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ON THE NEUMANN OPERATOR OF THE ARITHMETICAL

MEAN

J. KRÁL and D. MEDKOVÁ

We shall identify the Euclidean plane R2 with the set C of all complex numbers.

If z ∈ C, then Re z, Im z and z denote the real part, the imaginary part and the

complex conjugate of z, respectively. The scalar product of vectors u, v ∈ R2 will

be denoted by 〈u, v〉 (= Reuv). We shall be engaged with logarithmic potentials

in the plane derived from the classical kernel defined for x, z ∈ R2 by

hz(x) =

{ 1
2π ln 1

|z−x| , if x 6= z,

+∞, if x = z.

The symbol λk (k ∈ {1, 2}) will denote the k-dimensional Hausdorff measure (with

the usual normalization, so that λk([0, 1]k) = 1). For M ⊂ R2 we use the symbols

∂M , intM and clM to denote the boundary, the interior and the closure of M ,

respectively. For M 6= ∅ we denote by C(M) the Banach space of all bounded

continuous functions on M with the supremum norm, by 1M the constant function

equal to 1 on M , by Const (M) = {α1M ;α ∈ R} the class of all constant functions

on M . C(1)
0 will stand for the class of all continuously differentiable functions with

a compact support in R2, for bounded M we write C(1)(M) = {ϕ
∣∣
M : ϕ ∈ C(1)

0 }

for the class of all restrictions to M of functions in C(1)0 . Throughout, K ⊂ R2 will

be a fixed non-void compact set which is massive at each z ∈ K in the sense that

each disk

Br(z) = {x ∈ R2; |x− z| < r}

with radius r > 0 and center z in K intersects K in a set of positive Lebesgue

measure:

λ2[Br(z) ∩K] > 0 .

This is the only à priori restriction we impose on K; it is by no means essential in

connection with boundary value problems (cf. Remark 1.14 and 2.3 in [8]) but it

will allow us to avoid some technical complications.
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Put G = R2 \ K and denote by C∗(∂K) the space of all finite signed Borel

measures supported by ∂K. For each µ ∈ C∗(∂K) the potential

(1) Uµ(x) =

∫
∂K

hz(x) dµ(z)

defines a harmonic function of the variable x on R2 \ ∂K such that, for each

bounded Borel P ⊂ R2 \ ∂K, the gradient of (1) is integrable over P :∫
P

|grad Uµ(x)| dλ2(x) < +∞ .

This property makes it possible to introduce the so-called weak normal derivative

of Uµ, to be denoted by NGUµ, which is defined as a linear functional over C(1)0

by the formula

(2)
〈
NGUµ,ϕ

〉
=

∫
G

〈grad ϕ(x), grad Uµ(x)〉 dλ2(x), ϕ ∈ C(1)
0 ;

if the boundary ∂G = ∂K is smooth and n denotes the unit normal exterior to

G, and if Uµ extends smoothly from G to clG, then the right-hand side in (2)

transforms by divergence theorem into∫
∂K

ϕ
∂Uµ

∂n
dλ1

so that NGUµ is a natural weak characterization of the normal derivative ∂Uµ
∂n

(compare [21]). Transforming the integral occurring in (2) by Fubini’s theorem

we get, for any ϕ ∈ C(1)
0 ,

〈
NGUµ,ϕ

〉
=

∫
∂K

Wϕ(z) dµ(z) ,

where

(3) Wϕ(z) =

∫
G

〈grad ϕ(x), grad hz(x)〉 dλ2(x) .

We shall consider (3) as a function of the variable z ∈ K. It is easily seen (cf. §2
in [8]) that, for z ∈ K, (3) depends on ϕ

∣∣
∂K only and represents a continuous

function on K which is harmonic on intK; this function Wϕ will be called the

double layer potential of density ϕ. Note also that, for any fixed µ ∈ C∗(∂K),

the weak normal derivate NGUµ has support contained in ∂K in the sense that〈
NGUµ,ϕ

〉
= 0 whenever ∂K does not meet the support of ϕ ∈ C(1)

0 (cf. 1.2 in [8]).
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For ∅ 6= M ⊂ K denote by WMϕ = (Wϕ)
∣∣
M the restriction to M of the double

layer potential Wϕ. Then

(4K) WK : ϕ
∣∣
∂K →WKϕ (C(1)(∂K)→ C(K))

and

(4∂K) W∂K : ϕ
∣∣
∂K →W∂Kϕ (C(1)(∂K)→ C(∂K))

are linear operators form C(1)(∂K) to C(K) and from C(1)(∂K) to C(∂K), respec-

tively. Since

(5) WK1∂K = 1K

(cf. [8, p. 60]), we have WK (Const (∂K) ⊂ Const (K) which makes it possible

to consider the operators induced on the factor space C(1)(∂K)
/
Const (∂K) to be

denoted by the same symbols

WK : C(1)(∂K)
/
Const (∂K) → C(K)

/
Const (K)(6K)

and

W∂K : C(1)(∂K)
/
Const (∂K) → C(∂K)

/
Const (∂K) .(6∂K)

Necessary and sufficient geometric condition is known (cf. [1], [9]; see also the

exposition in [8], [14]) guaranteeing extendability of the operators (4K), (4∂K) to

bounded linear operators defined on the whole C(∂K) and of the operators (6K),

(6∂K) to bounded linear operators acting on C(∂K)
/
Const (∂K). As pointed out

by M. Chleb́ık ([6]), results in geometric measure theory ([3]) permit to formulate

this condition (occurring in an equivalent form in [8] and [14]; cf. proof of Lemma 3

below) in terms of the essential boundary

∂eK = {z ∈ R2; lim sup
r→0+

λ2[Br(z) ∩K]
/
r2 > 0, lim sup

r→0+

λ2[Br(z) ∩G]
/
r2 > 0}

as follows. Denoting for θ in

Γ ≡ {θ ∈ R2; |θ| = 1}

and fixed z ∈ R2 by nK(z, θ) the total number of points in

{z + tθ; t > 0} ∩ ∂eK
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(0 ≤ nK(z, θ) ≤ +∞) we arrive at a λ1-measurable function θ 7→ nK(z, θ) which

makes it possible to introduce the integral

vK(z) :=
1

π

∫
Γ

nK(z, θ) dλ1(θ) .

Then finiteness of the quality

(7) V K := sup{vK(z); z ∈ ∂K}

is necessary and sufficient for extendability of WK to a bounded linear operator

on C(∂K) to C(K) (or, equivalently, on C(∂K)
/
Const (∂K) to C(K)

/
Const (∂K))

and, which is the same, extendability of W∂K to a bounded operator on C(∂K)

(or, equivalently, on C(∂K)
/
Const (∂K)). The same condition

(8) V K < +∞

is necessary and sufficient to guarantee the existence, for each µ ∈ C∗(∂K), of a

(uniquely determined) finite signed Borel measure νµ ∈ C
∗(B) representing NGUµ

in the sense that 〈
NGUµ,ϕ

〉
=

∫
∂K

ϕdνµ, ∀ϕ ∈ C(1)
0 ;

under the assumption (8) the arising operator NGU : µ 7→ νµ is bounded on

C∗(∂K) and is adjoint to W∂K acting on C(∂K):

(9) NGU = W ∗∂K .

Assuming (8) we define the operator of the arithmetical mean, to be denoted by

TK ≡ T , by the equation

(10)
1

2
(I + TK) = W∂K ,

where I is the identity operator. Then (5) implies

(11) T1∂K = 1∂K .

The norm of T on C(∂K) is precisely evaluated by

(12) ‖TK‖ = V K

(cf. [8], 2.25; note that our normalization of vK(z) is different from that used in [8],

so that our V K coincides with 2V G in [8]). The attempt to represent the solution

of the Dirichlet problem for K with a prescribed boundary condition g ∈ C(∂K)
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in the form of the double layer potential WKf with an unknown f ∈ C(∂K) leads

to the equation

(13) (I + T )f = 2g .

In view of (9), the attempt to find, for a given ν ∈ C∗(∂K), another µ ∈ C∗(∂K)

whose potential Uµ solves the weak Neumann problem NGUµ = ν for G results

in the adjoint equation

(14) (I + T )∗µ = ν

for the unknown µ. It follows from (12) that ‖TK‖ ≥ 1 where the sign of equality

holds iffK is convex (cf. [8], Theorem 3.1). If we consider TK on the quotient space

C(∂K)
/
Const (∂K), then the quotient norm of TK , to be denoted by ‖TK‖0, may

become less that 1. Let us recall that the norm of the class containing f ∈ C(∂K)

in C(∂K)
/
Const (∂K) is given by 1

2osc f(∂K), where

osc f(∂K) = max f(∂K)−min f(∂K) .

Hence ‖TK‖0 is the least constant q ≥ 0 for which

osc (TKf)(∂K) ≤ q osc f(∂K) , ∀ f ∈ C(∂K) .

This constant was called the configuration constant of K by Carl Neumann who

was able to prove for convex K that ‖TK‖0 < 1 iff K is different from triangles

and quadrangles ([18]) (H. Lebesgue [12] observed later that ‖T 2
K‖ < 1 for all

convex bodies K ⊂ R2) which permitted to establish convergence (in the operator

norm) of the Neumann series for the inverse of I + TK on C(∂K)
/
Const (∂K).

Note that, in view of (9)–(11), (TK)∗ maps the subspace

C∗0(∂K) := {µ ∈ C∗(∂K) : µ(∂K) = 0}

of all balanced signed measures in C∗(∂K) into itself and C∗0(∂K) may be identified

with the adjoint space to C(∂K)
/
Const (∂K). Hence ‖TK‖0 equals the norm of

the operator (TK)∗ restricted to C∗0(∂K). For general K no simple evaluation of

‖TK‖0 comparable with the formula (12) for ‖TK‖ seems to be known. Never-

theless, geometric estimates of the configuration constant ‖TK‖0 can be obtained

which permit to establish the inequality ‖TK‖0 < 1 for many concrete highly non-

convex compact K ⊂ R2. We shall prove the following theorems and some of their

consequences.
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Theorem 1. Let B1, B2 be disjoint λ1-measurable subsets of ∂K and suppose

that with each z ∈ B ≡ B1 ∪ B2 there is associated a disk B(z) = Br(z)(ζ(z)) of

radius r(z) = |z−ζ(z)| such that K∩B(z) = ∅ for z ∈ B1, K ⊂ clB(z) for z ∈ B2

and z 7→ r(z) is λ1-measurable. If

λ1(∂K \B) = 0 and

∫
B

dλ1(z)

r(z)
< +∞ ,

then

(15) ‖TK‖0 ≤ 1 +
1

2π

(∫
B1

dλ1(z)

r(z)
−

∫
B2

dλ1(z)

r(z)

)
.

Theorem 2. Suppose that with each z ∈ B0 ⊂ B there is associated a disk

B(z) = Br(z)(ζ(z)) ⊂ K of radius r(z) = |z− ζ(z)|. If z 7→ r(z) is λ1-measurable,

λ1(∂K \B0) = 0 and

∫
B0

dλ1(z)

r(z)
< +∞ ,

then

(16) ‖TK‖0 ≤
1

2π

∫
B0

dλ1(z)

r(z)
− 1 .

We shall also show that the sign of equality holds in (15) and (16) if ∂K is a

circular polygon of a certain type. The proofs depend on a series of lemmas.

Lemma 1. Let B ⊂ ∂G, λ1(∂G \ B) = 0, δ > 0 and suppose that with each

z ∈ B there is associated an r(z) > 0 and θ(z) ∈ Γ such that

{z + tθ; 0 < t < r(z), θ ∈ Γ, |θ − θ(z)| < δ} ⊂ G .

If z 7→ r(z) is λ1-measurable and
∫
B
r−a(z) dλ1(z) <∞ for some a ∈ [0,∞[ , then

λ1(∂G) <∞ .

Proof. Fix R > 0 large enough to have K ⊂ BR(0) and put Ω = G ∩ BR(0),

so that ∂Ω = ∂G ∪ {ζ; |ζ| = R}. Assumptions of our lemma guarantee that

with each z ∈ C ≡ B ∪ {ζ; |ζ| = R} it is possible to associate a circular sector

{z + tθ; 0 < t < r(z), θ ∈ Γ, |θ − θ(z)| < δ0} ⊂ Ω, where 0 < δ0 ≤ δ, z 7→ r(z)

is λ1-measurable on C and
∫
C
r−a(z) dλ1(z) < ∞. Put C1 = {z ∈ C; r(z) ≥ 1},

C2 = C \ C1. Clearly,

λ1(C2) ≤

∫
C2

r−a(z) dλ1(z) ≤

∫
C

r−a(z) dλ1(z) <∞ ,
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so that it is sufficient to verify that λ1(C1) < ∞. Let by the system of all

circular sectors of the form

S(z, θz, δ0) ≡ {z + tθ; 0 < t < 1, θ ∈ Γ, |θ − θz| < δ0}

with z ∈ C1, θz ∈ Γ such that S(z, θz, δ0) ⊂ Ω. Let S = ∪ , which is an open

bounded set. If S1, . . . , Sk are mutually different components of S, then each of

them must contain a sector isometric with S(0, 1, δ0), whence

kλ2(S(0, 1, δ0)) ≤
k∑
j=1

λ2(Sj) ≤ λ2(S), k ≤ λ2(S)/λ2(S(0, 1, δ0)) .

We see that S has only finitely many components S1, . . . , Sk. We shall show that

each Sj has the cone property in the following sense: There is an r > 0 such that

with each z ∈ ∂Sj it is possible to associate a θz ∈ Γ with

(17) Br(z) ∩ S(z, θz, r) ⊂ Sj .

Let z ∈ ∂Sj, j = {D ∈ ; D ⊂ Sj}. There is a sequence xn ∈ Sj with

limn→∞ xn = z. Since Sj = ∪ j , for each n there is a Dn ∈ j with xn ∈ Dn.

Denote by zn the vertex of Dn and by θn ≡ θzn the corresponding vector in

Γ determining Dn = S(zn, θ
n, δ0). Since {zn} ⊂ ∂Ω which is compact, passing

to subsequences, if necessary, we may achieve that limn→∞ zn = y ∈ ∂Ω and

limn→∞ θ
n = θ̃ ∈ Γ for suitable y and θ̃. Writing D̃ = S(y, θ̃, δ0) we observe that

D̃ ⊂
∞⋂
k=1

∞⋃
n=k

Dn ⊂
∞⋂
k=1

cl
∞⋃
n=k

Dn ⊂ cl D̃ ,

so that D̃ ⊂ Sj ⊂ Ω, D̃ ∈ j . As xn ∈ Dn tend to z, we have z ∈ cl D̃. Since

z ∈ ∂Sj while D̃ ⊂ Sj , we see that z ∈ ∂D̃. It remains to realize that D̃ is isometric

with S(0, 1, δ0), so that there is an r > 0 (depending on δ0 only) such that with

each z̃ ∈ ∂D̃ it is possible to associate a θz̃ ∈ Γ with S(z̃, θz̃, r)∩Br(z̃) ⊂ D̃; this is

in particular true for z̃ = z, so that the cone property (17) of Sj has been verified.

Now we recall the following result established in [4]:

If U is a bounded domain having the cone property, then there are open sets

U1, . . . ,Up with ∪pi=1U i = U such that each U i has locally lipschitzian boundary

(and, in particular, λ1(∂U i) <∞); consequently, λ1(∂U) ≤
∑p
i=1 λ1(∂U i) <∞.

Applying this to U = Sj (j = 1, . . . , k) we get λ1(∂S) ≤
∑k
j=1 λ1(∂Sj) < ∞.

Since C1 ⊂ ∂S, λ1(C1) <∞ has been verified and the proof is complete. �
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Lemma 2. Denote by ∂̂K the set of all y ∈ R2, for which there exists nK(y) ∈
Γ (which is called the Federer exterior normal of K at y and is uniquely deter-

mined) such that

lim
r→0+

r−2λ2[Br(y) ∩ {x ∈ K;
〈
x− y, nK(y)

〉
> 0}]

= lim
r→0+

r−2λ2[Br(y) ∩ {x ∈ G;
〈
x− y, nK(y)

〉
< 0}] = 0 .

If y ∈ ∂̂K, z ∈ ∂K \{y}, ζ(y) ∈ R2 and |y−ζ(y)| = r(y) > 0, then the following

implications hold:

Br(y)(ζ(y)) ⊂ K =⇒ − 〈grad hz(y), n
K(y)〉(18)

=
1

4πr(y)
+
r2(y)− |z − ζ(y)|2

4πr(y)|y − z|2
≤

1

4πr(y)
,

K ⊂ clBr(y)(ζ(y)) =⇒ − 〈grad hz(y), n
K(y)〉

(19)

=
1

4πr(y)
+
r2(y)− |z − ζ(y)|2

4πr(y)|y − z|2
≥

1

4πr(y)
,

K ∩Br(y)(ζ(y)) = ∅ =⇒ − 〈grad hz(y), n
K(y)〉

(20)

= −
1

4πr(y)
−
r2(y)− |z − ζ(y)|2

4πr(y)|y − z|2
≥ −

1

4πr(y)
.

Proof. If y ∈ ∂̂K and the assumptions from (18) or (19) are valid, then

nK(y) =
y − ζ(y)

r(y)
,

while
y − ζ(y)

r(y)
= −nK(y)

under the assumption occurring in (20). Since calculation yields

−
〈
grad hz(y),

y − ζ(y)

r(y)

〉
=

1

2π

〈
y − z

|y − z|2
,
y − ζ(y)

r(y)

〉
=

1

2πr(y)
·
|y − ζ(y)|2 − 〈z − ζ(y), y − ζ(y)〉

|y − z|2

=
1

2πr(y)
·
|y − ζ(y)|2 − 2〈z − ζ(y), y − ζ(y)〉+ |z − ζ(y)|2

2|y − z|2

+
r2(y)− |z − ζ(y)|2

4πr(y)|y − z|2

=
1

4πr(y)
+
r2(y)− |z − ζ(y)|2

4πr(y)|y − z|2
.
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It remains to note that r2(y)−|z − ζ(y)|2 ≤ 0 under the assumptions occurring in

(18), (20), while r2(y)− |z − ζ(y)|2 ≥ 0 under the assumption occurring in (19).�

Lemma 3. If the assumptions of Theorem 1 are fulfilled, then

V K = ‖TK‖ <∞ .

Proof. Lemma 1 shows that λ1(∂K) <∞, so that K has finite perimeter P (K)

in the sense of 2.10 in [8] (see 4.5 in [3]). For y ∈ ∂̂K the vector nK(y) ∈ Γ has been

defined in Lemma 2; we shall further put nK(y) = 0 (∈ R2) for y ∈ R2 \ ∂̂K. Then

the vector-valued function y 7→ nK(y) is defined on R2 and is Borel measurable

(cf. Remark 2.14 in [8]), so that we may introduce

2

∫
∂K

|〈nK(y), grad hz(y)〉| dλ1(y) ≡ v
K(z)

(which agrees with the quantity occurring in (28) in [8] up to the multiplicative

factor 2). Then a necessary and sufficient condition for extendability of W∂K

(defined so far on C(1)(∂K) only) to a bounded linear operator on C(∂K) consists

in finiteness of the quantity

V K ≡ sup{vK(z); z ∈ ∂K}

which is then equal to the norm of the operator TK defined by (10) (cf. §2 in [8],

in particular 2.19–2.25; notice that our V K coincides with 2V G occurring in [8]).

We should remark that the quantity vK(z) can be equivalently defined by various

expressions, one of them being

vK(z) =
1

π

∫
Γ

nK∞(θ, z) dλ1(θ) ,

where nK∞(θ, z) is the number of so-called hits of the half-line

Hz(θ) = {z + tθ; t > 0}

on K in the sense of 1.7 in [8] (note that, according to 1.11 in [8], θ 7→ nK∞(θ, z) is

a Baire function of the variable θ ∈ Γ). As pointed out by M. Chleb́ık [6], methods

of geometric measure theory [3] permit to show that nK∞(θ, z) coincides with the

total number of points in Hz(θ) ∩ ∂eK for λ1-a.e. θ ∈ Γ, so that vK(z) has the

same meaning as described in the introduction. Fix now an arbitrary z ∈ ∂K and

consider δ > 0 such that

(21) λ1(∂Bδ(z) ∩ ∂K) = 0
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(as λ1(∂K) <∞, all but countable many values δ > 0 enjoy this property). Under

the conditions of Theorem 1, for λ1-a.e. y ∈ ∂̂K either the assumption in (19) or

that occurring in (20) is fulfilled; accordingly,

(22) −〈grad hz(y), n
K(y)〉 ≥ −

1

4πr(y)
, λ1-a.e. y ∈ ∂̂K .

Put Q = K −Bδ(z). Employing (21) we see that λ1-a.e. y ∈ ∂̂Q∩ ∂Bδ(z) belongs

to ∂̂Q ∩ intK ⊂ ∂Bδ(z) ∩ intK, so that nQ(y) = z−y
δ

and

(23) 〈grad hz(y), n
Q(y)〉 =

1

2πδ
, λ1-a.e. y ∈ ∂̂Q ∩ ∂Bδ(z) .

Noting that nQ(·) = nK(·) on ∂̂Q \ ∂Bδ(z) ⊂ ∂̂K we get by (22), (23)

1

2
vQ(z) =

∫
∂̂Q

|〈grad hz(y), n
Q(y)〉| dλ1(y)

≤

∫
∂̂Q∩∂Bδ(z)

[
1

πδ
− 〈grad hz(y), n

Q(y)〉

]
dλ1(y)

+

∫
∂̂Q\∂Bδ(z)

[
1

4πr(y)
− 〈grad hz(y), n

Q(y)〉

]
dλ1(y)

+

∫
∂̂Q\∂Bδ(z)

1

4πr(y)
dλ1(y)

≤ −

∫
∂̂Q

〈grad hz(y), n
Q(y)〉 dλ1(y) +

1

πδ
· 2πδ + 2

∫
∂K

1

4πr(y)
dλ1(y)

= 2 +
1

2π

∫
∂K

1

r(y)
dλ1(y) ,

where we have used the fact that y 7→ hz(y) is harmonic in some neighbourhood

of clQ, whence it follows by the divergence theorem for sets with finite perimeter

(cf. p. 49 in [8]) that ∫
∂̂Q

〈grad hz(y), n
Q(y)〉 dλ1(y)〉 = 0 .

Since ∂K \ Bδ(z) ⊂ ∂Q and nK(·) = nQ(·) holds λ1-a.e. on ∂K \ Bδ(z) by (21),

we arrive at∫
∂K\Bδ(z)

|
〈
grad hz(y), n

K(y)
〉
| dλ1(y) ≤

1

2
vQ(z) ≤ 2 +

1

2π

∫
∂K

1

r(y)
dλ1(y) ,

whence we get making δ → 0+ (with δ obeying (21))

vK(z) = 2

∫
∂K

|〈grad hz(y), n
K(y)〉| dλ1(y) ≤ 4 +

1

π

∫
∂K

1

r(y)
dλ1(y) .

Since z ∈ ∂K has been arbitrarily chosen, we have

V K ≤ 4 + π−1

∫
∂K

r−1(y) dλ1(y) <∞

and the proof is complete. �
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Lemma 4. If the assumptions of Theorem 2 are fulfilled, then

V K = ‖TK‖ <∞ .

Proof. Choose R > 0 large enough to have K ⊂ BR(0) and put L = cl [BR(0) \
K]. If K satisfies the assumptions of Theorem 2, then L satisfies the assumptions

of Theorem 1 (where K is replaced by L) and Lemma 3 implies V L < ∞. It

remains to observe that V K ≤ V L. �

Lemma 5. Let V K <∞. Then the density

dK(z) = lim
r→0+

λ2[K ∩Br(z)]

λ2[Br(z)]

is well defined for any z ∈ R2. Denoting by δz the Dirac unit point-mass concen-

trated at z define for any z ∈ ∂K the signed Borel measure τz on ∂K by

(24) dτz(y) = [1− 2dK(z)]dδz(y)− 2〈nK(y), grad hz(y)〉dλ1(y) .

Then

(25) TKf(z) =

∫
∂K

f dτz , z ∈ ∂K, f ∈ C(∂K) .

Proof. See §3 in [8] (p. 73). �

Lemma 6. Let V K < ∞ and let D be a dense subset of ∂K. Let us agree to

denote by ‖ν‖ the total variation of an arbitrary signed Borel measure ν on ∂K.

Then

(26) ‖TK‖0 =
1

2
sup{‖τu − τv‖; u, v ∈ D}

and for each signed Borel measure µ on ∂K the following estimate holds

(27) ‖TK‖0 ≤ sup{‖τz − µ‖; z ∈ D} .

Proof. If f ∈ C(∂K), then we denote by ‖f‖0 = 1
2osc f(∂K) the norm in

C(∂K)
/
Const (∂K) of the class containing f . Hence

‖TK‖0 = sup

{
1

2
oscTKf(∂K); f ∈ C(∂K), ‖f‖0 ≤ 1

}
=

1

2
sup

{∣∣∣∫
∂K

f dτu −

∫
∂K

f dτv

∣∣∣; u, v ∈ D, f ∈ D, f ∈ C(∂K), ‖f‖0 ≤ 1

}
= sup

{∣∣∣∫
∂K

f d(τu − τv)
∣∣∣; u, v ∈ D, f ∈ C(∂K), ‖f‖0 ≤

1

2

}
.
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In view of (11) we have
∫
∂K

d(τu − τv) = 0, so that the last expression transforms

into

‖TK‖0 = sup

{∣∣∣∫
∂K

f d(τu − τv)
∣∣∣; u, v ∈ D, f ∈ C(∂K), ‖f‖ ≤

1

2

}
=

1

2
sup {‖τu − τv‖; u, v ∈ D}

which is (26). Given f ∈ C(∂K) we have for any γ ∈ R :

‖TKf‖0 ≤ ‖T
Kf − γ1∂K‖ = sup

{∣∣∣∫
∂K

f dτz − γ
∣∣∣; z ∈ D} .

Choosing γ =
∫
∂K

f dµ we arrive at

‖TKf‖0 ≤ sup

{∣∣∣∫
∂K

f d(τz − µ)
∣∣∣; z ∈ D} ≤ ‖f‖ sup{‖τz − µ‖; z ∈ D} .

In this inequality we replace f by f − α1∂K for any α ∈ R. Since

‖TKf‖0 = ‖TKf − α1∂K‖0

we get

‖TKf‖0 ≤ ‖f − α1∂K‖ · sup{‖τz − µ‖; z ∈ D}, α ∈ R ,

so that

‖TKf‖0 ≤ ‖f‖0 · sup{‖τz − µ‖; z ∈ D}, f ∈ C(∂K) ,

and (27) follows. �
We are in position to present proofs of Theorems 1, 2 stated above.

Proof of Theorem 1. We know from Lemma 3 that V K < ∞. Define a signed

Borel measure µ on ∂K putting for each Borel set M ⊂ ∂K

µ(M) =
1

2π

(∫
M∩B2

dλ1(y)

r(y)
−

∫
M∩B1

dλ1

r(y)

)
.

Fix z ∈ ∂̂K, so that dK(z) = 1
2 . Using (24), (19), (20) we get

‖τz − µ‖ =

∫
B1

[
−2
〈
grad hz(y), n

K(y)
〉

+
1

2πr(y)

]
dλ1(y)

+

∫
B2

[
−2
〈
grad hz(y), n

K(y)
〉
−

1

2πr(y)

]
dλ1(y)

=

∫
∂K

dτz(y) +
1

2π

(∫
B1

dλ1(y)

r(y)
−

∫
B2

dλ1(y)

r(y)

)
= TK1∂K(z) +

1

2π

(∫
B1

dλ1(y)

r(y)
−

∫
B2

dλ1(y)

r(y)

)
,
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which in combination with (11), (27) completes the proof, because ∂̂K is dense in

∂K thanks to our assumption that K is massive at each point of ∂K (cf. [8], p. 54

and isoperimetric lemma on p. 50). �

Proof of Theorem 2. Lemma 4 shows that V K < ∞. Fix again an arbitrary

z ∈ ∂̂K and define now the signed measure µ on Borel sets M ⊂ ∂K by

µ(M) =
1

2π

∫
M∩B0

dλ1(y)

r(y)
.

It follows from (24), (18) that

‖µ− τz‖ =

∫
B0

[
1

2πr(y)
+ 2

〈
grad hz(y), n

K(y)
〉]

dλ1(y)

=
1

2π

∫
B0

dλ1(y)

r(y)
− TK1∂K(z)

which together with (11), (27) proves (16), because ∂̂K is dense in ∂K as observed

above. �

Notation. We now specialize to the case that K is bounded by a simple ori-

ented circular polygon

∂K =
n⋃

m=1

Cm ∪ {zm} ,

where Cm is an open oriented circular arc situated on the boundary of a disk

Brm(ζm) and zm is the initial point of Cm; form < n the end-point of Cm coincides

with zm+1, the end-point of Cn is z1. Further suppose that for 1 ≤ k < m ≤ n

either Ck ∩ ∂Brm(ζm) = ∅ or else Ck ⊂ ∂Brm(ζm) \ Cm. We put

αm = λ1(Cm)/rm , A0 = {m; Brm(ζm) ⊂ K} ,

A1 = {m; Brm(ζm) ∩K = ∅} , A2 = {m; K ⊂ clBrm(ζm)}

and adopt the following assumption:

A0 ∪ A1 ∪ A2 = {1, . . . , n} .

Then we may state the following result.

Theorem 3. Let i run over A0, j run over A1 and k run over A2. If A0 = ∅,
then

(28) ‖TK‖0 ≤ 1 +
1

2π

∑
j

αj −
∑
k

αk

 ,



156 J. KRÁL and D. MEDKOVÁ

where the sign of equality holds in case n ≤ 4. If A1 = ∅ = A2, then

(29) ‖TK‖ ≤
1

2π

n∑
i=1

αi − 1 ,

where again the sign of equality holds provided n ≤ 4; now the condition

(30) intK \
n⋃
i=1

Bri(ζi) ≡
n⋂
i=1

[intK \Bri(ζi)] 6= ∅

implies that

(31)
1

2π

n∑
i=1

αi − 1 ≥ 1

(so that in case n ≤ 4 the operator TK cannot be contractive on

C(∂K)
/
Const (∂K) in view of the equality in (29)), while the conditions

(32)
n⋂
i=1

[intK \Bri(ζi)] = ∅,
n⋂
i=1

Bri(ζi) 6= ∅

together imply the inequality

(33)
1

2π

n∑
i=1

α1 − 1 < 1

(guaranteeing contractivity of TK on C(∂K)
/
Const (∂K)).

Corollary 1. If A0 = ∅ = A1, then (28) implies the inequality

‖TK‖0 ≤ 1−
1

2π

n∑
k=1

αk

guaranteeing contractivity of TK on C(∂K)
/
Const (∂K). If A0 = ∅ = A2 and

n ≤ 4 then the equality

‖TK‖0 = 1 +
1

2π

n∑
k=1

αk

holds, so that TK cannot be contractive on C(∂K)
/
Const (∂K).

The proof will depend on the following lemma.
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Lemma 7. Put for any m ∈ {1, . . . , n}

σm =

{
1, in case K ∩Brm(ζm) 6= ∅ ,

−1, in case K ∩Brm(ζm) = ∅ .

If z ∈ Cm, then

−2

∫
∂K\Cm

〈grad hz(y), n
K(y)〉 dλ1(y)(34)

= 1−
1

2π
σmαm, m ∈ {1, . . . , n} ;

further we have

−2

∫
∂K\C1\Cn

〈grad hz1(y), n
K(y)〉 dλ1(y)

(35)

= 2dK(z1)−
1

2π
σ1α1 −

1

2π
σnαn ,

−2

∫
∂K\Cm−1\Cm

〈grad hzm(y), nK(y)〉 dλ1(y)

(36)

= 2dK(zm)−
1

2π
σm−1αm−1 −

1

2π
σmαm for 1 < m ≤ n .

Proof. If z ∈ Cm, then (11), (25), (24) yield

(37) −2

∫
∂K

〈
nK(y), grad hz(y)

〉
dλ1(y) =

∫
∂K

dτz(y) + [2dK(z)− 1] = 2dK(z) .

From Lemma 2 we get for y, z ∈ Cm, y 6= z

−
〈
grad hz(y), n

K(y)
〉

=
σm

4πrm
,

whence

(38) −2

∫
Cm

〈
nK(y), grad hz(y)

〉
dλ1(y) =

1

2π
σmαm ,

which together with (37) implies (34).

If y ∈ C1, then Lemma 2 combined with |z1 − ζ1| = r1 yields again

−
〈
grad hz1(y), n

K(y)
〉

=
σ1

4πr1
,
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whence

(39) −2

∫
C1

〈
grad hz1(y), n

K(y)
〉
dλ1(y) =

1

2π
σ1α1 .

Similarly we get from Lemma 2 for y ∈ Cn in view of |z1 − ζn| = rn

−
〈
grad hz1(y), n

K(y)
〉

=
σn

4πrn
,

so that

(40) −2

∫
Cn

−
〈
grad hz1(y), n

K(y)
〉
dλ1(y) =

1

2π
σnαn .

Combining (37), (39), (40) we get (35). Similar reasoning proves (36). �

Proof of Theorem 3. Assuming A0 = ∅ put B1 = ∪Cj (j ∈ A1), B2 = ∪Ck
(k ∈ A2), B = B1 ∪ B2, B(z) = Brm(ζm) for z ∈ Cm (1 ≤ m ≤ n). Then

∂K \B = {z1, . . . , zn} and Theorem 1 implies

‖TK‖0 ≤ 1 +
1

2π

∑
j

λ(Cj)
/
rj
−
∑
k

λ(Ck)
/
rk


which is (28). Now we shall verify that the sign of equality holds in (28) provided

1 ≤ n ≤ 4. This is clear when n = 1, because then A3 = ∅, α1 = 2π and

0 ≤ ‖TK‖0 ≤ 1− 1
2πα1 = 0. Let now n = 2 and fix u ∈ C1, v ∈ C2. According to

Lemma 2 we have for y ∈ C1

−
〈
grad hu(y), n

K(y)
〉

=
σ1

4πr1
, −

〈
grad hv(y), n

K(y)
〉
−

σ1

4πr1
≥ 0 ,

while for y ∈ C2

−
〈
grad hv(y), n

K(y)
〉

=
σ2

4πr2
, −

〈
grad hu(y), n

K(y)
〉
−

σ2

4πr2
≥ 0 .

Hence we get by (24)

‖τu − τv‖ = −

∫
C1

[
σ1

2πr1
+ 2

〈
grad hv(y), n

K(y)
〉]

dλ1(y)

−

∫
C2

[
σ2

2πr2
+ 2

〈
grad hu(y), n

K(y)
〉]

dλ1(y)

= −
σ1

2π

λ1(C1)

r1
− 2

∫
∂K\C2

〈
grad hv(y), n

K(y)
〉
dλ1(y)

− 2

∫
∂K\C1

〈
grad hu(y), n

K(y)
〉
dλ1(y)−

σ2

2π

λ1(C2)

r2
.
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Using (34) we arrive at

‖τu − τv‖ = −
σ1

2π
α1 +

(
1−

σ2

2π
α2

)
+
(
1−

σ1

2π
α1

)
−
σ2

2π
α2

= 2
(
1−

1

2π
σ1α1 −

1

2π
σ2α2

)
.

Hence we get by (26)

‖TK‖0 ≥
1

2
‖τu − τv‖ = 1−

1

2π
(σ1α1 + σ2α2)

which is the inequality opposite to (28) for n = 2.

Next we shall consider the case n = 3. Observing that〈
grad hz1(y), n

K(y)
〉

=
〈
grad hz3(y), n

K(y)
〉

for y ∈ C3

by Lemma 2, we get from (24) and this lemma

‖τz1 − τz3‖ = |1− 2dK(z1)|+ |1− 2dK(z3)|

−

∫
C1

[
σ1

2πr1
+ 2

〈
grad hz3(y), n

K(y)
〉]

dλ1(y)

−

∫
C2

[
σ2

2πr2
+ 2

〈
grad hz1(y), n

K(y)
〉]

dλ1(y)

≥ [1− 2dK(z1)] + [1− 2dK(z3)]−
1

2π
σ1α1

− 2

∫
∂K\C2\C3

〈
grad hz3(y), n

K(y)
〉
dλ1(y)−

1

2π
σ2α2

− 2

∫
∂K\C1\C3

〈
grad hz1(y), n

K(y)
〉
dλ1(y) .

Employing (36) and (35) we obtain

‖τz1 − τz3‖ ≥ [1− 2dK(z1)] + [1− 2dK(z3)]−
1

2π
σ1α1 +

[
2dK(z3)−

1

2π
σ2α2

−
1

2π
σ3α3

]
−

1

2π
σ2α2 +

[
2dK(z1)−

1

2π
σ1α1 −

1

2π
σ3α3

]
= 2

(
1−

3∑
m=1

1

2π
σmαm

)
,

whence it follows by (26) that

‖TK‖0 ≥
1

2
‖τz1 − τz3‖ ≥ 1−

1

2π

3∑
m=1

σmαm
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which gives the inequality opposite to (28) for n = 3.

Finally we shall treat the case n = 4. We obtain from (24) and Lemma 2

‖τz1 − τz3‖ = |1− 2dK(z1)|+ |1− 2dK(z3)|

−
3∑

m=2

∫
Cm

[
2
〈
grad hz1(y), n

K(y)
〉

+
σm

2πrm

]
dλ1(y)

−
∑

m∈{1,4}

∫
Cm

[
2
〈
grad hz3(y), n

K(y)
〉

+
σm

2πrm

]
dλ1(y)

≥ [1− 2dK(z1)] + [1− 2dK(z3)]−
4∑

m=1

1

2π
σmαm

− 2

∫
∂K\C1\C4

〈
grad hz1(y), n

K(y)
〉
dλ1(y)

− 2

∫
∂K\C2\C3

〈
grad hz3(y), n

K(y)
〉
dλ1(y) .

Applying (35), (36) we finally get

‖τz1 − τz3‖ ≥ [1− 2dK(z1)] + [1− 2dK(z3)]

−
1

2π

4∑
m=1

σmαm +

[
2dK(z1)−

1

2π
σ1α1 −

1

2π
σ4α4

]

+

[
2dK(z3)−

1

2π
σ2α2 −

1

2π
σ3α3

]
= 2

(
1−

1

2π

4∑
m=1

σmαm

)

which again yields the inequality

‖TK‖0 ≥ 1−
1

2π

4∑
m=1

σmαm

opposite to (28) for n = 4.

The first part of Theorem 3 dealing with the inequality (28) concerning the case

A0 = ∅ is completely proved. We now proceed to the case A1 = ∅ = A2 and put

B0 = ∪ni=1Ci. Then ∂K \B0 = {z1, . . . , zn} and letting again B(z) = Brm(ζm) for

z ∈ Cm (1 ≤ m ≤ n) we get from Theorem 2

‖TK‖0 ≤
1

2π

n∑
i=1

λ(Ci)
/
ri
− 1 ,

which is the inequality (29). It remains to discuss the case 1 ≤ n ≤ 4. If n = 1

then α1 = 2π and ‖TK‖0 = 0 as in the first part of the proof. If n = 2 we again
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choose u ∈ C1, v ∈ C2 and get by (24) and Lemma 2

‖τu − τv‖ =

∫
C1

[
2
〈
grad hv(y), n

K(y)
〉

+
1

2πr1

]
dλ1(y)

+

∫
C2

[
2
〈
grad hu(y), n

K(y)
〉

+
1

2πr2

]
dλ1(y)

=
1

2π
(α1 + α2) + 2

∫
∂K\C2

〈
grad hv(y), n

K(y)
〉
dλ1(y)

+ 2

∫
∂K\C1

〈
grad hu(y), n

K(y)
〉
dλ1(y) .

Hence it follows by (34) that

‖τu − τv‖ =
1

2π
(α1 + α2)− 1 +

1

2π
α1 − 1 +

1

2π
α2 =

1

π
(α1 + α2)− 2

which together with (26) implies

‖TK‖0 ≥
1

2
‖τu − τv‖ =

1

2π
(α1 + α2)− 1 ,

so that equality holds in (29) for n = 2. If n = 3, then (24) and Lemma 2 imply

‖τz1 − τz3‖ = |1− 2dK(z1)|+ |1− 2dK(z3)|

+

∫
C1

[
2
〈
grad hz3(y), n

K(y)
〉

+
1

2πr1

]
dλ1(y)

+

∫
C2

∣∣∣∣2 〈grad hz1(y), n
K(y)

〉
+

1

2πr2

]
dλ1(y)

≥ 2dK(z1)] + 2dK(z3)− 2 +
1

2π
α1 +

1

2π
α2

+ 2

∫
∂K\C2\C3

〈
grad hz3(y), n

K(y)
〉
dλ1(y)

+ 2

∫
∂K\C1\C3

〈
grad hz1(y), n

K(y)
〉
dλ1(y) .

Using (36), (35) we get

‖τz1 − τz3‖ ≥ 2dK(z1) + 2dK(z3)− 2 +
1

2π
(α1 + α2)

− 2dK(z3) +
1

2π
(α2 + α3)− 2dK(z1) +

1

2π
(α1 + α3)

=
1

π
(α1 + α2 + α3) ,
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whence

‖TK‖0 ≥
1

2
‖τz1 − τz3‖ ≥

1

2π

3∑
i=1

αi − 1

by (26), which shows that equality holds in (29) for n = 3. Finally, if n = 4 we

obtain similarly from (24) and Lemma 2

‖τz1 − τz3‖ = |1− 2dK(z1)|+ |1− 2dK(z3)|

+
3∑
i=2

∫
Ci

[
2
〈
grad hz1(y), n

K(y)
〉

+
1

2πri

]
dλ1(y)

+
∑

i∈{1,4}

∫
Ci

[
2
〈
grad hz3(y), n

K(y)
〉

+
1

2πri

]
dλ1(y)

≥ 2dK(z1)− 1 + 2dK(z3)− 1 +
4∑
i=1

1

2π
αi

+ 2

∫
∂K\C1\C4

〈
grad hz1(y), n

K(y)
〉
dλ1(y)

+ 2

∫
∂K\C2\C3

〈
grad hz3(y), n

K(y)
〉
dλ1(y)

=
1

π

4∑
i=1

αi − 2 (see (35) and (36)) ,

so that by (26) we have again

‖TK‖0 ≥
1

2
‖τz1 − τz3‖ ≥

1

2π

4∑
i=1

αi − 1

which yields equality in (29) for n = 4.

Now we assume (30) together with A0 = {1, . . . , n} and choose z0 ∈ intK \
∪ni=1Bri(ζi). Denote by 4 arg[y − z0; y ∈ Ci] the increment of the argument of

y − z0 as y describes the oriented arc Ci. Assuming, as we may, that the Jordan

curve ∂K arising as the union of the oriented arcs clC1, . . . , clCn is positively

oriented we get

2π =
n∑
i=1

4 arg[y − z0; y ∈ Ci] =
n∑
i=1

∫
Ci

〈
nK(y), y − z0

〉
|y − z0|2

dλ1(y)

= −2π
n∑
i=1

∫
Ci

〈
nK(y), grad hz0(y)

〉
dλ1(y) .
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We have seen in the proof of (18) in Lemma 2 that for i ∈ {1, . . . , n} and any

z0 /∈ ∂K (
y ∈ Ci, Bri(ζi) ⊂ K

)
=⇒ −

〈
grad hz0(y), n

K(y)
〉

(41)

=
1

4πri
+
r2i − |z0 − ζi|

2

4πri|y − z0|2
,

whence we get noting that |z0 − ζi| ≥ ri for i ∈ {1, . . . , n}

2π ≤
1

2

n∑
i=1

∫
Ci

dλ1(y)

ri
=

1

2

n∑
i=1

αi

which proves (31).

Finally suppose that (32) holds together with A0 = {1, . . . , n} and choose z0 ∈
∩ni=1Bri(ζi) ⊂ intK. Keeping the assumption that ∂K is positively oriented we

obtain from (41) in view of |z0 − ζi| < ri (1 ≤ i ≤ n) by the above reasoning

2π = −2π
n∑
i=1

∫
Ci

〈
nK(y), grad hz0(y)

〉
dλ1(y)

>
1

2

n∑
i=1

∫
Ci

dλ1(y)

ri
=

1

2

n∑
i=1

αi

which is (33). The proof of Theorem 3 is complete. �
Corollary 2. If n = 2 in Theorem 3 then TK is always contractive on

C(∂K)
/
Const (∂K) if both C1 and C2 are convex w.r. to K (i.e. σ1 = 1 = σ2); if

only C1 is convex while C2 is concave (i.e. σ1 = 1 = −σ2), then ‖TK‖0 < 1 iff

α1 > α2.

Remark. If A1 = ∅ = A2 and intK ⊂ ∪ni=1Bri(ζi) then, as we have seen in

Theorem 3,

(42)
n⋂
i=1

Bri(ζi) 6= ∅

is sufficient for ‖TK‖0 < 1; to see that (42) is not necessary consider α ∈]0, π/2[

and form the region

K = clB1(−2 cosα) ∪ clB1(0) ∪ clB1(2 cosα)

whose boundary consists of four circular arcs

C1 = {−2 cosα+ exp iθ;α < θ < 2π − α} (so that α1 = 2π − 2α) ,

C2 = {exp iθ;−π + α < θ < −α} (so that α2 = π − 2α) ,

C3 = {+2 cosα+ exp iθ;−π + α < θ < π − α} (so that α3 = 2π − 2α) ,

C4 = {exp iθ;α < θ < π − α} (so that α4 = π − 2α) ,
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and their end-points z1, . . . , z4. Elementary considerations show that (42) holds

iff α > π/3 while the equality occurring in (29) (Theorem 3) for n = 4 tells us

that ‖TK‖0 < 1 iff α > π/4.

Comments. The estimate ‖TK‖0 < 1 guarantees convergence of the Neumann

series for the inverse of I ± TK in the operator norm; it is not indispensable

for the convergence of the Neumann series
∑∞
n=0(−1)n(TK)ng (corresponding to

an individual g ∈ C(∂K)) to the solution f of the equation (I + TK)f = g in

C(∂K) (cf. [20], [15]). Nevertheless, evalation or estimates of ‖TK‖0 are useful

in connection with iterative techniques connected with the equations of the type

(13), (14) (cf. [7], [19]). C. Neumann started investigation of the quantity ‖TK‖0
(which he called the configuration constant of K) in order to get a proof for the

existence of the solution of the Dirichlet problem for any continuous boundary

condition g prescribed on the boundary of a convex region K ([17]); Dirichlet’s

principle used for this purpose previously by Riemann lost credit after Weierstrass’

criticism concerning attaining minima in variational problems. C. Neumann’s first

proof dealing with the inequality ‖TK‖0 < 1 for convex regions K ⊂ R2 different

from triangles and quadrangles was only sketchy (as he himself admitted cf. [18],

p. 759) and was followed by a detailed and correct proof in [18], §6 (which was

known in his time – cf. [5]). This contribution was forgotten later and after

Lebesgue’s criticism [12] of Neumann’s first proof (which apparently contained

the same gap connected with attaining minima as Riemann’s reasoning based on

the Dirichlet principle) there remained a common belief that Neumann’s proof of

‖TK‖0 < 1 for general convex K ⊂ R2 different from triangles and quadrangles

was insufficient (cf. [16], [2], chap. 8, p. 572); Neumann’s original proof has been

included in [11], characterization of convex bodies in higher dimensional spaces

for which the operator of the arithmetical mean is contractive is presented in [10],

where also historical comments are included. We refer the reader to [13] for the

description of the role played by the Neumann operator in the development of the

theory of integral equations.
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4. Gagliardo E., Proprietà di alcuni classi di funziono in piu variabli, Ricerche Mat. 7 (1958),
102–137.
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