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ON THE NEUMANN OPERATOR OF THE ARITHMETICAL
MEAN

J. KRAL and D. MEDKOVA

We shall identify the Euclidean plane R? with the set C of all complex numbers.
If z [, then Rez, Im z and z denote the real part, the imaginary part and the
complex conjugate of z, respectively. The scalar product of vectors u,v CRF will
be denoted by [0, v {= Reuv). We shall be engaged with logarithmic potentials
in the plane derived from the classical kernel defined for x,z CRP by
h () = I:21|—nln ﬁ !f x & z,
+o0, if x=1z.
The symbol Ax (k 1, 2}) will denote the k-dimensional Hausdor Cmeasure (with
the usual normalization, so that Ak ([0, 1]¥) = 1). For M [CR% we use the symbols
OM, intM and cIM to denote the boundary, the interior and the closure of M,
respectively. For M 8 [We denote by C(M) the Banach space of all bounded
continuous functions on M with the supremum norm, by 1y the constant function
equal to 1 on M, by Const (M) = {aly;a [CRI} the class of all constant functions
on M. C(()l) will stand for the class of all continuously di Lerentiable functions with
a compact support in R2, for bounded M we write CO(M) = {¢J, : ¢ CTEV>

for the class of all restrictions to M of functions in Cgl). Throughout, K R will
be a fixed non-void compact set which is massive at each z [CKl in the sense that
each disk

Br(z) = {x [RF;|x—z| <r}

with radius r > 0 and center z in K intersects K in a set of positive Lebesgue
measure:

A2[Br(z) n K]>0.

This is the only a priori restriction we impose on K; it is by no means essential in
connection with boundary value problems (cf. Remark 1.14 and 2.3 in [8]) but it
will allow us to avoid some technical complications.
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Put G = R2\ K and denote by C(9K) the space of all finite signed Borel
measures supported by dK. For each p CCIH®K) the potential
1
(1) Upx) = hz(x)du(z)
oK

defines a harmonic function of the variable x on RZ \ 9K such that, for each
bounded Borel P [CRf \ 0K, the gradient of (1) is integrable over P:
1
[grad Up(X)| dAz(X) < +oo.
P

This property makes it possible to introduce the so-called weak normal derivative
of Uy, to be denoted by N©U, which is defined as a linear functional over C(()l)
by the formula

[

@ NUW = grad 609,010 UG, ¢ T
G

if the boundary 0G = 0K is smooth and n denotes the unit normal exterior to
G, and if Up extends smoothly from G to cl G, then the right-hand side in (2)
transforms by divergence theorem into

ouu
——dA
O N
so that N®Up is a natural weak characterization of the normal derivative 2%

(compare [21]). Transforming the integral occurring in (2) by Fubini’s theorem
we get, for any ¢ IZCél),

. -
N=UW ¢ = aKWd)(Z)du(Z),

where
]

3 Wo(z) = . [grad ¢(x), grad hz (x) CaiAz(X) .

We shall consider (3) as a function of the yariable z (K. It is easily seen (cf. §2
in [8]) that, for z [CK, (3) depends on ¢'5 only and represents a continuous
function on K which is harmonic on int K; this function W ¢ will be called the
double layer potential of density ¢. Note also that, for any fixed p COY®OK),
weak qﬂmal derivate N©Up has support contained in 0K in the sense that
NCUW, & = 0whenever K does not meet the support of ¢ Ecél) (cf.1.2in[8]).
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For (B M [CKI denote by W = (W¢)%| the restriction to M of the double
layer potential W¢. Then

(4k) Wi : ¢%K - Wk (CP@K) - C(K))
and
(4oK) W : ¢@K - Wokd  (CP@K) ~ C(9K))

are linear operators form C®(9K) to C(K) and from C®(dK) to C(AK), respec-
tively. Since

®) Wk lok = 1k

(cf. [8, p. 60]), we have Wi (Const (0K) [Cbnst(K) which@ﬁkes it possible
to consider the operators induced on the factor space C¥(9K) Const (9K) to be

denoted by the same symbols

W 1 1
(6) Wic: C(0K) const (aK) ~ C(K) const (K)
and

o [ 1
(Bak) Wok : CH7(0K) Const (0K) ~ C(9K) Const (0K) -

Necessary and su [cieht geometric condition is known (cf. [1], [9]; see also the
exposition in [8], [14]) guaranteeing extendability of the operators (4k), (4o ) to
bounded linear operators defined on the whole C(alﬁﬁnd of the operators (6k),
(6o ) to bounded linear operators acting on C(OK) ~gnst (OK)" As pointed out

by M. Chlebik ([6]), results in geometric measure theory ([3]) permit to formulate
this condition (occurring in an equivalent form in [8] and [14]; cf. proof of Lemma 3
below) in terms of the essential boundary

i 1 _ -
9K = {z [RF; limsup A2[B((z) n K] 2 >0, limsupAz[Br(z) n G] 2 >0}
r-o+ r-o+

as follows. Denoting for 6 in
r={6 CRF; 0] =1}
and fixed z CRP by n*(z,8) the total number of points in

{z +16; t >0} n oK
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(0 = nX(z,8) < +o0) we arrive at a A;-measurable function 8 3 n*¥(z,8) which
makes it possible to introduce the integral

1 1
V@) == nK(z,0)d\(6).
mr
Then finiteness of the quality
@) VK :=sup{v(2); z CaK}

is necessary and su Lcieht for extendability OfﬁA/]K to a bounded Iit@r operator
on C(0K) to C(K) (or, equivalently, on C(0K) cgnst (OK) to C(K) const (aK))
and, which is the same, ex}in,dability of Wy to a bounded operator on C(0K)
(or, equivalently, on C(OK) cgnst (aK))' The same condition

(8) VK < +oo

is necessary and su [cieht to guarantee the existence, for each u [CCI(dK), of a
(uniquely determined) finite signed Borel measure v, CCHB) representing NGUp
in the sense that [

]
NeUpu, ¢ = aKq)dvu, [l Y ;

under the assumption (8) the arising operator N€U: u B v, is bounded on
CYOK) and is adjoint to Wak acting on C(OK):

C)) NCU =W .

Assuming (8) we define the operator of the arithmetical mean, to be denoted by
TK =T, by the equation

(10) 20+ TR = Wax
where | is the identity operator. Then (5) implies
(11) Tlok = 1ok -
The norm of T on C(0K) is precisely evaluated by
(12) [NEANEERVAN

(cf. [8], 2.25; note that our normalization of vi< (z) is di [erent from that used in [8],
so that our V ¥ coincides with 2V © in [8]). The attempt to represent the solution
of the Dirichlet problem for K with a prescribed boundary condition g CCI(0K)
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in the form of the double layer potential W f with an unknown f [C{0K) leads
to the equation

(13) (1+T)f=2g.

In view of (9), the attempt to find, for a given v CCH®OK), another p CCHOK)
whose potential Up solves the weak Neumann problem NCUp = v for G results
in the adjoint equation

(14) A+T=v

for the unknown p. It follows from (12) that [T [= 1 where the sign of equality
holds i 4 is convex (cf. [8], Theorem 3.1). If we consider T ¥ on the quotient space
C(OK) const OK)’ then the quotient norm of TK, to be denoted by [TK [g] may
become Ieﬁhat 1. Let us recall that the norm of the class containing f [CC{0K)
in C(OK) const (aK) is given by Josc f(0K), where

osc F(0K) = maxf(0K) — minf(0K).
Hence [T [gis the least constant q = 0 for which
osc (TKF)(OK) < qoscf(0K), [FILCOK).

This constant was called the configuration constant of K by Carl Neumann who
was able to prove for convex K that [T [gl< 1 i[CK is dilerent from triangles
and quadrangles ([18]) (H. Lebesgue [12] observed later that [TE [ 1 for all
convex bodies K [CR¥) which permitted to establish convergence (inlik\e operator
norm) of the Neumann series for the inverse of 1 + T on C(0K) Const (9K)-

Note that, in view of (9)-(11), (T ) aps the subspace

Co(OK) := {p CCHOK) : p(OK) =0}

of all balanced signed measures inlls_—l% K) into itself and C5(OK) may be identified
with the adjoint space to C(OK) ~gnst (OK)" Hence [T [glequals the norm of

the operator (T ) testricted to C5(0K). For general K no simple evaluation of
[T [gdcomparable with the formula (12) for [T CSeems to be known. Never-
theless, geometric estimates of the configuration constant [TI< [glcan be obtained
which permit to establish the inequality [TI< [g}< 1 for many concrete highly non-
convex compact K [CRf. We shall prove the following theorems and some of their
consequences.
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Theorem 1. Let By, B, be disjoint A;-measurable subsets of K and suppose
that with each z [CB = B; [Bp there is associated a disk B(z) = By(;)({(z)) of
radius r(z) = [z—{(z)| such that KnB(z) = Cfbr z [By, K [CclB(z) for z [(BL
and z B r(z) is A;-measurable. If

1
A
MOK\B)=0 and dr(lz()z) < oo,
then
(] 1
1 dA\(z) dA1(2)
(15) MRk 1+ M e TQ) . T

Theorem 2. Suppose that with each z [By there is associated a disk
B(z) = Br(»)((2)) CKIof radius r(z) = [z —{(2)|. If z B r(z) is A;-measurable,

1
4\ () < +oo

)\1(6K \ Bo) =0 and - r(z) )

then

1
1 d\(z)
(16) I:DKIE_ISE o T@) 1

We shall also show that the sign of equality holds in (15) and (16) if 0K is a
circular polygon of a certain type. The proofs depend on a series of lemmas.

Lemma 1. Let B [dG, A\ (0G\B) =0, 4 > 0 and suppose that with each
z there is associated an r(z) > 0 and 6(z) [Tlsuch that

{z+18; 0<t<r(z), 8 CT]|9—6(z) <35} LGl

|
If 23 r(z) is A;-measurable and 5 r=2(z) dA;(z) < oo for some a [0, oo[, then
AM(0G) < co.

Proof. Fix R > 0 large enough to have K [CBk(0) and put Q = G n Br(0),
so that 0Q = 0G [{; |{] = R}. Assumptions of our lemma guarantee that
with each z [CA = B [{{; || = R} it is possible to associate a circular sector
{z+16;0<t<r(2),6 EIHG—G(Z)l < 9o} QI where 0 <4y <9, z03 r(2)
is A;-measurable on C and ~r 2(z)dA1(z) < oo. Put C; = {z [qQ; r(z) = 1},
C, = C\C;. Clearly,

1 1
M(C) = r2@)d@) s r2@)dia(z) <oo,
C

Cz2

C
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so that it is su [cieht to verify that A;(C;) < oo. Let .# by the system of all
circular sectors of the form

S(z,0;,80)={z+10;0<t<1,0 [I1]0—6,] <J}

with z [CQ;, 6, [ such that S(z,6,,8,) Q1 Let S = A which is an open
bounded set. If S3, ..., Sk are mutually di[erknt components of S, then each of
them must contain a sector isometric with S(0, 1, §p), whence

 S—
KA(S(0,1,80)) = Aa(Sj) = Aa(S), k=< A2(S)/A2(S(0,1,80)).
j=1

We see that S has only finitely many components Sy, ..., Sk. We shall show that
each S; has the cone property in the following sense: There is an r = 0 such that
with each z [CdB; it is possible to associate a 8, [Tlwith

(17) Br(z) n S(z,8,,r) CS}.

Let z [4dS;, &/ = {D ¥ D L[Sk} There is a sequence X, [3; with
limn . oo Xn = z. Since Sj = [, for each n there is a D, & with X, Oy,
Denote by z, the vertex of D, and by 6" = 0., the corresponding vector in
" determining D, = S(zn,0",00). Since {zn} [dD which is compact, passing
to subsequences, if necessary, we may achieve that limy_ o zn =y [CdQ and
liMn . 00 8" = 8 [CTfor suitable y and 6. Writing D = S(y, 8, 39) we observe that

. T PC1 T 11
D[ D, C1c D, [CcD,

k=1 n=k k=1 n=k

sothat D [S] CQl D [H;. As x, D, tend to z, we have z [clD. Since
z [aB; while D S}, we see that z [dD. It remains to realize that D is isometric
with S(0,1, 6p), so that there is an r > 0 (depending on 3y only) such that with
each Z @D it is possible to associate a 6z [TIwith S(Z, 0z, r) n B (2) D}t this is
in particular true for Z = z, so that the cone property (17) of S; has been verified.
Now we recall the following result established in [4]:

If U is a bounded domain having the cone property, then there are open sets
Us,...,Up with [ZJU; = U such that each U; has locally Iiﬁitzian boundary
(and, in particular, A1 (0U;) < o0); consequently, A;(0U) < iﬁ(éui) < oo.

Applying thisto U =S; (j = 1,...,Kk) we get A1(dS) < i=1 A1(0Sj) < oo.
Since C; [Cd$, A1(C1) < oo has been verified and the proof is complete. 1
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Lemma 2. Denote by 0K the set of all y [CRP, for which there exists N (y) 1
" (which is called the Federer exterior normal of K at y and is uniquely deter-
mined) such that

_ . ]
lim r2X\[Br(y) n{x [K; x—y,n%(@y) >0}
r-0o+
_ . .
= lim r2x[Br(y) n {x [Q;, x—y,n"(y) <0} =0.
r.o+

Ify CAK, z CaK\{y}, {(y) CRP and [y—2(y)| = r(y) > 0, then the following
implications hold:

(18)  Bre)y@(y) Kl ==Tgtad h,(y), n"(y)[]
__ 1 P -k-P _ 1
mrly) | amly—zF 4@’

(19)
K By, (L(y)) =[—=lgrad h,(y),n"(y)d
I S 00 Rl ek {7 | N
4mr(y) dnr(y)ly —z[2 4nr(y)’
(20)

K n Brgy)({(y)) = [=L=Igrad h,(y), n"(y)[J
__ 1 Pyl tmP__ 1
dnr(y)  Amr(y)ly —z[2  — 4mr(y)

Proof. Ify [0K and the assumptions from (18) or (19) are valid, then

Ko — Y —CY)
n~(y) = OBk
while
y r(sgy) — _nK(y)

under the assumption occurring in (20). Since calculation yields

— 1
M V) y—InH 1 "y-z y-Uy)
WERYETH) T T =2 )
_ 1 ly=IymP-@Z-ly).y —yo
2mr(y) ly —z|?
_ 1 ly=IWmP-2@-4y).y — W Iz - lyP
2nr(y) 2ly —z|?
L PO~ 2=y
4nr(y)ly — z|2
__ 1, rm-lz-i»P?
dnr(y)  Anr(y)ly —z]2
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It remains to note that r2(y) — |z — Z(y)|?> < 0 under the assumptions occurring in
(18), (20), while r?(y) — |z — Z(y)|?> = 0 under the assumption occurring in (19). 1

Lemma 3. If the assumptions of Theorem 1 are fulfilled, then

VK = MK [Z oo.

Proof. Lemma 1 shows that A1(0K) < oo, so that K has finite perimeter P (K)
in the sense of 2.10 in [8] (see 4.5 in [3]). Fory [dK the vector nK(y) [Tlhas been
defined in Lemma 2; we shall further put n¥(y) = 0 (CRP) fory CRP\JK. Then
the vector-valued function y B3 nK(y) is defined on R? and is Borel measurable
(cf. Remark 2.14 in [8]), so that we may introduce

1

2 o | (y), grad h, () (tiA (y) = v©<(2)

(which agrees with the quantity occurring in (28) in [8] up to the multiplicative
factor 2). Then a necessary and su [cieht condition for extendability of Wak
(defined so far on CV(dK) only) to a bounded linear operator on C(dK) consists
in finiteness of the quantity

VK =sup{vK(2); z CaK}

which is then equal to the norm of the operator TK defined by (10) (cf. §2 in [8],
in particular 2.19-2.25; notice that our V ¥ coincides with 2V © occurring in [8]).
We should remark that the quantity v<(z) can be equivalently defined by various
expressions, one of them being

1

n&(8,2) dA.(8)
-

V(@) =

Al

where nX (8, z) is the number of so-called hits of the half-line
H,(6) ={z +t6; t >0}

on K in the sense of 1.7 in [8] (note that, according to 1.11in [8], 8 B nX(8,2) is
a Baire function of the variable 6 [T). As pointed out by M. Chlebik [6], methods
of geometric measure theory [3] permit to show that n (8, z) coincides with the
total number of points in H,(8) n 0K for Aj-a.e. 8 [TJ, so that v<(z) has the
same meaning as described in the introduction. Fix now an arbitrary z [CdK and
consider 6 > 0 such that

(21) A (0Bs(2) n 9K) =0
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(as A1(0K) < oo, all but countable many valugs 0 > 0 enjoy this property). Under
the conditions of Theorem 1, for Aj-a.e. y [dK either the assumption in (19) or
that occurring in (20) is fulfilled; accordingly,

1
(22) —I[grad h,(y), n"*(y) = — prnt

Put Q=K - Bs(z). Employing (21) we see that A;-a.e. y lﬁQ n 0B5(z) belongs
to 0Q nintK [CdBs(z) nintK, so that n®(y) = 25¥ and

(23) [grad h,(y), nQ(y) 3 % A-a.e.y [0 ndBs(2).
Noting that r?%-) =nK() on dQ \ dBs(z) [CAK we get by (22), (23)
VR@) = grad ha(y), nO(y) Tt y)

L] 1

1
< — — [grad h,(y), n°(y) I dA(y)
9Qn2Bp(@) n - 1

" NN Wl(y) — [grad h;(y), n°(y) [T dAa(y)

dAx(y)

Ai-a.e.y 0K .

+
P Be@ anr(y) —

1 1
_ Q .
=< 5o [grad hz(y), n=(y) AL (y) + 5 21 + 2 o BT dAs(y)

1 1
+ o i o) dAi(y),

where we have used the fact that y 3 h_(y) is harmonic in some neighbourhood
of ¢l Q, whence it follows by the divergence theorem for sets with finite perimeter
(cf. p. 49 in [8]) that

50 [grad h;(y), n°(y) [dAL () [ 0.

Since 0K \ Bs(z) 2D and nX(-) = nQ(:) holds A;-a.e. on dK \ Bs(z) by (21),

we affive at

~ | Ghad e <) Ty = be@ <24 L L ang)

K\Bs(z) e Y= N 21 5k 1Y) e
h t making & — 0™ (with & obeyi 21

whence we ge malzllng (wi obeying (21)) O ,

_ 1
V(@) =2 o |lgrad h,(y), n(y) (HAL(y) < 4+ T oo @dh(y)-

Since z [CdK has been arbitrarily chﬁn, we have

VE <4+t riy)di(y) < oo
oK

and the proof is complete. 1
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Lemma 4. If the assumptions of Theorem 2 are fulfilled, then

VK = MK [F oo.

Proof. Choose R > 0 large enough to have K [CBKk(0) and put L = cl[Br(0) \
K]. If K satisfies the assumptions of Theorem 2, then L satisfies the assumptions
of Theorem 1 (where K is replaced by L) and Lemma 3 implies V- < oo, It
remains to observe that VK < v L, —1

Lemma 5. Let VKX < oco. Then the density

. M[K n Br(2)]
k@= 0 NBeT

is well defined for any z [CRP. Denoting by &, the Dirac unit point-mass concen-
trated at z define for any z [CdK the signed Borel measure 1, on 0K by

(24) dtz(y) = [1 — 2dk (2)]1d3(y) — 200" (y), grad h;(y) [ (y).
Then
1
(25) TKf(z)=  fdr,, z 0K, f [TOK).
oK
Proof. See §3 in [8] (p. 73). 1

Lemma 6. Let VK < oo and let D be a dense subset of K. Let us agree to
denote by [vIthe total variation of an arbitrary signed Borel measure v on dK.
Then

(26) MK o= %sup{lﬂ -1, u,v (O}
and for each signed Borel measure L on 0K the following estimate holds
27 MK o< sup{ @ — uJz CO}.

Proqf:IIf f [CQ(0K), then we denote by [FIgl= Zoscf(dK) the norm in
C(OK) const (OK) of the class containing f. Hence

C 1 1

[T o= sup %oscTKf(aK); f [COK), Ok 1
— 1
sup ? fdr, — de\,éu,v DO, f (O, f [C0K), Ok 1

N| =

K K —
= sup % fd(Tu—Tv)gu,V DO, f [C0K), IIIE_IS% .
oK
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1
In view of (11) we have ., d(Ty —Ty) = 0, so that the last expression transforms
into
1
[T o= sup E fd(t, —T\,)Eu,v DO, f [COK), OIr 5
aK

= 2 sup {3 — 1 (7l v (I3}

which is (26). Given f [C(0K) we have for any y [RI:
—1

MNF o MTF — ylok = sup % fdrz—yéz o
oK

1
Choosing y = . T du we arrive at
1
[T f o sup % fd(t, —u)%z O < Orsup{@ —puCx CO}.
oK

In this inequality we replace f by f —alsk for any a CRL Since

MFf = TNf — alyk o]

we get
[MTf o Fl— alok Chup{@ —puCzx DO}, o [R,
so that
MNf ok Flg) sup{[M —puCx O}, f [TOK),
and (27) follows. 1

We are in position to present proofs of Theorems 1, 2 stated above.

Proof of Theorem 1. We know from Lemma 3 that V¥ < co. Define a signed
Borel measure p on 0K putting for each Borel set M [dK

R N M

HM) = 2n MnB, T(Y) MnB, (Y)

1

Fix z [OK, so that d (z) = 3. Using (24), (19), (20) we get

i T
M- u= —2 grad hy(y),n"(y) + ) dAL(y)
R - - o
" —2 grad h,(y),n¥(y) ~ Iy dA1(y)
O N BN )
= () + o r(
oK Eﬁf y) I_EF rey) 1
:TKlaK(Z)"' i d)\l(y) _ d)\l(y)

2n g, r(y) B, I(Y) ,
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which in combination with (11), (27) completes the proof, because 0K is dense in
JdK thanks to our assumption that K is massive at each point of 0K (cf. [8], p. 54
and isoperimetric lemma on p. 50). 1

Proof of Theorem 2. Lemma 4 shows that VK < oco. Fix again an arbitrary
z [dK and define now the signed measure p on Borel sets M [dK by

o= L )
2 Mg, F(Y) .

It follows from (24), (18) that

I
-1, = ! +2I:I|’adh()nK() dA1(y)
z . W g z(Y): y 1y
_ 1 dA(y)  —k
= o 5, —r(y) T" 1ok (2)

which together with (11), (27) proves (16), because 0K is dense in 0K as observed
above. —1

Notation. We now specialize to the case that K is bounded by a simple ori-

ented circular polygon
1
oK = Cm {3},

m=1

where Cn, is an open oriented circular arc situated on the boundary of a disk
Br,,, ({m) and z, is the initial point of Cyy,; for m < n the end-point of Cp, coincides
with zm+1, the end-point of Cy, is z;. Further suppose that for L=<k <m <n
either Cy n 0By, ((m) = [dr else Cx [CABy,, ((m) \ Cm. We put

Om = A1(Cm)/Tm, Ao = {m; By, ({m) CKI},
Ar={m; Br,((m) nK =1 Az={m; K CcIB,_({m)}

and adopt the following assumption:
Ao A, CA, ={1,...,n}.

Then we may state the following result.

Theorem 3. Let i run over Ag, j run over A; and k run over A,. If Ag = [
then

1 1
PR E N S—
(28) EDKmsuz—n L dog; — oA
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where the sign of equality holds in case n < 4. If Ay = [= Ay, then

r— 1
(29) szi ai—1,
2m i=1

where again the sign of equality holds provided n < 4; now the condition

1 1
(30) intK\ By (&)= [intkK\B. ()] [
i=1 i=1
implies that
1 1
(31) T a—1=1

i=1

(so thﬁI in case N < 4 the operator TK cannot be contractive on
COOK) const (OK) in view of the equality in (29)), while the conditions

 —  —
(32) [INtK\B@)] =01 Bp(G) &

i=1 i=1
together imply the inequality
1

a—1<1
i=1

(33) %

1
(guaranteeing contractivity of T on C(0K) Const (aK))'

Corollary 1. If Ap = [ A4, then (28) implies the inequality

1 1
DjK@sl—z— Ok

k=1
. . L1
guaranteeing contractivity of T on C(0K) Const (0K)" If Ao = [F A and
n < 4 then the equality
MRLE1+— ok
21

k=1
1
holds, so that T¥ cannot be contractive on C(0K) Const (0K)-

The proof will depend on the following lemma.
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Lemma 7. Put for any m [C{1,...,n}

I__1‘,| in case K n By, ((m) B 1
(o] =
m -1, in case K n By, ((m) = 1

If z CCl,, then

1
@4y 2 i [grad h;(y), n" (y)[dAs(y)

m

1
=1—Ecmam, m {1,...,n};

further we have

@)
—2 [grad hy, (y), n* (y) [dAq(y)
0K\C;:\Ch
= 2dk (z )—ioa —io a
- K\£1 2]_[ 141 2]_[ nY4n,
36)
—2 [grad h,,,(y), n"(y) [AA.(y)

OK\Cm—-1\Cm

1 1
=2dk (zm) — 77 0m—10m—1 = 5—OmCim forl<m<n.

Proof. If z [y, then (11), (25), (24) yield
1 0. - 1
@37) 2 i n™(y), grad hy(y) dAi(y) = e dtz(y) + [2dk (z) — 1] = 2dk (2) .

From Lemma 2 we get fory,z [Cl,,, y E 2

] 1 ¢
— grad h,(y), n*(y) =4nrr“ :
m
whence
(I
1 1
(38) -2 I%k()/),glrad hz(y) dAu(y) = > Om0m .

Cm

which together with (37) implies (34).
If y [CCh, then Lemma 2 combined with |z — 3| = r; yields again

01

I:I d h K E_I
grad hz, (y),n"™(y) = Ty
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whence
1

| PN 1
(39) —2 grad hz, (y),n"™(y) d)\l(Y):ﬁolal-
Ci1

Similarly we get from Lemma 2 for y [Cl, in view of |21 — {n| =i

| [ o
— K — Yn
grad hZ1(y)v n (y) 4T[rn ’
so that
=g o O 1
(40) 2~ grad hz, (y),n" () dA(y) = 7 OnOn.
Cn
Combining (37), (39), (40) we get (35). Similar reasoning proves (36). 1

Proof of Theorem 3. Assuming A, = [Cput B; = [C) (j [CAy), B> = [C)
(k A,), B = By By, B(z) = Br,((m) for z L3 (1 = m < n). Then
0K\ B ={z1,...,zn} and Theorem 1 implies

—1 1
1 L 11 I 1 1
MFGk1+— LIAC) -  ACK) ,,
21 j i « k

which is (28). Now we shall verify that the sign of equality holds in (28) provided
1 < n < 4. This is clear when n = 1, because then A; = [Jda; = 21 and
0=sOKGk1- %al =0. Let now n =2 and fix u [CCh, v [CCh. According to
Lemma 2 we have fory [CCh

1 [ g ] 1 o
_ K -~ % _ Ky = 91
grad hy(y), n™(y) e grad hy(y), n™(y) anr =0,
while fory [Ch
1 1 (0] 1 1 O
_ K — 2 _ K — 2
grad hy(y), n™(y) e, grad hy(y),n™(y) anr, =0.
Hence we get by (24)
[ -
01 IZ' K
M —twlz - e +2 grad hy(y),n™(y) dAsu(y)
4 =) -
= g2 grad huy). @) dh(y)
Co ro
o1 M(C 1 1]
=g 2 grad hy()nKG) du)
I:I 2
1 | 02 M(C
2 grad hu(y), n(y) da(y) — 22 2(C2)

OK\C; 2 1y
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Using (34) we arrive at

01 L1 O2 [ R 01 1 02
-l F-——o+ 1-—=a + 1--—=0p —-=a
T~ on t on 2 on b o2m 2
C1 1 1 1
=21— —010, — —020, .
21 21

Hence we get by (26)

1 1
MK = Em —w[F1- E(olaﬁczaz)

which is the inequality opposite to (28) for n = 2.
Next we shall consider the case n = 3. Observing that

| PN <, O
grad hz, (y),n™(y) = grad hz(y),n™(y) fory [Ch

by Lemma 2, we get from (24) and this lemma

(M), — T, [F|1— %K%N + |1 — 2dk (z3)]

01 L] K
- 5 +2 grad hz,(y),n"(y) dAc(y)
T,
490

o 1
= 2 g grad by, (), 0KG) dA(y)
c, <Mz

= [1 - 2dK(21)] + [1 - 2dK(23)] - %olal
1

(. ., a 1
grad hz,(y), n"(y) dAl(y)—ﬁcrzaz

2
[Af\C2\Ca

1 O
=2 grad hz, (y),n"(y) dAi(y).
6K\C1\C3

Employing (36) and (35) we obtain
[

1 1
[td, — 15, [Z [1 — 2dk (z1)] + [1 — 2dk (z3)] — 010 + 2dk(z3) — o 0202
1 [ 1 1
— 5—=0303 — —0202 + 2d — 5—0101 — -—030
0303 2n02 2 k(z1) 2n01 1 2n03 3
1
21
m=1

whence it follows by (26) that

1 1
D]KIE_EEIﬂl—Tzsﬁl—ﬁ OmOm



160 J. KRAL and D. MEDKOVA

which gives the inequality opposite to (28) for n = 3.
Finally we shall treat the case n = 4. We obtain from (24) and Lemma 2

M, — T, [ |1 — 2dk (z1)| + 11 — 2dk (23)|
1

Ll o
- . 2 grad hy, (y),n"(y) + 2n’: dA1(y)
m=2 Cm m
Iﬂ' DD K O o L
- 2 grad hz,(y),n"(y) + 3 dA1(y)
c rm
mn4} ©m
1
= [1 - 2dK(Zl)] + [1 - 2dK(23)] - 2—0me
] m=1 n
] w, a
-2 ene grad hz, (y),n"(y) dAs(y)
Pfenes G
-2 grad hz,(y),n™(y) dAu(y).
aK\Cz\C3
Applying (35), (36) we finally get
[T, — Tz, [Z [1 — 2dk (z1)] + [1 — 2dk (z3)]
1 1
L OmOm + 2d (z)—ica—ica
2T[mz:l-mm K\41 2T[112T[44
] — 1
1 1 1 | |
+ 2dk(z3) — =——020, — —0303 =2 1— — OmOm
21 21 21 me1

which again yields the inequality

1
I]IIKIEEl—E OmOm

opposite to (28) for n = 4.

The first part of Theorem 3 dealing with the inequality (28) concerning the case
Ao = Lk completely proved. We now proceed to the case A; = [ A, and put
Bo = CL1Ci. Then 0K\Bo = {z1,...,zn} and letting again B(z) = By,,,({m) for
z [[Ch, (1 =m =< n) we get from Theorem 2

1 1)
EDKIEIsﬁMA(Ca) r— 1

which is the inequality (29). It remains to discuss thecase l=n<4. Ifn=1
then a; = 2m and I [gJ= 0 as in the first part of the proof. If n = 2 we again
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choose u [Ch, v [CCh and get by (24) and Lemma 2
L N R
M —wl= 2 grad hy(y),n"(y) +Fr1 dAx(y)
C1 | - .
+ 2 grad hy(y),n"(y) + 5, dA.(y)
C2
1 oo O
=—(0p+ap)+2 grad hy(y), n"(y) dAi(y)

2n AK\C,

| <, O
+2 grad hu(y), n™(y) dA.(y).
OK\C;

Hence it follows by (34) that
O —owl= l(0( +o)—1+ 10( -1+ 10( = 1(0( +0p)—2
Vv o 1 2 o 1 o 2 — T 1 2
which together with (26) implies

1 1
EDKEEEIIJ—TVE o (1 +02) =1,

161

so that equality holds in (29) for n = 2. If n = 3, then (24) and Lemma 2 imply

— T, [(F |1 —2dk (z7)]| + |1 — 2dk (2
Iﬂl Z3 | DKE)I | K(3)| .

| [ |
+ 2 grad hzs(y),nK(y) +ﬂ dAx(y)

‘ﬁgm N =
+ grad hz, (y),n"(y) + 5— dAu(y)

C> 2T[ r2

= 2dk (z1)] + 2dk (z3) — 2+ idl + i0(2
] 21 21
O =
+2 grad hz,(y),n"(y) dAs(y)
(24 \C2\Cs

| <, O
+2 grad hz, (y),n"(y) dAi(y).
OK\C;\C3

Using (36), (35) we get
lﬂl — Tz, = ZdK(Zl) + ZdK(Zg) —2+ %(Gl + Gz)
1 1
—2dk (z3) + E(Gz +03) — 2dk (z1) + E(Gl +03)

(a1 + a2 +03),

=
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whence
1 1 B
MK, — T, [ = oi—1
2 2n i1
by (26), which shows that equality holds in (29) for n = 3. Finally, if n = 4 we
obtain similarly from (24) and Lemma 2

M, — Tz, [ [1 — 2dk (z1)] + |1 — 2dk (23)]
1

K L1 1
+ . 2 grad hz, (y), n™(y) t o dA1(y)
i=2 i i
S =
+ 2 grad hz,(y),n™(y) + T dA1(y)
ign4y i
= ZdK(Zl) -1+ ZdK(Z3) -1+ Eai
i=1
] 1 w, d
+2 grad hz, (y),n"(y) dA:(y)
\Cl\C4
efienes s
+2 grad hz,(y),n"(y) dA:(y)
aK\Cz\C3

1 1
~ o ai- 2 (see (35) and (36)),
i=1

so that by (26) we have again

MK = (6, — T, (2 — %‘1
27 7o
which yields equality in (29) for n = 4.

Now we assume (30) together with Ag = {1,...,n} and choose zo, [CidtK \
CCl By, (¢i). Denote by [Cardly — zo; y [Q;] the increment of the argument of
y — 2o as y describes the oriented arc C;. Assuming, as we may, that the Jordan
curve 0K arising as the union of the oriented arcs clCy,...,clCy is positively
oriented we get

@ 1
_ r 1 . _ n“(y),y — 2o
2m = Cardly — zo; ¥ ECI;]—.

i=1 - G Y2l

|‘_E_E[< |
n™(y),grad hz,(y) dAsz(y).

i=1 Ci

= =27
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We have seen in the proof of (18) in Lemma 2 that for i [{L,...,n} and any

Zom
1] 1 | 1

(41) y LGB (&) LKl =L =Igrad hz,(y),n"(y)

_ 1 +ri2_|ZO_Zi|2
4TI amrily — zol?

whence we get noting that |zo — ¢i| = for i [{1,...,n}

1 Iﬁkl@) 1 1
2n< — = - aj
2 a i 2

which proves (31).

Finally suppose that (32) holds together with Ag = {1,...,n} and choose zo [
niL,Br, (¢) CintK. Keeping the assumption that 0K is positively oriented we
obtain from (41) in view of |zo — {j| < ;i (L <i < n) by the above reasoning

l'__El_l_l‘l< [
n=(y), grad hz,(y) dAs(y)

21m = —21n
i=1 GCi
1 AM(y) 1 r— 1
2 .2
izt G i i=1
which is (33). The proof of Theorem 3 is complete. 1

Corﬂary 2. If n = 2 in Theorem 3 then TK is always contractive on
C(oK) Const (9K) if both C; and C, are convex w.r. to K (i.e. 01 =1 = 0y); if
only C; is convex while C, is concave (i.e. 01 = 1 = —03), then MK [GI< 1 i[]
ap > do.

Remark. If A; = [F A; and int K [CJZ] By, (¢) then, as we have seen in
Theorem 3,

1
(42) Bri(G) 8 [
i=1

is su [cieht for T [gJ< 1; to see that (42) is not necessary consider o CJUJm/2[
and form the region
K =clBi(—2cosa) [clB;(0) CclB;(2cosa)

whose boundary consists of four circular arcs

Ci1 ={—2cosa+expif;a<0<2m—a} (so that a; = 21 — 20),
C, ={expib;—m+a <8 <—a} (so that a, = — 20),
Cz ={+2cosa+expif;—nm+a<8<mn—a} (sothatoz=2m1—20),
Cs={expibja<b<mn—a} (so that ay = — 20),
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and their end-points zi,...,2z4. Elementary considerations show that (42) holds
i[Cd > n/3 while the equality occurring in (29) (Theorem 3) for n = 4 tells us
that (M gk 1 iCd > n/4.

Comments. The estimate [T [gI< 1 guarantees convergence of the Neumann
series for the inverse of 1 = TK in the op norm; it is not indispensable
for the convergence of the Neumann series |, —,(—1)"(T¥)"g (corresponding to
an individual g [CI(0K)) to the solution f of the equation (I + TK)f = g in
C(0K) (cf. [20], [15]). Nevertheless, evalation or estimates of [T [glare useful
in connection with iterative techniques connected with the equations of the type
(13), (14) (cf. [7], [19]). C. Neumann started investigation of the quantity [T [g]
(which he called the configuration constant of K) in order to get a proof for the
existence of the solution of the Dirichlet problem for any continuous boundary
condition g prescribed on the boundary of a convex region K ([17]); Dirichlet’s
principle used for this purpose previously by Riemann lost credit after Weierstrass’
criticism concerning attaining minima in variational problems. C. Neumann’s first
proof dealing with the inequality [T [gl< 1 for convex regions K R dilerent
from triangles and quadrangles was only sketchy (as he himself admitted cf. [18],
p. 759) and was followed by a detailed and correct proof in [18], 86 (which was
known in his time — cf. [5]). This contribution was forgotten later and after
Lebesgue’s criticism [12] of Neumann’s first proof (which apparently contained
the same gap connected with attaining minima as Riemann’s reasoning based on
the Dirichlet principle) there remained a common belief that Neumann’s proof of
[T [gl< 1 for general convex K [CRF dilerent from triangles and quadrangles
was insu Lcieht (cf. [16], [2], chap. 8, p. 572); Neumann’s original proof has been
included in [11], characterization of convex bodies in higher dimensional spaces
for which the operator of the arithmetical mean is contractive is presented in [10],
where also historical comments are included. We refer the reader to [13] for the
description of the role played by the Neumann operator in the development of the
theory of integral equations.
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