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GEOMETRY OF THE NONLINEAR

REGRESSION WITH PRIOR

A. PÁZMAN

Abstract. In a nonlinear regression model with a given prior distribution, the
estimator maximizing the posterior probability density is considered (a certain kind
of Bayes estimator). It is shown that the prior influences essentially, but in a
comprehensive way, the geometry of the model, including the intrinsic curvature
measure of nonlinearity which is derived in the paper. The obtained geometrical
results are used to present the modified Gauss-Newton method of computation of
the estimator, and to obtain the exact and an approximate probability density of
the estimator.

1. Introduction

We consider the nonlinear regression model

y = η(ϑ) + ε; (ϑ ∈ Θ)

ε ∼ N(0,Σ) ,
(1.1)

with the observed vector y ∈ RN , a closed parameter space Θ ⊆ Rm, m < N ,

int(Θ) 6= ∅. We suppose that the mapping η(·) is one-to-one and continuous on Θ,

has continuous second order derivatives on int(Θ), and that the matrix

J(ϑ) : = ∇Tϑη(ϑ)

has a full rank for every ϑ ∈ int(Θ). The error variance matrix Σ is supposed to

be known, and positive definite.

We note, that the assumption of normality of the error vector ε is not needed

in the geometrical and numerical considerations in Sections 2 and 3.

Further we suppose that a prior density π(ϑ) is given, and we shall suppose that

the function π(·) has continuous second order derivatives and that its support,
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suppπ ∈ int(Θ). If the prior is given, any meaningful estimator of ϑ must take it

into account. We propose to use the estimator

(1.2) ϑ̂ : = ϑ̂(y) : = arg max
ϑ∈Θ

π(ϑ|y) ,

where π(ϑ|y) is the posterior probability density of ϑ. Hence ϑ̂ is the modus of

the posterior density. Using the Bayes formula for the posterior density, we can

write

ϑ̂ = arg max
ϑ∈Θ

π(ϑ)f(y|ϑ)

= arg min
ϑ∈Θ

Z(ϑ, y) ,

where

Z(ϑ, y) : = ‖y − η(ϑ)‖2Σ − 2l(ϑ) .

Here f(y|ϑ) is the normal density of y, given ϑ, and l(ϑ) : = ln ◦π(ϑ). We use

the notation 〈a, b〉Σ : = aTΣ−1b, ‖a‖Σ : = [aTΣ−1a]1/2, ‖a‖ : = ‖a‖I .
We have several justifications for the use of this estimator.

a) Suppose that l(·) is zero on some set Θ∗ ⊆ int(Θ), and is decreasing smoothly

to minus infinity when ϑ is approaching to the boundary of Θ. Such a choice of

l(.) allows to express quantitatively that the boundaries of Θ are uncertain, and to

maintain the maximum likelihood estimator unchanged on Θ∗. This case is con-

sidered in [7] (without considering the curvature), and used there for experimental

design.

b) If π(ϑ) is the likelihood function obtained from some previous (independent)

experiment, then ϑ̂ is simply the maximum likelihood estimator obtained from

both, the previous and the actual experiments. The results presented in Section 4

allow to investigate the influence of the distribution of the observed vector in

the actual experiment, on the distribution of the estimator ϑ̂ obtained from both

experiments. This can be useful e.g. in batch-sequential design of experiments

(cf. [3]).

c) In the case of a linear model, η(ϑ) = Fϑ, with a normal prior

π(ϑ) = (2π)−m/2 det−1/2(C) exp

{
−

1

2
‖ϑ‖2C/2

}
,

we obtain by a direct computation that

ϑ = (FTΣ−1F + C−1)−1FTΣ−1y

which is the standard Bayes estimator in linear models (i.e. it is the mean of

π(ϑ|y)). However, in nonlinear models the mean of π(ϑ|y) is not equal to the modus
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of π(ϑ|y). We think that the posterior modus estimator should be preferred in this

case, as being closely related to the maximum likelihood estimator standardly used

in nonlinear models (without prior).

When the maximum likelihood estimator is used, well known geometric objects

are:

a) The expectation surface

: = {η(ϑ) : ϑ ∈ Θ} .

b) The tangent plane at ϑ

ϑ : = {η(ϑ) + J(ϑ)v; v ∈ Rm} .

c) The ancillary space for the maximum likelihood estimator

ϑ : = {y ∈ RN : [y − η(ϑ)]TΣ−1J(ϑ) = 0} .

d) The intrinsic curvature of Bates and Watts (cf. [2], [4])

(1.3) K(ϑ) : = sup
v∈Rm,‖v‖=1

‖[I − P (ϑ)][vTH(ϑ)v]‖Σ
vTM(ϑ)v

.

e) The parameter effect curvature, which is given by a formula similar to (1.3).

Notation. In (1.3) we denote by M(ϑ) the Fisher information matrix

M(ϑ) : = JT (ϑ)Σ−1J(ϑ) .

The matrix

P (ϑ) : = J(ϑ)M−1(ϑ)JT (ϑ)Σ−1

is the 〈 , 〉Σ-orthogonal projector onto the tangent space

ϑ : = {J(ϑ)v : v ∈ Rm}

which is parallel to ϑ. H(ϑ) is a 3-dimensional array with entries

{H(ϑ)}kij = ∂2ηk(ϑ)/∂ϑi∂ϑj .

The multiplication of H(ϑ) with the matrix (I − P (ϑ)) is taken over the su-

perscript k, and the multiplications with vT and with v are over the subscripts i

and j. In general, the dimension of the multiplied vector or matrix shows which

subscript or superscript of H(ϑ) is to be used. In (1.3) we have

vTHv =
∑
i,j

vi
∂2η(ϑ)

∂ϑi∂ϑj
vj .

This vector is multiplied by the matrix I −P (ϑ), and then its norm ‖ ‖Σ is taken.

In the paper we consider the influence of the prior on the geometry. In particular

we derive a new expression for the curvature (see eq. (2.4) and Theorem 1), and

we use the geometric interpretation of the model for the numerical computation

of estimates and for the computation of the probability density of the estimator

(Theorems 2 and 3).



266 A. PÁZMAN

2. The Changes in The Geometry of The Model Due To The Prior

The “normal equation” related to the estimator ϑ̂ has the form

∇ϑZ(ϑ, y) = 0

i.e.

(2.1) JT (ϑ)Σ−1[η(ϑ)− y]−∇ϑl(ϑ) = 0 .

Denote by u(ϑ) the vector

u(ϑ) : = J(ϑ)M−1(ϑ)∇ϑl(ϑ) .

Let us multiply (2.1) by the matrix J(ϑ)M−1(ϑ). We obtain

(2.2) P (ϑ)[η(ϑ)− y] = u(ϑ) ,

or equivalently

P (ϑ)[η(ϑ) − u(ϑ)− y] = 0 .

Reversely, multiplying (2.2) from the left by the matrix JT (ϑ)Σ−1, we obtain

(2.1). Hence (2.2) is another form of the normal equation for ϑ̂. In comparison,

the normal equation for the maximum likelihood estimator is equal to

(2.3) P (ϑ)[η(ϑ) − y] = 0 ,

i.e. the estimator is simply a projector of y onto . In (2.2) we have besides the

projection also a shift by u(ϑ).

According to [1], the ancillary space of an estimator is the set of all samples giv-

ing the same solution ϑ of the normal equation. The ancillary space corresponding

to the estimator ϑ̂ is equal to

ϑ̂ : = {y ∈ RN : P (ϑ̂)[η(ϑ̂)− y] = u(ϑ̂)} .

The ancillary space of the maximum likelihood estimator is obtained when u(ϑ̂) =

0, and it is equal to the set ϑ̂ given in Section 1. Evidently, the plane ϑ is

parallel to ϑ, and

ϑ = ϑ + {u(ϑ)} .



GEOMETRY OF THE NONLINEAR REGRESSION WITH PRIOR 267

Lemma 1. The “shift vector” u(ϑ) is invariant with respect to any regular

change of parameters in the regression model. It is orthogonal to both planes ϑ

and ϑ. Its “length” is equal to

‖u(ϑ)‖Σ = [∇Tϑ l(ϑ)M−1(ϑ)∇ϑl(ϑ)]1/2 .

Proof. The proof is obvious. �

Now we consider the “intrinsic” curvature of model (1.1). When the estimator

(1.2) is used, we propose to express the intrinsic curvature of the model by the

expression

(2.4) Kπ(ϑ) : = sup
v∈Rm,‖v‖=1

‖[I − P (ϑ)][vTH(ϑ)v]‖Σ
vT [M(ϑ) +G(ϑ)]v

,

where

G(ϑ) : = −∇∇T l(ϑ) + uT (ϑ)Σ−1H(ϑ) .

We note that according to the notation convention presented after eq. (1.3), we

denote by uT (ϑ)Σ−1H(ϑ) an m×m matrix with entries

N∑
k=1

{Σ−1u(ϑ)}k
∂2ηk(ϑ)

∂ϑi∂ϑj
; (i, j = 1, . . . ,m) .

The expression (2.4) makes sense only when the matrix M(ϑ) + G(ϑ) is positive

semi definite, which gives some (natural) restriction on the considered prior π(ϑ).

This will be discussed later. We note that Kπ(ϑ) =∞ if M(ϑ) +G(ϑ) is positive

semi definite but not definite.

We have Kπ(ϑ) = 0 when the model is linear. In the case that π(ϑ) = const.,

i.e. when there is no prior information, we have G(ϑ) = 0, and Kπ(ϑ) coincides

with (1.3).

To derive (to justify) the formula (2.4) we use the following geometrical ap-

proach: We take the ancillary space (ϑ), and we consider the “neighbor” ancil-

lary space (ϑ + δ) for different small δ ∈ Rm. If y ∈ (ϑ) ∩ (ϑ + δ), then

the solution of the normal equation is ambiguous. To avoid such ambiguities (for

any sufficiently small δ) the distance of y ∈ (ϑ) from the ϑ (i.e. the value of

‖(I − P (ϑ))(y − η(ϑ))‖Σ) should not be too large. It is therefore statistically and

geometrically meaningful to take as the effective radius of curvature at the point

ϑ (denoted by ρπ(ϑ)) the smallest distance of the set⋃
δ∈Rm,‖δ‖≤∆

(ϑ) ∩ (ϑ+ δ)
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from the set ϑ, when ∆ tends to zero. We can write⋃
δ∈Rm,‖δ‖≤∆

(ϑ) ∩ (ϑ+ δ)

=
⋃

δ∈Rm,‖δ‖≤∆

{y : ∇ϑZ(ϑ, y) = 0} ∩ {y : ∇ϑZ(ϑ+ δ, y) = 0}

=
⋃

δ∈Rm,‖δ‖≤∆

{y : ∇ϑZ(ϑ, y) = 0 & ∇ϑZ(ϑ, y)

+∇ϑ∇
T
ϑZ(ϑ, y)δ + o(∆) = 0}

= {y : ∇ϑZ(ϑ, y) = 0 & ∃
δ∈Rm,‖δ‖≤∆

∇ϑ∇
T
ϑZ(ϑ, y)δ + o(∆) = 0} .

Evidently,

there is a δ 6= 0 such that ∇ϑ∇
T
ϑZ(ϑ, y)δ = 0

⇔ the matrix ∇ϑ∇
T
ϑZ(ϑ, y) is singular

⇔ det[∇ϑ∇
T
ϑZ(ϑ, y)] = 0 .

Correspondingly, we define the effective radius of curvature by the formula

ρπ(ϑ) : = inf{‖(I − P (ϑ))(y − η(ϑ))‖Σ : y ∈ RN & ∇ϑZ(ϑ, y) = 0

& det[∇ϑ∇
T
ϑZ(ϑ, y)] = 0}

Lemma 2. If the matrix M(ϑ) +G(ϑ) is positive definite, y ∈ (ϑ), and

‖(I − P (ϑ))(y − η(ϑ))‖Σ < [Kπ(ϑ)]−1

then the matrix ∇ϑ∇TϑZ(ϑ, y) is positive definite.

Proof. Since ϑ is fixed, we shall omit the symbol ϑ in the abbreviated notation

used in the proof.

For any v ∈ Rm \ {0} we have

vT (∇∇TZ(y))v = (η − y)TΣ−1(vTHv) + vTMv − vT (∇∇T l)v .

Using that P (η − y) = u, one can obtain

(2.5) vT (∇∇TZ(y))v =
〈
(I − P )(η − y), (I − P )(vTHv)

〉
Σ

+ vT (M +G)v .

Hence from the Schwarz inequality we obtain

vT (∇∇TZ(y))v ≥ [−‖(I − P )(η − y)‖Σ
‖(I − P )(vTHv)‖Σ

vT (M +G)v
+ 1]vT (M +G)v

≥ 0 .

�
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Theorem 1. If ϑ ∈ intΘ) and if the matrix M(ϑ) +G(ϑ) is positive definite,

then

ρπ(ϑ) = [Kπ(ϑ)]−1 .

Proof. From Lemma 2 we obtain

∇ϑZ(ϑ, y) = 0 & det[∇ϑ∇
T
ϑZ(ϑ, y)] = 0⇒

‖(I − P (ϑ))(y − η(ϑ))‖Σ ≥ [Kπ(ϑ)]−1 .

Hence ρπ(ϑ) ≥ [Kπ(ϑ)]−1. To prove the inverse inequality, take v∗ ∈ Rm, ‖v∗‖ = 1

such that the supremum in (2.4) is attained at v∗. Define a point y∗ ∈ Rm by the

equalities

i) P (ϑ)[η(ϑ) − y∗] = u(ϑ),

ii) [I − P (ϑ)][η(ϑ) − y∗] = λ(ϑ)[I − P (ϑ)](v∗TH(ϑ)v∗),

where

λ(ϑ) : = − [Kπ (ϑ)]−1‖[I − P (ϑ)](v∗TH(ϑ)v∗)‖−1
Σ .

We can write, like in the proof of Lemma 2

v∗T (∇∇TZ(y∗))v∗ = (η − y∗)TΣ−1(v∗THv∗) + v∗TMv∗ − v∗T (∇∇T l)v∗

=
〈
(I − P )(η − y∗), (I − P )(v∗THv∗)

〉
Σ

+ v∗T (M +G)v∗

= 0 .

Hence det[∇ϑ∇TϑZ(ϑ, y∗)] = 0, and also ∇ϑZ(ϑ, y∗) = 0, as follows from i). More-

over, from ii) we obtain

‖[I − P (ϑ)][η(ϑ) − y∗]‖Σ = [Kπ (ϑ)]−1 .

Consequently, from the definition of ρπ(ϑ) it follows that

ρπ(ϑ) ≤ [Kπ(ϑ)]−1 .

�

Now we shall show that Kπ(ϑ) is an “intrinsic” expression.

Lemma 3. The curvature Kπ(ϑ) is invariant to any regular change of param-

eters in the regression model.

Proof. Let β = β(ϑ) be a regular reparameterization of the regression model

(i.e. det[∇ϑβ(ϑ)] 6= 0, and ∇∇Tβ(ϑ) is continuous for every ϑ ∈ int(Θ)). Let ϑ(·)
be the mapping inverse to β(·). The reparameterized regression model is

y = ν(β) + ε; (β ∈ β(Θ))

ε ∼ N(0,Σ) ,
(2.6)
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with ν(β) : = η(ϑ(β)). Let us denote by P (β), M(β), G(β) the matrices corre-

sponding to the model (2.6). We have I − P (ϑ) = I − P (β), since a projector is

invariant. Further, by a direct computation of derivatives we obtain

(I − P (β))∇β∇
T
β ν(β) = ∇βϑ

T (β)[(I − P (ϑ))∇ϑ∇
T
ϑ η(ϑ)]∇Tβ ϑ(β)

M(β) = ∇βϑ
T (β)M(ϑ)∇Tβ ϑ(β) ,

and using the equality (2.2) we obtain

G(β) = ∇β∇
T
β l(β) - uT (β)Σ−1∇β∇

T
β ν(β)

= ∇βϑ
T (β)G(ϑ)∇Tβ ϑ(β) .

We put these equalities into (2.4), and we use that ∇βϑT (β) is a regular matrix,

to obtain

Kπ(ϑ) = Kπ(β) .

�
An interesting interpretation of the curvature Kπ(ϑ) can be obtained in terms

of geodesic curves.

Let h : t ∈ (−δ, δ)→ h(t) ∈ int(Θ) be a curve in Θ such that h(·) has continuous

first and second order derivatives. Let γ(t) : = η ◦ h(t) be the corresponding

curve on the expectation surface . The curve γ is called a geodesics on (and

correspondingly h is a geodesics in Θ) iff

i) ‖dγ/dt‖Σ = 1 for every t (i.e. t is the arc-length of the curve γ)

ii)
〈
d2γ/dt2, ∂η(ϑ)/∂ϑi

〉
Σ

= 0; (i = 1, . . . ,m) for every t i.e. the curvature

vector d2γ/dt2 of the curve γ is orthogonal to the expectation surface

at every point of the curve γ; this means that from all curves on , the

geodesic curves are the less curved.

Lemma 4. We can write

(2.7) Kπ(ϑ) = sup
h

‖d2η ◦ h(t)/dt2‖Σ
1− d2l ◦ h(t)/dt2

∣∣∣
t=0

,

where the supremum is taken over all geodesics h in Θ such that h(0) = ϑ.

Proof. Take a geodesics h such that h(0) = ϑ, [dh(t)/dt]t=0 = v. From the

property i) we obtain

vTM(ϑ)v = 1 .

From the property ii) we have

d2η ◦ h(t)/dt2 = (I − P (ϑ))(d2η ◦ h(t)/dt2)

= (I − P (ϑ))[vTH(ϑ)v] .
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Performing the derivatives in ii) we obtain

M(ϑ)
d2h

dt2
+ JT (ϑ)Σ−1[vTH(ϑ)v] = 0 ,

hence
d2h

dt2
= −M−1(ϑ)JT (ϑ)Σ−1[vTH(ϑ)v] .

This allows to show that

d2l ◦ h(t)/dt2|t=0 = - vTG(ϑ)v .

Thus the expressions (2.4) and (2.7) can be compared directly. �

Discussion about the case that M(ϑ) +G(ϑ) is not positive semi defi-

nite: Take v ∈ Rm, ‖v‖ = 1 such that vT (M(ϑ) +G(ϑ))v < 0. Take the geodesic

curve h(.) such that v = dh(t)/dt|t=0. We have

vT (M(ϑ) +G(ϑ))v = 1− d2l ◦ h(t)/dt2|t=0 .

Hence d2l ◦ h(t)/dt2 > 1 for t in some neighborhood of the point t = 0. The

equation d2l ◦ h(t)/dt2 = 1 gives

π ◦ h(t) = π ◦ h(0) exp{ t2/2 + ct}

for some constant c, which means an extremely high increase of π ◦ h(t) in the

neighbor of t = 0. To avoid cases when M(ϑ) +G(ϑ) is not positive semi definite

means to avoid a prior density with such extreme local increases.

3. The Iterative Computation of Estimates

The geometric ideas presented above help to construct iterative methods for

the computation of estimates. We shall show this on a procedure, which is a

generalization of the Gauss-Newton method.

In general, in an iterative procedure we chose the point ϑn+1 according to a

rule

ϑn+1 = ϑn + λnv(ϑn) .

Here v(ϑn) is the direction of the n-th step and λn is the length of the step. In

the case of the maximum likelihood estimator a standard method is the Gauss-

Newton method. The geometrical idea of this method is very simple: We project

the sample point y onto the tangent plane Tϑn . We denote by ϑ∗n+1 the parameter

of the obtained point in Tϑn . In symbols

(3.1) J(ϑn)(ϑ∗n+1 − ϑn) = P (ϑn)(y − η(ϑn)) ,
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and we take the direction of the n-th step equal to ϑ∗n+1 − ϑn. The step-length

is taken either equal to one or another number between 0 and 1, so to ensure the

convergence of the procedure.

In the case that we have the prior π(ϑ) we propose to modify (3.1) in the spirit

of the geometry presented in Section 2. To the projector P (ϑn) in (3.1) we have

to add the shift by u(ϑn). The direction of the n-th step v(ϑn) is therefore given

by the equation

J(ϑn)v(ϑn) = P (ϑn)[y − η(ϑn)) + u(ϑn)] .

After a multiplication by JT (ϑn)Σ−1 we obtain

(3.2) v(ϑn) = M−1(ϑn)[JT (ϑn)Σ−1(y − η(ϑn)) +∇ϑl(ϑn)] .

We take the step-length according to

(3.3) λn : = arg min
λ∈[0,1]

Z(ϑn + λv(ϑn), y) .

Theorem 2. Let us suppose, that π(ϑ) is bounded, and that suppπ is a bounded

convex set. Take ϑ1 arbitrary, but ϑ1 ∈ suppπ. Then

i) There is a solution ϑ∗ of (2.1) such that

lim
n→∞

Z(ϑn, y) = Z(ϑ∗, y) .

ii) limn→∞ a(ϑn) = 0 , where a(ϑ) is the left-hand side of (2.1).

iii) The sequence ϑn; n = 1, 2, . . . has limit points, and every limit point is a

solution of the normal equation (2.1)

iv) limn→∞(ϑn+1 − ϑn) = 0 .

Proof. We have −l(ϑ) =∞ (i.e. Z(ϑ, y) =∞) outside the set suppπ, hence for

every y we have ϑ̂(y) ∈ suppπ, and the assumption ϑ1 ∈ suppπ is not restrictive.

The set suppπ is bounded and closed, hence compact. It contains all points ϑn,

since Z(ϑn+1, y) ≤ Z(ϑ1, y) < ∞. Hence the sequence ϑn; n = 1, 2, . . . has

limit points, and the sequence Z(ϑn, y); n = 1, 2, . . . which is non-increasing and

bounded from below, has a limit as well.

Let us denote by ϑ̃ one limit point, and let ϑnk ; k = 1, 2, . . . be the subsequence

converging to it. Suppose that v(ϑ) 6= 0. We have

vT (ϑ̃)a(ϑ̃) = −vT (ϑ̃)M(ϑ̃)v(ϑ̃) : = d < 0 .

Hence for k > k0 we have

vT (ϑnk)a(ϑnk) < d/2 .
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Using the Taylor formula, we obtain for every λ > 0.

Z(ϑnk + λv(ϑnk ), y)− Z(ϑnk , y)

= 2λa(ϑnk)v(ϑnk ) + (λ2/2)vT (ϑnk)∇ϑ∇
T
ϑZ(ϑ#, y)v(ϑnk)

(3.4)

for some ϑ#. The second term of the right-hand side is bounded, the first is

bounded above by d, hence for some small λ0 > 0 the right-hand side of (3.4) is

bounded above by a number e < 0. Thus

Z(ϑnk+1, y)− Z(ϑnk , y) < Z(ϑnk + λ0v(ϑnk), y)− Z(ϑnk , y) ≤ e

which contradicts to the fact that the non-increasing sequence Z(ϑn, y); n =

1, 2, . . . is bounded from below. Hence the assumption v(ϑ̃) 6= 0 is wrong. Conse-

quently, for every limit point ϑ̃ we have v(ϑ̃) = 0, a(ϑ̃) = 0, and the statements

i), ii) and iii) hold. Further

‖ϑn+1 − ϑn‖ ≤ ‖v(ϑn)‖ → 0 ,

hence iv) is proven. �

4. The Probability Density of the Estimator

Closely related to the presented geometrical analysis is the derivation of the

probability density of ϑ̂. For a particular case (case a) in Section 1) a similar

approach has been presented in [7].

In the whole section we suppose that M(ϑ)+G(ϑ) is a positive definite matrix.

For every ϑ ∈ suppπ take N −m vectors wi(ϑ) ∈ RN such that for every i, j, k

we have

〈wi(ϑ), ∂η(ϑ)/∂ϑk〉Σ = 0 ,

〈wi(ϑ), wj(ϑ)〉Σ = δij

(an orthonormal basis of the ancillary space (ϑ)). Denote by Ci(ϑ) the matrices

(the components of the second fundamental form of the surface )

Ci(ϑ) : = wi(ϑ)Σ−1H(ϑ) .

Let us denote

S(ϑ) : = {a ∈ RN−m : sup
v∈Rm,‖v‖=1

∑
i

ai[v
TCi(ϑ)v]/vT (M(ϑ) +G(ϑ))v ≤ 1} .

For every y ∈ B(ϑ) denote

ai(y) : = 〈y − η(ϑ), wi(ϑ)〉Σ ,

a(y) : = (a1(y), . . . , aN−m(y))T .
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Lemma 5. If y ∈ (ϑ), a(y) ∈ S(ϑ), then the matrix ∇ϑ∇TϑZ(ϑ, y) is positive

definite.

Proof. From (2.5) we obtain (in the abbreviated notation)

vT (∇∇TZ(y))v = −
∑
i

ai(y)(v
TCiv) + vT (M +G)v .

Hence a(y) ∈ S(ϑ)⇒ vT (∇∇TZ(y))v > 0 for every v 6= 0. �

Note. The set {y ∈ (ϑ) : ‖(I − P )(y − η)‖Σ < [Kπ(ϑ)]−1} considered in

Lemma 2 is a subset of the set {y ∈ (ϑ) : a(y) ∈ S(ϑ)} considered in Lemma 5.

Let ϑ be the true value of ϑ. Denote by ψ(ϑ) the auxiliary vector

(4.1) ψ(ϑ) : = η(ϑ) + P (ϑ)[η(ϑ) − η(ϑ)]− u(ϑ) .

From (2.2) we obtain that for every y ∈ ϑ we can write

(4.2) ψ(ϑ)− y = [I − P (ϑ)][η(ϑ)− y] .

Geometrically, ψ(ϑ) is the orthogonal projection of the point η(ϑ) onto the plane

ϑ. From (4.2) it follows that we can write

(4.3) y = ψ(ϑ̂) +
N−m∑
i=1

biwi(ϑ̂) ,

with

ϑ̂ = ϑ̂(y) ,

bi : = bi(y) : =
〈
y − ψ(ϑ̂), wi(ϑ̂)

〉
Σ
.(4.4)

Evidently, ai(y) = bi(y) + 〈ψ(ϑ)− η(ϑ), wi(ϑ)〉Σ for every y ∈ (ϑ). Denote

S∗(ϑ) : = {b(y) : a(y) ∈ S(ϑ)}. In the proof of Theorem 3 we prefer b(y) to a(y)

because of the important equality (4.10).

Theorem 3. Let pπ(ϑ̂|ϑ) be the exact probability density of the random variable

ϑ̂ = ϑ̂(y). Then for every ϑ ∈ suppπ we have

(4.5) pπ(ϑ̂|ϑ) = qπ(ϑ̂|ϑ)Eϑ̂[det{I +D(ϑ̂, b)[Q(ϑ̂, ϑ) +G(ϑ̂)]−1}] .
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where

qπ(ϑ̂|ϑ) : =
det[Q(ϑ̂, ϑ) +G(ϑ̂)]

(2π)m/2 det1/2M(ϑ̂)
(4.6)

exp

{
−

1

2
‖P (ϑ̂)[η(ϑ̂)− η(ϑ)− u(ϑ̂)]‖2Σ

}
Q(ϑ̂, ϑ) : = M(ϑ̂) + [η(ϑ̂)− η(ϑ)]T [I − P (ϑ̂)]H(ϑ̂) ,

{D(ϑ, b)}ij : = −
N−m∑
k=1

bk
〈
wk(ϑ), ∂2η(ϑ)/∂ϑi∂ϑj

〉
Σ

= −
N−m∑
k=1

bk{Ck(ϑ)}ij ,

Eϑ̂(·) : =

∫
S∗(ϑ̂)

(.)(2π)−(N−m)/2 exp{−‖b‖2I/2} dµ(b) ,

and where µ is the Lebesgue measure in RN−m.

Proof. Denote by g(ϑ̂, b) the right-hand side of (4.3). From (4.3), (4.4) it follows

that the mapping

g : (ϑ̂, b) ∈
⋃

ϑ∈suppπ

{ϑ} × S(ϑ)→ g(ϑ̂, b) ∈ RN

is a bijection (up to a set of Lebesgue measure zero in RN ). It is also differentiable,

and its Jacobian is equal to (cf. [6, eq. (19)])

(4.7) |det[∇g(ϑ̂, b)]| =
det[D(ϑ̂, b) +∇ϑψT (ϑ̂)Σ−1J(ϑ̂)]

det1/2M(ϑ̂)
det1/2(Σ) .

The joint probability density of ϑ̂ and b, p(ϑ̂, b|ϑ) is equal to

(4.8)

p(ϑ̂, b|ϑ) = |det[∇g(ϑ̂, b)]|(2π)N/2 det−1/2(Σ) exp{−(1/2)‖y− η(ϑ)‖2Σ}y=g(ϑ̂,b) ,

and the required density of ϑ̂ is equal to

(4.9) pπ(ϑ̂|ϑ) =

∫
S∗(ϑ̂)

p(ϑ̂, b|ϑ) dµ(b) .

From (4.2) it follows by the theorem of Pythagoras that

‖y − η(ϑ)‖2Σ = ‖y − ψ(ϑ̂)‖2Σ + ‖ψ(ϑ̂)− η(ϑ)‖2Σ

= ‖b‖2I + ‖P (ϑ̂)[η(ϑ̂)− η(ϑ)]− u(ϑ̂)‖2Σ .

(4.10)
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Let us multiply (4.1) from the left by [∂ηT (ϑ)/∂ϑi]Σ
−1. We obtain

[∂ηT (ϑ)/∂ϑi]Σ
−1[ψ(ϑ)− η(ϑ)] + ∂l(ϑ)/∂ϑi = 0 .

We take the derivative of this with respect to ϑj , and we use (4.1) again, to obtain

∂ηT (ϑ)

∂ϑi
Σ−1 ∂ψ(ϑ)

∂ϑj
= Qij(ϑ̂, ϑ) +Gij(ϑ̂) .

We put this into (4.7), and from (4.8)–(4.10) we obtain the required equality. �

Remark. The expression given in eq. (4.6) can be considered as an approx-

imation of the probability density of ϑ̂ which is easy to compute. It si a direct

generalization of the density of the least-squares estimator discussed in [6], to the

case of a given prior. For a particular purpose it has been applied in [7].
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