordal. Otherwise,
V(C)n(V(G1)—V(Gy)) B [and V(C) n (V(G2)—V (G;1)) B [IThen it is easy to
see that there is a pair of diLlerknt vertices u,v [CVI(C) such that u,v CMI(G;1) n
V (Gz) and {u,v} FBH(C). Since u and v are vertices of a clique in G, the edge
{u,v} is a chord of C in G.

Su [Cciehcy: Assume to the contrary that there are chordal graphs which do
not belong to ¥ Let G have the minimum number of vertices among all
such graphs. The minimality condition implies that G is a block. We denote by
R = {vi1,...,vr} a minimal vertex-cut of G. The assumptions made about G
imply that 2 < r < |V (G)| — 2. Let F denote the subgraph of G induced by the
set R. Let Hy,...,Hs, s =2, be components of G—R. For every i, 1 <i<s, let
Hi—dehote the subgraph of G induced by V (H;) CRL The graphs Hi—ard chordal
and since |V (H+< |V (G)| we obtain that Hi— =¥ (Ifor 1 < i <s.

First of all, we prove that F [¥. Assume to the contrary, that there are
vertices v and vM [CR which are not adjacent in G. Choose arbitrary vertices
vi [M(H;) and v, [CM(Hy). Any path from vy to vo in G—{R—{v}} (resp.
G—{R—{v}} contains v-{(resp. v). Therefore there exists a cycle C in G with the
following properties:
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v,vHid, Vv (C)—{v,v} [WIH;) [NKH,) and V (C) nV (H;) & [J
for every i [{1,2}.

Let Co denote the shortest cycle satisfying (2). Since G is chordal, we can find a
chord, say {x,y}, of Co in G. The vertices x and y both belong either to H; or to
Hy, because H; and H, are components of G—R and x,y I'Rl. Now, Cy contains
a path P from x to y containing vertices v and v& Thus P together with the edge
{x,y} form a cycle satisfying (2) with less than |V (Cop)| vertices, a contradiction.
Consequently, F 2. However, G can be constructed by linking chordal graphs
H—1 , He E¥ (hence G [CII¥ [[JJa contradiction. 1

Theorem 12. For any G, the following equalities hold:

@)

TW(G) = ChW(G) = LW (G) = CW(G) = SW(G).

Proof. For any nonnegative integer k is su [cieht to prove the equivalence of
the following five statements:

TW(G) =<k = ChW(G) =k = LW(G) =k = CW(G) =k = SW(G) < k.

TW(G) =k =CChW(G) =k:

Let (T, Z) be a tree-decomposition of G with width at most k, where Z =
K, t III@ We define a supergraph H of G as follows: V(H) = V (G),
EH) = (wmH{uviuv CXcandu 8 v} Then (T, Z) is also a tree-
decomposition of H. We show that H is chordal and does not contain a (k + 2)-
clique as a subgraph. Let C be a cycle of length at least 4 in H and let (T, Z¢),
where Z'c = (X¢nV (C),t [MI(T)), be a tree-decomposition of C. By Theorem 7,
there is a vertex to [CMI(T) such that |V (C) n X, | = 3. Since |V (C)| = 4, the
set V (C) n Xy, contains a pair of vertices x and y nonadjacent in C. The edge
{x,y} [His achord of C in H. Suppose that the graph H contains a (k+2)-clique
Kk+2. Then the restriction of a tree-decomposition (T, 2") of H to the vertices of
Kk+2 is a tree-decomposition of Ky, with width k, contradicting to Theorem 7.
Hence H is a chordal supergraph of G containing no (k + 2)-clique as a subgraph.

ChW(G) =k =[TW(G) =k:
Let H be a chordal supergraph of G containing no (k +2)-clique. By Lemma 11

we have H [THK;: 1 < i< k+1}[IIIt is easy to see that the graph H fulfils the
following statement:

@) H is a 1-clique or a (k + 1)-clique, or there are two nonadjacent
vertices vy, vo CMI(H), vi 8 vy, for which diy(v1),dy (v2) < k.

Now we prove that for any graph 1K, 1 < i < k + 1}Timplies

H— T8 [ Let Hp CTHK;, 1 < i <k + 1}(TIbe a graph with the smallest
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number of vertices which does not belong to 0%+, [I[1 Obviously, [V (Ho)| > k+1.
According to (3), there is a vertex vo [CM(Hp) for which dy,(vo) < k. Set
232 {u: {u,vo} CH(Ho)} and let Z [ZAHe a minimum vertex-cut of Ho. The
proof of Lemma 11 shows that the subgraph induced by the set Z in Hg is a clique.
Therefore Hg is a < k-sum of graphs from [[{K;j,1 < i < k + 1}IIWhich belong
to [+ [ due to the minimality property of Ho. Hence Ho [T+ [T

LW(G) =k =[CCW(G) <k:

We show that for any graph H [CII% -+, I there exists a supergraph H-of
H such that M TR [Tf1' If H %k that is trivial. Assume that the

graph H is a m-linkage (m < k) of graphs H; and H, such that there exist
Hi—HEH; for which Hi— B K1 (T[T for any i = 1,2. We can assume that

v (Hw (H=V (H1)nV (H2) and E(HyAE (Hz)-= E(H1)nE(H2). The graph
= HraH-ish clique. Put V(M) = {vy,...,vm}. If m =Kk, then

DKKHI];E' If m < k —1 we can easily find graphs M; such that |V (M;)] = k
and M CM; CHyfel any i = 1,2. Put V(M1)—=V (M) = {us,...,Ux—m}
and V(Mz)—V (M) = {Vm+1,...,Vk}- Now define recurrently a finite sequence
P1,...,Pk_m+1 of graphs with the following properties: P is equal to H>-arld for
every l<i<k—m: Py [P, V(Pi+1) =V (Pi) l;} and E(Pi+1)—E(P;) =
{{ui,vj} m+1<j<k+1—i}. Then P; [TIKy.1Tforeveryi, 1<i<k—m.

The graph H-ib obtained by a k-linkage of H—afdd Px_m+1 through a k-clique
with vertex set {Vi,...,Vm,U,...,Uk—m}. Therefore H— TR} (CfTand K11

H&4, B (8, =H.

CW(G) =k =[CSW(G) <k:

This implication is easy, since the class of graphs [@x+1[Jis closed on the
operation of making subgraphs.

SW(G) =k =[CIW(G) <k:

We prove that for any G [T#+1 [Iwe can find a tree-decomposition of G with
width at most k. This is trivial if G [@+1. If not, assume that the graph G is
m-linkage (m < k) of graphs Hy and H such that Hy, Hy [T+, L[Jand for any
i = 1,2 there exists a tree-decomposition (T;, £7i) of H; with width at most Kk,
where 27 = (Xg,,ti CMI(Ti)). Due to Lemma 2 there exists a vertex t; [CVI(T;)
such that X, contains vertices of a m-clique for any i [{1,2}. Connecting trees
T1 and T, by the edge {t1,t2}, we obtain atree T. Put 2" = (X¢,t CXI(T)). Then
(T, Z) is tree-decomposition of G with width at most k.

The proof is complete. 1
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2. Tree-width of Some Classes of Graphs

We have determined (Theorem 7) the tree-width of complete graphs, cycles and
trees. In the following section the tree-width of some other classes of graphs is
found.

Recall that a complete n-partite graph Ky,
a disjoint union CZ}V; and {u,v} [CE(K,
integers i, j such that u V] and v [V].

Theorem 13. Let K, rn&ﬂw complete n-partite graph with r < r; <

.. Then TW(Ky,,  rn) = 2 Ti

_____ r, 1S @ graph whose vertex set is
r,) if and only if there exist distinct

.....

Proof. Let k = ;Z; r;. We define a supergraph H Kl ., by adding to
Kr,,...,rn all the edges {u, v} such that u,v [V} and j 8 n. It is easy to see that
the graph H is chordal and does not contain a (k + 2)-clique. This implies that
..... r) < k.

To prove that TW (K,
of Ky,

,,,,, rn) = Kk we need to show that any chordal supergraph
,,,,, r, contains a (k +1)-clique. Let G %ﬁarbitrary chordal supergraph of
,,,,, rn- The graph G is either a clique on  ;_, r;j vertices or there exists itl<
iY< n, and nonadjacent vertices up, Vo [V]5 up £ Vo, in G. We choose arbitrary
vertices u,v [V}, uB v, 1<j <n, j 8 i Vertices uo,V,Vo,v CVI(G) induce a
cycle in G. The graph G is chordal and {ug, vo} I 'E(G), therefore {u,v} CH(G).
This holds for arbitrary u,v [V, j & i5'1 < j < n, u 8 v. Therefore the graph
G containsa cliqueonry + -+ +rjmy +1+rjog + -+ +rp = (k+ 1) vertices. 1

Remark. Let K., ,, be a complete bipartite graph, where ri,r, [N, ry < r».
Let K[ ., be a graph which we obtain be deleting of all the edges of maximum
matching from Ky, r,. Then the following assertions hold:

@) Mfri=rp=r then TW(K,)=r—1
(i) fro =ry +1, (r;,r2) 8 (2,3) then TW(K(] ) =ry and TW(Kz5) = 1.

This can be proved using the same technique as in the proof of Theorem 13,

but the discussion is more complicated.

Definition 14. For any positive integers m = 2, n = 2 the grid G, is the
graph defined as follows:

VGmn)={(,j):l<i=mandl<j=n},
E(Gmn) = {{(,1), (k,N}:|i —k|+[j —r| =1, where
l<i,ksmandl<j, r=n}
and let G, , denote the graph
\Y (Gr?q,n) =V (Gm,n),
EGL) ={{G.0). (,K}:jEK 1<i=m, 1<j, k<n}
(LG, j).(i+1,j)}:1l<i=m—-1 1<j<n}
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Lemma 15. TW(Gq ) <n.

Proof. We prove the lemma by induction on m. For m = 2 we prove, by
induction on n, that for every n the inequality TW(GEn) < n holds.

For n = 2 we have TW(G5,) = 2. Suppose that for some n = 2 and for
every k < n the inequality TW(GEK) < k holds. From Theorem 12 we see that
GEK [T+ [T} Define supergraphs Hy and Hy of GE‘n as follows:

V(H1) =V (G3,) L n+ 1)},

E(H.) = E(GE,) (@, i),L,n+1}:1<i<n},
V(Hz2) =V (Hi1) 2, n+ 1)},

E(H,) = E(H,) CXXR,i),2,n+1)}:1<i<n}.

By the induction hypothesis GE‘n [T ,+1 L]l From the construction of graphs
Hi and H; it follows that Hy [CTI#n+1 O] and then also Hy C#n+1 Ol This
shows that TW (H2) < n. The graph GEnH can be obtained by adding the edge
{(1,n+1),(2,n+ 1)} to the graph H,. This means that TW(GEn+1) =n+1.
Therefore TW (G5),) < n for every positive integer n.

Now suppose that for some m = 2 and for any s < m and any positive integer n
the inequality TW (GS),) < n holds. We show that TW (G145 ,) < n. Fix n [N
Let H,, denote the induced subgraph of the graph G, , on the set {(m+r,i) :
0<sr=<s11<i<sn} Thegraph G,?Wl’n can be obtained by using operation
of a m-linkage of graphs Gy, ,, and Hz},. By the induction hypothesis G, ,, [1
0% -+ LI HEn % n+1 J] and therefore Gr‘%ﬂ,n [O%n+1 Ol Theorem 12
implies that TW(G,EH’n) < n, completing the proof. 1

Theorem 16. TW(Gm,n) = min{m, n}.

Proof. Since G n = Gn.m up to the isomorphism, we assume in the following
that m = n. The graph G, is obviously a subgraph of the graph G, ,,. This
implies TW(Gm,n) < TW(GR ) < n.

To prove the opposite inequality it is su [cieht to prove that TW(Gnhn) =
n, since the graph Gn n is a subgraph of Gy n. Assume, to the contrary, that
TW(Gnn)=<n-—1and let (T, Z), where (X¢, t LVI(T)), be a fundamental tree-
decomposition of G n. Obviously, [V (T)| = 2, otherwise TW (G ) = n? —1=
n+ 1> n, a contradiction. For any 1 < i < n we define subgraphs L; and M; of
Gn n in the following way:

VL) ={G.):1=sj=n} EL)={{G,D,G+1D}:1<j=sn-1}
VM) ={@G,J):1<j<n}, EM)={{G.j).Gj+D}:1<j<n-1}

The following two possible cases will be discussed separately:
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1. For every t [CVI(T) there is a path Py either from the set V (L1) to the set
V (Ln) or from the set V (M3) to the set V (M) such that

4) V(Py) nXe =[]

2. There exists a vertex tg [CM(T) such that for every path P from the set
V (L1) to the set V (Ln) the set V (P) n X¢, is nonempty and for every path P
from the set V (M1) to the set V (M) the set V (P) n Xy, is (also) nonempty.

Case 1.

According to Lemma 5, there are vertices ti,t, CMI(T), {t;,t,} CH(T) such
that the sets V (Pt,) and V (Py,) are separated in Gn n by Xi, n X¢,. By virtue of
(4) we get, in particular, that V (Pt,) n V (Pt,) = [Hence, either both Py, and
Py, are paths from V (L) to V(L) or both of them are paths from V (M;) to
V (Mp). We assume that the paths are from V (M;) to V (M,). (The second case
is analogous.)

Since (T, &) is a fundamental tree-decomposition of G, , and {t1, t,} CH(T),
from Lemma 2.6 we obtain | X, nX¢,| < n—1. There exists ip, 1 < ip < n for which
V (Mi,) n (Xt n Xt,) = LSince V (Py,) n V(M) 8 Cand V (Py,) nV(M;,) 8 [
we see that V (Pt,) and V (Py,) are not separated in G n by the set Xi, n Xg,, a
contradiction.

Case 2.

In this case, the following is satisfied for every i, 1 <i<n: V(Li) n X¢, 8 [
V (Mi)nXy, 8 L3ince [ X, | < n, we see that [V (Li)nXg,| = 1and [V (Mi)n Xy, | =
1. Define k(i) {1, 2, ..., n} to be the integer for which V (M;) n Xy, = {(i, k(i))}.
Since [V(Li) n X¢] = 1 forevery 1 <i<n, we have {k(i) : L <i=n} =
{1,...,n}. We first show that for every i, 1 < i < n—1, |k(i+1)—k(i)| = 1 holds.

Assume to the contrary that there is an integer i, 1 < i < n — 1, such that
k(i +1) —Kk(i)] = 2, let i denote the smallest i with this property. Without loss
of generality suppose that k(ig +1) —k(ig) = 2 (the second case is analogous). Let
P be a subgraph of G, induced by the set ]V =V (P), where

Vi={(i,n):1<i<ip}

Vo ={(io,j) : k(io) +1<j <n},
Va={(i,k(ig) +1) :ig<i<ip+1},
Va={(io+1,]): k(o) =]j <k(ip) +1},
Vs ={(i,k(ip)) rip+1=<i<n}.

Then P is a path from the set V (L1) to the set V (L) and V (P) n Xy, = [IThis
contradicts the assumption made about Xg,, hence |k(i + 1) — k(i)| = 1 holds for
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everyi,1<sisn—1 As{k(i):1=<i=n}={1,...,n}, we have either k(i) = i
forevery l<i<snor k(i) =n+1—i, forevery 1 < i < n. This means that
Xiop ={(@i,i):1=<i=sn}or X, ={(i,n+1—0):1<i=<n} Thegraph
Gn.n—Xt, has two components. If vertices v, v-belong to the same component,
then Ty, (V) = Ty, (V5 by Lemma 5. Therefore all the vertices of G, ,—X¢, are
contained in at most two branches of T at ty. Since (T, 2) is a fundamental
tree-decomposition of G, , we obtain that dr (to) < 2.

If dr(to) = 1, set TP= T—{to}. If dr(to) = 2, let t1, t, denote the vertices
adjacent to to in T. Define the graph T Fin the following way:

V(T =V(T)—{t},
ETY = (EM)—{{to, t.},{to, 23 }) CTXt1, 2} }

and put 2'7= (X, t CI(TY). As the set Xy, is an independent set in the graph
Gn.n, the pair (TH 2 is a tree-decomposition of the graph G, , with width at
most TW (Gn,n) and |V (TY| < |V (T)|. This contradicts the fact that (T, 2) is a
fundamental tree-decompositionof G n.

The proof is complete. 1

Remark. One can investigate triangle and hexagonal “grids” of size m =< n
instead of quadrilateral ones. The examples for m = 3 and n = 4 are given
in Figure 3. The tree-width of such grids is equal to min{m,n}. The proof is
completely analogous to the proof of previous theorem.

Figure 3.



236 J. CHLEBIKOVA

Problem. Find the tree-width of the n-dimensional cube Q. So far, we are
able to prove that for any positive integer n,

o Y s | e S
2Bl twy=s CI\O+ O
2

n+1
2

and TW(Q1) =1, TW(Q2) =2, TW(Q3) =3 and TW (Q4) <6.
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