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MEAN SQUARE ERROR MATRIX OF AN APPROXIMATE

LEAST SQUARES ESTIMATOR IN A NONLINEAR

REGRESSION MODEL WITH CORRELATED ERRORS

F. ŠTULAJTER

Abstract. A nonlinear regression model with correlated, normally distributed er-
rors is investigated. The bias and the mean square error matrix of the approximate
least squares estimator of regression parameters are derived and their limit proper-
ties are studied.

1. Introduction

Let us consider a nonlinear regression model

Yt = f(xt, θ) + εt; t = 1, . . . , n

where f is a model function, xt; t = 1, . . . , n are assumed to be known k dimen-

sional vectors, θ = (θ1, . . . , θp)
′ is an unknown vector of regression parameters

which belongs to some open set Θ and ε = (ε1, . . . , εn)
′ is some random vector of

errors with zero mean value. Next we assume that the functions f(xt; ·) have for

every fixed t continuous derivatives

∂2f(xt, θ)

∂θi∂θj
=
∂2f(xt, θ)

∂θj∂θi
for all i, j = 1, 2, . . . , p.

Let us denote by θ̂ the least squares estimator of θ: that means:

θ̂ = arg min
θ∈Θ

n∑
t=1

(Yt − f(xt, θ))
2

We shall assume that this estimator exists and is unique. In this connection see

Pázman (1984a).

It is well known that θ̂ is a biased estimator. The covariance or the mean square

error matrix of θ̂ was derived by Clarke (1980) using a stochastic expansion for θ̂
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and a suitable transformation of the vector of uncorrelated errors with a common

variance σ2. A connection between measures of nonlinearity and members of the

covariance matrix can be seen from his results. The approximate distribution of θ̂

was given by Pázman (1984b).

In most papers devoted to the problems of nonlinear regression, it is assumed

that the errors are independent identically distributed random variables. The

problems with auto correlated errors were studied by Gallant and Goebel (1976)

and Gallant (1987) using a strong theory of martingales and mixingales.

The aim of this article is to give a direct expression for the mean square error

matrix of the approximate θ̃ of θ without using any transformation of the vector

of errors and assuming that the errors are normally distributed with zero mean

value and a covariance matrix Σ. Under these conditions and conditions imposed

on the nonlinear model function f , the limit properties of the bias and covariance

matrix of θ̃ are studied.

The approximate least squares estimator θ̃ is derived on the idea which was

used by Box (1971) for derivation of an approximate bias of θ̂ . Let us denote by

f(θ) the n×1 vector (f(x1, θ), . . . , f(xn, θ))
′ and let jt(θ) be the p×1 vector with

components

∂f(xt, θ)

∂θi
; i = 1, . . . , p, t = 1, 2, . . . , n .

Let

J(θ) =

 j
′
1(θ)
...

j′n(θ)


be the n× p matrix of the first derivatives of f(θ).

Let Ht; t = 1, 2, . . . , n be the p× p matrices of second derivatives with

(Ht)ij =
∂2f(xt, θ)

∂θi∂θj
; i, j = 1, . . . , p.

Then, since θ̂ is the least squares estimator of θ, the equality

n∑
t=1

(Yt − f(xt, θ))
∂f(xt, θ)

∂θi


θ=θ̂

= 0; i = 1, 2, . . . , p

must hold. This equality can be written, denoting Y = (Y1, . . . , Yn)
′, in the

following matrix form

(1) J(θ̂)′(Y − f(θ̂)) = 0 .
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2. An Approximate Least Squares Estimator And Its Bias

It was shown in Box (1971), using (1) and Taylor expansions of J(θ) and f(θ)

that the LSE θ̂ of θ can be approximated by the estimator θ̃ given by

(2) θ̃ = θ + (J ′J)−1J ′ε+ (J ′J)−1 [U ′(ε)Mε− 1/2J ′H(ε)] ,

where J = J(θ), M = I − J(J ′J)−1J , U(ε) denotes the n× p random matrix,

U(ε) =

 ε′A′H1
...

ε′A′Hn

 ,

where A = (J ′J)−1J and H(ε) is the n × 1 random vector with components

ε′A′HtAε; t = 1, . . . , n.

Using these results, it was shown by Box (1971) that if εt; t = 1, 2, . . . , n are

i.i.d. random variables with zero mean and with a variance σ2, then

Eθ[θ̃] = θ −
σ2

2
(J ′J)−1J ′

 tr((J ′J)−1H1)
...

tr((J ′J)−1Hn)


Now we shall assume that ε = (ε1, . . . , εn)

′ is a random vector with zero mean

value and with some covariance matrix Σ. Then we have:

Eθ[θ̃] = θ + (J ′J)−1Eθ [U ′(ε)Mε]− 1/2(J ′J)−1J ′Eθ [H(ε)] .

U ′(ε)Mε can by written as

U ′(ε)Mε = (H1Aε, . . . ,HnAε)Mε

and for the j-th component of this random vector we get:

(U ′(ε)Mε)j =
n∑
i=1

(U ′(ε))ji(Mε)i =
n∑
k=1

n∑
l=1

(
n∑
i=1

(HiA)jkMil

)
εkεl

= ε′Njε; j = 1, 2, . . . , p, where

(Nj)kl =
n∑
i=1

(HiA)jkMil; k, l = 1, 2, . . . , n.(3)

We can also write

(U ′(ε)Mε)j = ε′
(
Nj +N ′j

2

)
ε : j = 1, 2, . . . , n
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as quadratic forms with symmetric matrices.

Using the equality E[ε′Cε] = tr(CΣ), which holds for any matrix C and for any

random vector ε with mean value zero and a covariance matrix Σ, we get

(4) Eθ[θ̃] = θ + (J ′J)−1


 tr(N1Σ)

...

tr(NpΣ)

− 1

2
J ′

 tr(A′H1AΣ)
...

tr(A′HnAΣ)


 ,

where Nj; j = 1, 2, . . . , p are given by (3).

In the special case Σ = σ2I of uncorrelated errors we get

tr(NjΣ) = σ2 tr(Nj) = σ2
n∑
i=1

(HiAM)ji = 0,

since AM = 0 and

tr(A′HjAΣ) = σ2 tr(AA′Hj) = σ2 tr((J ′J)−1Hj)

and we see that (4) agrees with the bias of θ̃ given by Box (1979) for uncorrelated

errors.

Now we shall study the limit properties of the bias given by (4) of the approx-

imate LSE θ̃.

Since tr(AB′) =
∑n
i,j=1AijBij is an inner product in the space of square ma-

trices, we can write | tr(AB′)| ≤ ‖A‖ ‖B‖, where ‖A‖ =
(∑n

i,j=1A
2
ij

)1/2

is the

Euclidean norm of a matrix A, for which the inequality ‖AB‖2 ≤ ‖A‖2‖B‖2 holds.

Thus we can write:

(5) | tr(NΣ)| ≤ ‖N‖ ‖Σ‖ and

‖Nj‖
2 =

n∑
k,l=1

(
n∑
i=1

(HiA)jkMil

)(
n∑
s=1

(HsA)jkMsl

)

=
n∑
s=1

n∑
i=1

n∑
k=1

(HiA)jk(HsA)jkMis =
n∑
s=1

n∑
i=1

(HiAA
′Hs)jjMis

=
n∑
i=1

(Hi(J
′J)−1Hi)jj −

n∑
s=1

n∑
i=1

(Hi(J
′J)−1Hs)jjj

′
i(J
′J)−1js,

(6)

since M = M ′ = I − P = M2.

Now, for the j-th component of the second term of the bias, we have:J ′
 tr(A′H1AΣ)

...

tr(A′HnAΣ)



j

=
n∑
i=1

(ji)j tr(A′HiAΣ) = tr(A′
n∑
i=1

(ji)jHiAΣ),
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since J ′ = (j1, . . . , jn).

Let us denote by Bj =
∑n
i=1(ji)jHi, for simplicity. Then we have:

(7) | tr(A′BjAΣ)| ≤ ‖A′BjA‖ ‖Σ‖ =
[
tr(Bj(J

′J)−1Bj(J
′J)−1)

]1/2
· ‖Σ‖.

The limit properties of the estimator θ̃ are based on the following assumptions.

Assumption 1. The matrix (J ′J)−1 is of the order 1
n

(we write (J ′J)−1 =

OG( 1
n
)) by which we mean that (J ′J)−1 = 1

n
Gn and there exists a nonnegative

definite matrix G such that limn→∞Gn = G.

Assumption 2. The following limits

lim
n→∞

1

n

n∑
t=1

∂f(xt, θ)

∂θi
·
∂2f(xt, θ)

∂θj∂θk
and

lim
n→∞

1

n

n∑
t=1

∂2f(xt, θ)

∂θiθj

∂2f(xt, θ)

∂θk∂θl

exist and are finite for every fixed i, j, k, l.

Theorem 1. Let the Assumptions 1 and 2 hold and let for the covariance

matrix Σ of the vector ε of errors limn→∞
1
n‖Σ‖ = 0. Then for the bias of the

approximate least squares estimator θ̃n we have:

lim
n→∞

Eθ[θ̃n] = θ.

Proof. It is a direct consequence of (5), (6), (7), and the assumptions of Theo-

rem 1, that there exist finite limits

lim
n→∞

‖Nj‖ and lim
n→∞

‖A′BjA‖.

�
Remarks.

1. In the case when εi; i = 1, 2, . . . , n are i.i.d. random variables with E[εi] = 0

and D[εi] = σ2 we have

lim
n→∞

1

n
‖Σ‖ = lim

n→∞

σ2

n1/2
= 0

and the condition for the vector of errors in theorem is fulfilled.

2. If {εt; t = 1, 2, . . .} is a stationary time series with a covariance function

R(·) such that limt→∞R(t) = 0, then

1

n
‖Σ‖ =

(
R2(0)

n
+

2

n

n∑(
1−

t

n

)
R2(t)

)1/2

, lim
n→∞

1

n
‖Σ‖ = 0

and the condition of theorem is fulfilled.
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3. The Mean Square Error Matrix Of The

Approximate Least Squares Estimator

We have shown in the preceding part that

(8) θ̃ = θ +Aε+ (J ′J)−1


 (ε′N1ε)

...

(ε′Npε)

− 1

2
J ′

 (ε′A′H1Aε)
...

(ε′A′HnAε)




where A = (J ′J)−1J ′ and the matrices Nj are given by (3).

Let N(ε) be the p× 1 random vector

N(ε) =

(
ε′
N1 +N ′1

2
ε, . . . , ε′

Np +N ′p

2
ε

)′
and H(ε) be the n× 1 random vector

H(ε) = (ε′A′H1Aε, . . . , ε
′A′HnAε)

′
.

Then we can write:

Eθ[(θ̃ − θ)(θ̃ − θ)
′] = AEθ[εε

′]A′ + (J ′J)−1Eθ[(N(ε)

−
1

2
J ′H(ε))(N(ε) −

1

2
J ′H(ε))′](J ′J)−1(9)

= AΣA′ + (J ′J)−1
{
Eθ[N(ε)N(ε)′]−

1

2
Eθ[N(ε)H(ε)]J

−
1

2
J ′Eθ[H(ε)N(ε)′] +

1

4
J ′Eθ[H(ε)H(ε)′]J

}
(J ′J)−1,

assuming that the vector ε of errors is such that all its third moments are equal

to zero. This condition is fulfilled also for the case when ε has the Nn(0,Σ)

distribution, what we shall assume in the sequel. In this case we can use the

following known formula

E[ε′Bε · ε′Cε] = 2 tr (BΣCΣ) + tr (BΣ) tr (CΣ)

which holds for any symmetric matrices B and C and any normally distributed

random vector ε. According to this we can write

S(1, 1)ij = (E[N(ε)N(ε)′])ij = 2 tr

(
Ni +N ′i

2
Σ
Nj +N ′j

2
Σ

)
+ tr(NiΣ) tr(NjΣ)

S(1, 2)ij = (E[N(ε)Hε)′])ij = 2 tr

(
Ni +N ′i

2
ΣA′HjAΣ

)
+ tr(NiΣ) tr(A′HjAΣ)

S(2, 1) = E[H(ε)N(ε)′] = S(1, 2)′ and

S(2, 2)ij = (E[H(ε)Hε)′])ij = 2 tr (A′HiAΣA′HjAΣ) + tr(A′HjAΣ).
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Let us consider now the case when Σ = σ2I.

Then we have, using the same algebra as in (6):

S(1, 1)ij = σ4 tr(NiN
′
j) = σ

n∑
k,l=1

(
Hk(J

′J)−1Hl

)
ij
Mkl,

since we can easily get from (3) and from the equality AM = 0 that

tr(Ni) = tr(NiNj) = 0.

Next, S(1, 2) = 0, since

S(1, 2)ij = σ4 tr

(
Ni +N ′i

2
A′HjA

)
= σ4 tr(A′HjANi) = 0 for all i, j.

For S(2, 2) we get, using AA′ = (J ′J)−1

S(2, 2)ij = 2σ4 tr(A′HiAA
′HjA) + σ4 tr(A′HiA) tr(A′HjA)

= 2σ4 tr(Hi(J
′J)−1Hj(J

′J)−1) + σ4 tr(Hi(J
′J)−1) tr(Hj(J

′J)−1).

Using these results we can get the mean square error matrix for the approximate

least squares estimator θ̃ as follows:

Eθ[(θ̃ − θ)(θ̃ − θ)
′] = σ2(J ′J)−1 + σ4(J ′J)−1

[
n∑

i,j=1

MijHi(J
′J)−1Hj

+
1

4

n∑
i,j=1

(
2 tr(Hi(J

′J)−1Hj(J
′J)−1)(10)

+ tr(Hi(J
′J−1) tr(Hj(J

′J)−1)
)
jij
′
j

]
(J ′J)−1

We can prove the following theorem.

Theorem 2. Let the Assumptions 1 and 2 hold and let ε has the Nn(0, σ
2I)

distribution. Then the mean square error matrix Eθ[(θ̃n − θ)(θ̃n − θ)′] is given by

(10) and we have

lim
n→∞

nEθ[(θ̃n − θ)(θ̃n − θ)
′] = σ2G.

Proof. The theorem will be proved if we show that

lim
n→∞

n∑
i,j=1

MijHi(J
′J)−1Hj(J

′J)−1 = 0.
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But, since Mij = δij − j′i(J
′J)−1jj , we can write

lim
n→∞

n∑
i,j=1

MijHi(J
′J)−1Hj(J

′J)−1 = lim
n→∞

(
n∑
i=1

Hi(J
′J)−1Hi(J

′J)−1

−
n∑

i,j=1

j′i(J
′J)−1jjHi(J

′J)−1Hj(J
′J)−1

)
= 0

and the proof is complete. �
Let us consider now the case when ε is Nn(0,Σ) distributed random vector.

Then we have the inequalities

‖AΣA′‖2 ≤ ‖Σ‖2‖AA′‖2 = ‖Σ‖2‖(J ′J)−1‖2,∣∣∣∣tr(Ni +N ′i
2

Σ
Nj +N ′j

2
Σ

)∣∣∣∣ ≤ ∥∥∥∥Ni +N ′i
2

∥∥∥∥ · ‖Σ‖2 · ∥∥∥∥Nj +N ′j

2

∥∥∥∥(11)

≤ ‖Ni‖ · ‖Nj‖ ‖Σ‖
2.

Thus

(12) |S(1, 1)ij| ≤ 3‖Ni‖ ‖Nj‖ ‖σ‖
2,

where the expression for ‖Nj‖2 is given by (6). By analogy

|(S(1, 2))il| =
∣∣∣ n∑
j=1

2 tr(NiΣA
′HjAΣ)(jj)l + tr(NiΣ) tr(A′BlAΣ)

∣∣∣
≤ 3‖Ni‖ ‖A

′BlA‖ ‖Σ‖
2.

(13)

It is easy to show that

(14) ‖A′BlA‖
2 = tr((J ′J)−1Bl(J

′J)−1Bl).

By analogy

(J ′S(2, 2)J)kl =

(j1, . . . , jn)S(2, 2)

 j
′
1
...

j′n



kl

=
n∑

i,j=1

(ji)k (2 tr(A′HiAΣA′HjAΣ) + tr(A′HiAΣ) tr(A′HjAΣ)) (jj)l)

= 2 tr(A′BkAΣA′BlAΣ) + tr(A′BkAΣ) tr(A′BlAΣ) for k, l = 1, . . . , p.

Thus we have:

(15) |(J ′S(2, 2)J)kl| ≤ 3‖A′BkA‖ ‖A
′BlA‖ ‖Σ‖

2.

From the inequalities (12), (13), (15) and from the equalities (6), (9) and (14)

the following theorem follows easily.
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Theorem 3. Let the Assumptions 1 and 2 hold and let ε has the Nn(0,Σ)

distribution, where limn→∞ 1/n‖Σ‖ = 0. Then for the approximate least squares

estimator θ̃n given by (8) we have:

lim
n→∞

E[(θ̃n − θ)(θ̃n − θ)
′] = 0.

Proof. It follows from (6) and (14) and from the assumptions of the theorem

that finite limits limn→∞ ‖Nk‖ and limn→∞ ‖A′BkA‖ exist for every k = 1, . . . , p.

Thus we see, using (9), (11), (12), (13), (15) and the assumption (J ′J)−1 =

OG(1/n) that every member of the mean square error matrix of the approximate

estimator θ̃n converges to zero if n tends to infinity. �
Remark. According to Remark 2 the condition imposed on Σ is fulfilled if ε is

a stationary time series with a covariance function R(·) such that limt→∞R(t) = 0.

4. Simulation Results

Let us consider the nonlinear regression model

X(t) = β1 + β2t+ γ1 cosλ1t+ γ2 sinλ1t+ γ3 cosλ2t+ γ4 sinλ2t+ ε(t);

t = 1, 2, . . . , n, where θ = (β1, β2, λ1, λ2, γ1, γ2, γ3, γ4)
′ is an unknown vector of

regression parameters and ε is an AR(1) process given by

ε(t) = ρε(t− 1) + e(t)

with a white noise e having variance σ2 = 1.

We have simulated data following this nonlinear regression model with different

values of an autoregression parameter ρ and a given value of θ. For every fixed

value of the parameters ρ and θ one observation of X of the length n = 51, one of

the length n = 101 and one of the length n = 149 were simulated. The modified

Marquard’s method was used to compute the LSE θ̂ for θ.

A comparison of the LSE θ̂ and the approximate LSE estimator θ̃ was done in

Štulajter and Hudáková (1991). It was shown that θ̂ and θ̃ are nearly the same in

many cases.

The aim of this simulation study is to investigate an influence of different values

of the parameter ρ on the LSE θ̂ and dependence of this influence on n, the length

of an observation.

The initial values for iterations were found as follows. First, from X(·) the

LSE β0 for β was found. Then we have computed the periodogram for the partial

residuals X(t)− β0
1 − β

0
2t; t = 1, 2, . . . , n and the frequences λ0

1, λ
0
2 in which there

are the two greatest values of the periodogram were found. In the model

X(t)− β0
1 − β

0
2t = γ1 cosλ0

1t+ γ2 sinλ0
1t+ γ3 cosλ0

2t+ γ4 sinλ0
2t+ ε(t)
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we have used again the least squares method for finding γ0 – the LSE estimator

for γ.

The value θ0 = (β0′ , λ0′ , γ0′)′ of an unknown parameter θ was used as an

initial value for computing the LSE θ̂ of θ using the Marquard’s method. The

least squares estimators, each computed from one simulation of the corresponding

length, are given in the following tables.

Least squares estimates

n = 51 ρ = -0.99 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0.99
β1 = 3 3.02 3.02 3.09 2.85 2.83 2.98 3.09 3.15 3.23 2.88 0.71
β2 = 2 2.01 1.99 1.99 2.01 2.00 2.00 2.00 1.99 1.99 2.00 2.08
λ1 = 0.75 0.99 0.75 0.75 0.74 0.75 0.75 0.75 0.75 0.74 0.74 0.74
λ2 = 0.25 0.75 0.25 0.24 0.25 0.25 0.25 0.24 0.24 0.24 0.24 0.25
γ1 = 4 -1.67 3.73 3.21 4.14 4.19 4.32 3.91 3.94 3.92 3.84 3.78
γ2 = 3 -10.59 2.64 3.15 2.38 2.40 2.78 3.02 3.03 2.50 2.88 3.20
γ3 = 2 3.6 1.78 2.11 1.51 1.52 2.31 1.88 2.02 2.43 2.47 0.56
γ4 = 4 2.77 3.91 4.01 3.83 3.74 3.95 3.66 3.55 3.93 3.54 4.29

Least squares estimates

n = 101 ρ = -0.99 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0.99
β1 = 3 3.20 2.98 2.92 3.09 2.94 2.89 3.18 2.95 3.47 4.07 3.78
β2 = 2 1.99 2.00 2.00 1.99 2.00 2.00 1.99 2.00 1.99 1.97 1.98
λ1 = 0.75 0.99 0.74 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.74 0.75
λ2 = 0.25 0.75 0.25 0.24 0.25 0.25 0.25 0.24 0.25 0.25 0.24 0.25
γ1 = 4 -0.70 4.12 3.60 4.00 3.88 3.73 4.13 3.88 3.77 4.04 3.75
γ2 = 3 -10.51 3.50 3.52 2.93 3.72 3.29 2.88 3.09 3.24 2.73 3.30
γ3 = 2 3.66 2.06 2.15 2.19 2.05 2.35 2.43 2.29 2.19 2.20 1.51
γ4 = 4 2.90 3.99 3.86 3.78 3.98 3.74 3.61 3.63 4.01 3.62 4.40

Least squares estimates

n = 149 ρ =-0.99 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0.99
β1 = 3 3.04 2.94 2.97 2.98 2.86 3.09 2.95 3.34 3.10 3.20 3.38
β2 = 2 1.99 2.00 2.00 2.00 2.00 1.99 2.00 1.99 1.99 1.99 1.99
λ1 = 0.75 0.74 0.75 0.75 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75
λ2 = 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.25
γ1 = 4 4.22 3.77 4.14 4.31 3.92 3.85 4.18 4.03 4.07 40.3 3.97
γ2 = 3 2.68 3.24 2.93 2.80 3.45 2.80 3.01 2.93 3.01 3.12 2.97
γ3 = 2 2.05 1.91 1.77 1.91 1.82 2.15 1.95 2.39 2.23 2.67 1.95
γ4 = 4 4.01 4.10 3.98 4.00 4.09 3.85 3.83 3.64 3.87 4.06 4.27

We can see from the tables that the only difficulty with estimation is for

ρ = −0.99, where the influence of the spectral density of AR(1) process on the

periodogram occurs. Here λ1 = 0.75 is discovered as a second peak of the peri-

odogram and the estimates of corresponding γ′s are 3.60 and 2.77 for n = 51 and

3.66 and 2.90 for n = 101 instead of 4 and 3 respectively. The value λ̂1 = 0.99 is

due to the spectral density of the AR(1) process and to this frequency correspond
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also the estimates of γ′s. This effect does not occur for n = 149. For other values

of ρ the LSE θ̂ of θ are satisfactory, as we can see from the tables even for n = 51,

a relatively small length of observations.
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