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MEAN SQUARE ERROR MATRIX OF AN APPROXIMATE
LEAST SQUARES ESTIMATOR IN A NONLINEAR
REGRESSION MODEL WITH CORRELATED ERRORS

F. STULAJTER

Abstract. A nonlinear regression model with correlated, normally distributed er-
rors is investigated. The bias and the mean square error matrix of the approximate
least squares estimator of regression parameters are derived and their limit proper-
ties are studied.

1. Introduction

Let us consider a nonlinear regression model

Ye =Ff(X,0) +&; t=1,...,n

where T is a model function, x¢; t = 1,...,n are assumed to be known k dimen-
sional vectors, 8 = (81,...,6p)"is an unknown vector of regression parameters
which belongs to some open set © and € = (g1, .. ., €n)"is some random vector of

errors with zero mean value. Next we assume that the functions f(x¢;-) have for
every fixed t continuous derivatives

02 (x¢,0) _ 02 (X, 0)
00;00;  06;06;

foralli,j =1,2,...,p.
Let us denote by § the least squares estimator of 8: that means:

~ B B 5
B8 =arg réntlgj (Ye — F (X, 0))

t=1

We shall assume that this estimator exists and is unique. In this connection see
Pazman (1984a).

It is well known that 8 is a biased estimator. The covariance or the mean square
error matrix of § was derived by Clarke (1980) using a stochastic expansion for )
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and a suitable transformation of the vector of uncorrelated errors with a common
variance g2. A connection between measures of nonlinearity and members of the
covariance matrix can be seen from his results. The approximate distribution of )
was given by Pazman (1984b).

In most papers devoted to the problems of nonlinear regression, it is assumed
that the errors are independent identically distributed random variables. The
problems with auto correlated errors were studied by Gallant and Goebel (1976)
and Gallant (1987) using a strong theory of martingales and mixingales.

The aim of this article is to give a direct expression for the mean square error
matrix of the approximate 8 of 8 without using any transformation of the vector
of errors and assuming that the errors are normally distributed with zero mean
value and a covariance matrix Z. Under these conditions and conditions imposed
on the nonlinear model function f, the limit properties of the bias and covariance
matrix of 8 are studied.

The approximate least squares estimator 8 is derived on the idea which was
used by Box (1971) for derivation of an approximate bias of 8 . Let us denote by
£(0) the nx 1 vector (f(x1,0),...,f(Xn,08))"and let j:(8) be the p < 1 vector with
components

of(x,0) . _
T@i' i=1...,p, t=1,2,...,n.
Let
I% 1
J1(6)
w=H H
in(®)
be the n < p matrix of the first derivatives of f(8).
Let He; t=1,2,...,n be the p < p matrices of second derivatives with
0%F (X, 8 .
(Hoij =¥; Lj=1...,p.

26,06,

Then, since 6 is the least squares estimator of 6, the equality

 —
Ve — F(x,, 0)) 2T 00 0) %ﬂzo; i=1,2,....p
1 00; 0=6

must hold. This equality can be written, denoting Y = (Y1,...,Yn)Y in the
following matrix form

) IG%Y —f(@®) =0.
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2. An Approximate Least Squares Estimator And Its Bias

It was showAn in Box (1971), using (1) and Taylor expansions of J(6) and f(6)
that the LSE 6 of 6 can be approximated by the estimator 6 given by

) =0+ @) 8+ @I U e)Me — 1723 (¢)],

where J =J(0), M =1 —J(IJ)71J, U(g) denotes the n x p random matrix,

[ a 1
€ L_Hl
ue = B
AT,
where A = (JJ)71J and H(g) is the n x 1 random vector with components
eAHAs; t=1,...,n.

Using these results, it was shown by Box (1971) that if &¢;; t =1,2,...,n are
i.i.d. random variables with zero mean and with a variance o2, then

) Sy HY)
Ee[e~]=e—%(3%)—1JDE| : H
tr((39)"H,)

Now we shall assume that € = (g4, ..., &n)"is a random vector with zero mean
value and with some covariance matrix ~. Then we have:

Ee[8] =06 + (3F) 1B [Ue)Me] — 1/2(3) LI g [H(€)] .
Ue)M e can by written as
Ue)Me = (H:1As, ..., HaAe)Me

and for the j-th component of this random vector we get:
1 1

1 Iy 1
Ue)Me)j =  (Ue))i(Me); = (HiA)jkMi &g
i=1 k=11=1 i=1
=eWNje; j=1,2,...,p,  where
1
©) (Nj)a = (HiA)jkMii; k,1=1,2,...,n.
i=1
We can also write
1
LN+ N
Ue)Me); =¥ L3 ¢ j=1,2,...,n

2
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as quadratic forms with symmetric matrices.
Using the equality E[e'€¢] = tr(CX), which holds for any matrix C and for any
random vector € with mean value zero and a covariance matrix >, we get

11 ) 1 1

tr le) I%AL_H]_AZ)

@ Eqff] = 8+ 39y~ FHH : E%JDE . HA
tr(NpZ) tr(A"H,AY)

where Nj; j =1,2,...,p are given by (3).
In the special case =~ = 021 of uncorrelated errors we get

1
tr(N; ) = o?tr(N;) =0®>  (HiAM);i =0,
i=1

since AM =0 and
tr(AH;AZ) = o? tr(AATH;) = o? tr((39) 7 H;j)

and we see that (4) agrees with the bias of 9~given by Box (1979) for uncorrelated
errors.
Now we s~hall study the limit properties of the bias given by (4) of the approx-
imate LSE 6. i
Since tr(ABY) =

trices, we can write |tr(ABY| < [ALIBIL Wwhere [ALF Lim1 AG is the

Euclidean norm of a matrix A, for which the inequality [AB [2k [AZIBI[Zholds.
Thus we can write:

AijBij is an inner product in the space of s&gjre ma-

(5) |[tr(NX)| < N1 and
1 111 1
| N | I | r 1
[N; [23= (HiA)jxMi (HsA)jkMsi
k,1I=1 i=1 s=1
| I
(6) = (HiA)jk(HsA)jkMis = (HiAAHs)j; Mis
s=1i=1k=1 s=1i=1
1 L D L
= (HiQ9) 'Hjj — (Hi(39) " He)jj i) s,
i=1 s=1i=1
sinceM =MP=1—-P = M?2.

Now, for the j-th component of the second term of the bias, we have:
—1 111
triAquAZ)

r— 1 r— 1
IEIE' EEE (ji)j tl"(AEHiAZ) = tr(AD (ji)j HiAY),

tr(AH,AZ) ;T =1
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since J™= (j1,...,Jn)-
Let us denote by Bj = ;Z,(ji)jHi, for simplicity. Then we have:

(7)  |tr(A'BjAY)| < [AB; AL Z I%]r(Bj Q] %)—1BJ(J%)—1)@2-

D[l
The limit properties of the estimator 8 are based on the following assumptions.

Assumption 1. The matrix (J3)~* is of the order } (we write (J9)™! =
OG(%)) by which we mean that (JJ)™! = %Gn and there exists a nonnegative
definite matrix G such that limp_, - G = G.

Assumption 2. The following limits

1 T afdk,0) 02F(xt,0)

lim — and
n-oo =1 06; aejaek

tim E_52fdx., 0) 02F (x¢, 0)

n-econ 1 00;0; 0006,

exist and are finite for every fixed i, j, k, I.

Theorem 1. Let the Assumptions 1 and 2 hold and let for the covariance
matrix > of the vector € of errors limp_ o %[lej: 0. Then for the bias of the
approximate least squares estimator 6, we have:

lim Eg[6n] = 6.
n - oo

Proof. It is a direct consequence of (5), (6), (7), and the assumptions of Theo-
rem 1, that there exist finite limits

lim N Cland  lim [AB;AL]
1

Remarks.
1. In the case when €;; i =1,2,...,n are i.i.d. random variables with E[€j] =0
and D[g;] = 02 we have
1 . 0% _
A, 5 = i, e =0
and the condition for the vector of errors in theorem is fulfilled.
2. If {&r; t=1,2,...} is a stationary time series with a covariance function
R(:) such that lim¢_ . R(t) = 0, then
L] — LA
1 R2(0) 2 =, , 1

n

and the condition of theorem is fulfilled.
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3. The Mean Square Error Matrix Of The
Approximate Least Squares Estimator

We have shown in the preceding part that

(séNle) o (sb\q‘-llAs) —
®) §=6+Ac+ @) HH: |T|§JD|—| : HH
(e"Npe) (e"A™H,Ag)

where A = (J9J)7*3 and the matrices N; are given by (3).
Let N(g) be the p x 1 random vector

] =
+NH2 + N
N(g) = z—:ENlZ 18,...,8%8

and H(g) be the n < 1 random vector
H(e) = (EAH A, ..., e ATH,Ae)"
Then we can write:
Eol(6 —8)(8 — 0)'T = AEo[ec TA™+ (3J) " Eq[(N (¢)
© — JIHEINE — 33 HE) T
= ASA™+ (39)™! Eo[N(e)N(e)T— %EG[N (©H ()
- L EHENE T EHEREOD 09

assuming that the vector € of errors is such that all its third moments are equal
to zero. This condition is fulfilled also for the case when € has the N,(0,X)
distribution, what we shall assume in the sequel. In this case we can use the
following known formula

E[le'Be-e'€e] =2tr(BZCX) + tr (BX) tr (CX)

which holds for any symmetric matrices B and C and any normally distributed
random vector €. According to this we can write

N NN N

S(1,1)ij = (EIN(e)N(e));; = 2tr '2 iy 5 1> +tr(NiZ) tr(N; )
I%—I+N-D .

S(1,2)ij = (E[N(e)He)D;; = 2tr '2 LSATH;AS + tr(Ni2) tr(ATH; AS)

S(2,1) = E[H(e)N(e)T=5S(,2)” and
S(2,2)ij = (E[H(e)He)D;; = 2tr (ATHIAZAH;AZ) + tr(ATH;AZ).
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Let us consider now the case when = = ¢21.
Then we have, using the same algebra as in (6):

]
: My,

S, =c*tr(NiNj) =0 Hi (3 H, i

k,I=1
since we can easily get from (3) and from the equality AM = 0 that
tr(N;) = tr(N;N;) = 0.

Next, S(1,2) =0, since
C1 1

_ 4. Ni+N/ N — o4 N — -

S(1,2)i5 =0"tr TA A =" tr(AH;AN;) =0 for all i, j.

For S(2,2) we get, using AAP= (33)~1

S(2,2)ij = 20* tr(A"H; AAH; A) + o* tr(A™H;A) tr(AH; A)
=20 tr(Hi(@N)'H; AN + ot tr(Hi@I) ™ H r(H; )™,

Using these results we can get the mean square error matrix for the approximate
least squares estimator 6 as follows:

S
Eo[(6 —0)(6 —0)F=02(I) L +0*@I) ! MijHi(39)71H;
ij=1
1
(10) +2 2tr(Hi(39)*H; 3™

i,j=1 .

1
(MBI AN ™ §idf @97

We can prove the following theorem.

Theorem 2. Let the Assumptions 1 and 2 hold and let € has the Nn(0, 6?1)
distribution. Then the mean square error matrix Ee[@n - 6)(5n —0)7 is given by
(10) and we have

lim_ NEo[(6r — 0)(Bn — ) = 02G.

Proof. The theorem will be proved if we show that

 —
lim_ MijHi@9) ' H;39)t =o.

ij=1
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But, since Mj;j = &i; — jHIJ)71j;, we can write

1
r 1 r 1

lim MijHi(@9)™*H; 39)~ = lim Hi(@9) tH; D)1
N=j=1 = im 1

r— 1

- J5QY)THIQ@Y)TH;EO)T =0
ij=1
and the proof is complete. 1

Let us consider now the case when € is N (0, X) distributed random vector.
Then we have the inequalities

- AAT = CIPTAATZ = 3 H1rE)
ey ey L e =
(11) E( R 5 123 5

< N; CIN; (120

Thus
(12) 1S(1, 1)ij| < 3N, [TN; [TBT2)
where the expression for [N; [Zlis given by (6). By analogy

[(S(L,2))il = a 2tr(NiZAH;AZ)(jj)i + tr(N;Z) tr(A%.AZ)@

( j=1
< 3[N; [[A'B,A L]

It is easy to show that

(14) [ABALE tr((39)71B,(39)7B)).
By analogy
- |?ﬂ||:|:|:|
1
3%22,2) ) = El...,jn)S(z,z) EBEH
jr‘Tj Kl

| —
= (i)k Qtr(ATHAZAH;AT) + tr(A"H;AZ) tr(AH; AD) ()
ij=1
= 2tr(A'BLAZAB|AY) + tr(ABAX) tr(A'B|AY) fork,I=1,...,p.
Thus we have:
(15) [(35(2,2)d)| < 3ABLATABALEIZ]

From the inequalities (12), (13), (15) and from the equalities (6), (9) and (14)
the following theorem follows easily.
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Theorem 3. Let the Assumptions 1 and 2 hold and let € has the Nn(0,X)
distributioQ, where limp_, - 1/n[Z1Z 0. Then for the approximate least squares
estimator 6, given by (8) we have:

lim_ E[(6,, — 6)(6, —0)T= 0.

Proof. It follows from (6) and (14) and from the assumptions of the theorem
that finite limits limp, _, oo Nk [@Nd limp, _, oo [ABALCEXist for every k =1,...,p.
Thus we see, using (9), (11), (12), (13), (15) and the assumption (JJ)~1 =
Og(1/n) that every member of the mean square error matrix of the approximate
estimator 6, converges to zero if n tends to infinity. 1

Remark. According to Remark 2 the condition imposed on X is fulfilled if € is
a stationary time series with a covariance function R(-) such that lim¢_ o R(t) = 0.

4. Simulation Results
Let us consider the nonlinear regression model
X (t) = By + Bot +y1 COSA t + yosinAgt + y3 coS Aot + yy Sin Aot + £(t);

t=1,2,...,n, where 8 = (B1, B2, A1, A2, Y1, Y2, Y3, Y4)7is an unknown vector of
regression parameters and € is an AR(1) process given by

e(t) = pe(t—1) +e(t)

with a white noise e having variance 02 = 1.

We have simulated data following this nonlinear regression model with di [erent
values of an autoregression parameter p and a given value of 8. For every fixed
value of the parameters p and 6 one observation of X of the length n = 51, one of
the length n = 101 and one of the length n = 149 were simulated. The modified
Marquard’s method was used to compute the LSE 8 for 6.

A comparison of the LSE 8 and the approxmate LSE estimator § was done in
Stulajter and Hudakova (1991). It was shown that 6 and 6 are nearly the same in
many cases.

The aim of this simulation study is to investigate an influence of di Lerknt values
of the parameter p on the LSE 6 and dependence of this influence on n, the length
of an observation.

The initial values for iterations were found as follows. First, from X(:) the
LSE B° for B was found. Then we have computed the periodogram for the partial
residuals X (t) —B? —Bt; t =1,2,...,n and the frequences A9, AS in which there
are the two greatest values of the periodogram were found. In the model

X (1) — BY — Bt = y1 cos A2t + v sin At + y3 cos At + v, Sin ASt + £(t)
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we have used again the least squares method for finding y° — the LSE estimator
for vy.

The value 8° = (B%, A%, y°)7of an unknown parameter 8 was used as an
initial value for computing the LSE 6 of 6 using the Marquard’s method. The
least squares estimators, each computed from one simulation of the corresponding
length, are given in the following tables.

Least squares estimates

n =51 p=-099 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 0.99
Br = 3 3.02 3.02 3.09 285 283 298 309 315 323 288 0.71
B2 = 2 201 199 199 201 200 200 200 199 199 200 2.08
A = 075 099 0.75 0.75 0.74 075 075 075 0.75 0.74 0.74 0.74
A2 = 025 075 025 024 0.25 0.25 0.25 0.24 024 0.24 0.24 0.25
yr = 4 -1.67 3.73 321 414 419 432 391 394 392 384 3.78
y2 = 3 -10.59 2.64 3.15 238 240 278 3.02 3.03 250 288 3.20
yzs = 2 3.6 1.78 211 151 152 231 188 202 243 247 0.56
Ya = 4 277 391 401 383 374 395 366 355 3.93 354 4.29
Least squares estimates
n =101 p= -099 -08 -06 -04 -02 O 02 04 06 08 0.9
Br = 3 3.20 298 292 3.09 294 289 318 295 347 4.07 3.78
B = 2 199 2.00 200 199 200 200 199 200 1.99 197 1.98
A1 = 075 099 0.74 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.74 0.75
A2 = 025 0.75 025 024 025 025 025 024 025 0.25 0.24 0.25
yr = 4 -0.70 4.12 3.60 4.00 3.88 3.73 4.13 3.88 3.77 4.04 3.75
y2 = 3 -10.51 3.50 352 293 3.72 329 288 3.09 324 273 3.30
ya = 2 3.66 206 215 219 205 235 243 229 219 220 151
Ya = 4 290 3.99 386 3.78 398 3.74 3.61 3.63 4.01 3.62 4.40
Least squares estimates
n =149 p =-099 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 0.99
Br = 3 3.04 294 297 298 286 3.09 295 334 310 320 3.38
B = 2 199 200 200 200 200 1.99 200 199 199 199 1.99
A1 = 0.75 0.74 0.75 0.75 0.74 075 075 0.75 0.75 0.75 0.75 0.75
A2 = 025 0.25 025 025 025 0.25 025 0.25 0.25 0.25 0.24 0.25
yr = 4 422 377 414 431 392 385 4.18 4.03 4.07 403 3.97
y2 = 3 268 324 293 280 345 280 3.01 293 3.01 312 297
ya = 2 205 191 177 191 182 215 195 239 223 267 1.95
Ya = 4 401 410 398 400 4.09 3.85 3.83 3.64 3.87 4.06 4.27

We can see from the tables that the only di [culity with estimation is for
p = —0.99, where the influence of the spectral density of AR(1) process on the
periodogram occurs. Here A; = 0.75 is discovered as a second peak of the peri-
odogram and the estimates of corresponding y's are 3.60 and 2.77 for n = 51 and
3.66 and 2.90 for n = 101 instead of 4 and 3 respectively. The value AL = 0.99 is
due to the spectral density of the AR(1) process and to this frequency correspond
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also the estimAates of y's. This e[&dt does not occur for n = 149. For other values
of p the LSE 6 of 0 are satisfactory, as we can see from the tables even for n =51,
a relatively small length of observations.
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