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ON THE VOLUME OF THE
DOUBLE STOCHASTIC MATRICES

M. SCHMUCKENSCHLAGER

1. Introduction and Notation

Let |, be the group of permutation matrices in R". Then
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is a convex set in R™. It is well known that D is the set of all double stochastic
matrices, i.e.
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The volume of Dy, is somehow related to a Kahane type inequality (cf. [S]) for the
group of permutations, more precisely: let (X k) be a double sequence in some
Banach space X, if

V_

=Cc n

Vo
VoIk(BE)

L_1
Ik(Dn) X

where Kk is the dimensio n IZR]‘Z, then the L1-norm and the norm associated
with @y (t): = et—1of || ik Xj kTj,k|| (the expectation being taken with respect to
the normalized counting measure on the group of all signed permutation matrices
(M) i.e. M CL+1,0,1}) are equivalent. Conversely, if the L-norm and the
norm associated with Y, (t): = e —1 are equivalent, then the volume of D, must
satiesfy the above inequality up to some logarithmic factor. We prove that such
an inequality can not hold. We also include a proof of an upper estimate for the
volume of a convex polytope all of whose vertices are at a given distance from the
origin. Though this result is known we could not find a reference.
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It is easy to see that the subspace E of R" defined by
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has dimension (n — 1)2. Thus the dimension of D, is (n — 1)

2. The Basic Estimates

In order to estimate the (n—1)2-dimensional volume of D, we need some results.
The first one is due to Vaaler [V] (a generalization of this result can be found in
[M-P]).

Lemma 2.1. Let E be a k-dimensional subspace of R". Then
Vol (B n E) = 2K

where B7® is the cube [—1, 1]".

The next result is a classical inequality of Urysohn (for an elementary proof we
refer to [P]).

Lemma 2.2. Let B be a convex symmetric body in R". Then
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where B2 is the unit ball of [2] B™is the polar of B and A is the normalized
Lebesgue measure on S,

It is well known that the latter integral can be expressed as a gaussian integral,

1.6 T |

RN = MRoovnG)

sn—1 RN

where yn, is the canonical gaussian probability measure on R".

Lemma 2.3. Let g;,...,0k be not necessarily independent gaussian variables
with mean zero. Then
= 5
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For a proof we refer to [P].
Lemmas 2.2 and 2.3 immediately imply the following

Proposition 2.4. Let Xg,...,Xk be unit vectors in R". Then
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Proof. By Lemma 2.2 we have
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where B is the absolutely convex hull of {x, ..., xn} and (gj)jL, are independent
standard gaussian variables. Since

[IX]|s == sup | G, x[[1
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we get from Lemma 2.3
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Theorem 2.5. There exists an absolute constant ¢ such that the following in-
equalities hold.
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Proof. Let Py be the n x n matrix with the constant entry % in each place.
Then we conclude by Lemma 2.1
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Thus the left hand side inequality is established. As for the right hand side observe
that for any permutation matrix IM:

1 . 1 ]_ Y
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Since the number of permutation matrices is n! we deduce from the above propo-
sition

L1 —1
Voln-1)2(Dn) o <\/mc logn! <c %
Volgn—1y2(BZ, 1) = (n—12 = %
(n—=1) (n—1)
Hence , c
(VolDp) -2 < FZ logn
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