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SUBMANIFOLD GEOMETRY AND HESSIANS ON THE

PSEUDORIEMANNIAN MANIFOLD OF METRICS

M. NEUWIRTHER

Abstract. Submanifolds of the manifold of metricsM appear in several contexts
in differential geometry such as in the theory of Einstein metrics, the Yamabe pro-
blem and Teichmüller theory. Using the natural family of pseudometrics Gc on the
manifold of metrics from [GMN92], I have tried to describe the pseudo-riemannian
geometry of the relevant submanifolds of M . They will be described as maximal
integral submanifolds. Submanifold charts and formulas for the second fundamental
forms and the induced connections will be given. In the conformal class, which is
geodesically closed, also the geodesic distance is studied.

Most of these theories cited above use some variation principle on submanifolds
of M. I have used the pseudoriemannian structure to derive gradients, Hessians
and conditions for the ellipticity of the Hessians of the relevant functionals.

Submanifolds of the manifold of metricsM appear in several contexts in diffe-

rential geometry such as in the theory of Einstein metrics, the Yamabe problem

and Teichmüller theory. Using the natural family of pseudometrics Gc on the ma-

nifold of metrics from [GMN92], I have tried to describe the pseudo-riemannian

geometry of the relevant submanifolds of M. They will be described as maximal

integral submanifolds. Submanifold charts and formulas for the second funda-

mental forms and the induced connections will be given. In the conformal class,

which is geodesically closed, also the geodesic distance is studied. For that I have

frequently made use of the fact that the classical submanifold equations of Rie-

mannian geometry hold also on manifolds modeled over convenient spaces in the

sense of [KrM92] — as long as the submanifold admits a projection onto its

tangent bundle (for the straight forward proof see [Neu92]).

Most of these theories cited above use some variation principle on submanifolds

of M. I have used the pseudoriemannian structure to derive gradients, Hessians

and conditions for the ellipticity of the Hessians of the relevant functionals.

All functionals which will be studied are given by integration over the base

manifold. For non compact manifolds they have distributional densities as their

analogs. This is explained in [Neu92]. Consider, for example, the total scalar

curvature, which is not defined as a function on non compact manifolds. But it
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has a natural well defined candidate for its derivative along a curve c such that for

all t, c(t) = c(0) outside some compact subset of the manifold. This fits exactly

to the topology on M.

The geodesic equation for the submanifold of metrics with constant volume and

for the conformal class with constant volume will be computed, but I could not

solve it. Even worse seems to be this problem for the Teichmüller space. There I

could not even derive the geodesic equation.

It is shown which metric corresponds to the metric of Teichmüller theory on

the manifold of all almost complex structures over a Riemannian surface. For the

moduli space this was already done before [FiT82].

For the total scalar curvature I have proceeded as follows: On the whole ma-

nifold of metrics the ellipticity of the arising partial differential operator on M
is studied; and in the conformal class light like and degenerate directions of the

Hessian are studied. For the latter problem full characterization seems to be po-

ssible only in dimension 4.

I will follow the notation of [GMN92].

1. Submanifold Geometry on M

1.1. Let M be a smooth and finite dimensional manifold without boundary.

Denote by M the set of metrics on M . Let S2M denote the vector bundle of

symmetric (0, 2)-tensors on M . M is a cone in the vector space of symmetric

(0, 2)–tensor fields C∞(S2M). It is open therein iff M is compact. At any rateM
is a smooth manifold modeled on C∞c (S2M), the space of symmetric (0, 2)-tensor

fields with compact support.

1.2. For c ∈ R, c 6= 0 there is a non degenerate bilinear form Gc onM defined

by

Gcg =

∫
M

(
Tr(H0K0) + cTr(H)Tr(K)

)
vol(g)

with the (1, 1)-tensor fields H = g−1h,K = g−1k and where H0,K0 denotes the

traceless parts of these tensor fields. Write G instead of G
1
n . If c > 0 then Gc

defines a (weak) metric, for c < 0 a (weak) pseudometric with pointwise signature

(number of negative eigenvalues −1: As the signature depends continuously on

c, it is constant on c > 0 and c > 0 respectively. If c > 0 this follows from

Tr(H0K0) + 1
n

Tr(HK) = Tr(HK). For c < 0 consider c = 1
n
− 1; then the

integrand of Gc is Tr(H0K0) + ( 1
n
− 1) Tr(HK) = Tr(HK) − Tr(H)Tr(K); note

that on the symmetric forms with zeros at the diagonal this is positive definite

and on the space of diagonal matrices it has signature 1 and they are orthogonal

to each other.
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If a, b ∈ R \ {0}, then

(1.2.1) Gb(h, k) = Ga(h−
a− b

an
Tr(g−1h)g, k).

1.3. In [GMN92] it was shown that the geodesic in (M, Gc) starting at g0 in

direction h is given by

Expcg0(th) = g0e(a(t)Id+b(t)H0),

where a(t) = ac,H(t) and b(t) = bc,H(t) in C∞(M,R) are defined as follows:

a(t) =
2

n
ln((1 +

t

4
Tr(H))2 + t2

c−1

16
Tr(H2

0 ))

b(t) =


4√

c−1 Tr(H2
0 )

arctan(
t
√
c−1 Tr(H2

0 )

4+tTr(H) ) for c−1 Tr(H2
0 ) > 0

4√
−c−1 Tr(H2

0 )
Artanh(

t
√
−c−1 Tr(H2

0 )

4+tTr(H) ) for c−1 Tr(H2
0 ) < 0

t
1+ t

4 Tr(H)
for Tr(H2

0 ) = 0

Here arctan is taken to have values in (−π2 ,
π
2 ) for the points of the basis manifold,

where Tr(H) ≥ 0. Else we define

arctan (
t
√
c−1 Tr(H2

0 )

4 + tTr(H)
) =


arctan in [0, π2 ) for t ∈ [0,− 4

Tr(H) )

π
2 for t = − 4

Tr(H)

arctan in (π2 , π) for t ∈ (− 4
Tr(H) ,∞).

1.4. Submanifolds of M. For each g ∈ M we have the decomposition of

TgM = C∞(S2M)

(DEC) TgM = Rg ⊕ Cg0 (M,R)g ⊕ C∞(S2
gM)

where Cg0 (M,R) = {f ∈ C∞(M,R) :
∫
M
f vol(g) = 0} and C∞(S2

gM) = {h ∈
C∞(S2M) : Trg(h) = 0}. This decomposition is Gc-orthogonal for all c 6= 0:

Obviously Gc
(
Cg0 (M,R)g, C∞(S2

gM)
)

= 0 and if r ∈ R, f ∈ Cg0 (M,R) then

Gc(rg, fg) = cn2 · r
∫
M
f vol(g)=0.

The corresponding sections of orthogonal projections πi ∈ C∞(End(TM)) are

π1(g) : C
∞(S2M)� Rg, h 7→

1

n

( 1

Vol(g)

∫
M

Trg(h) vol(g)
)
g

π2(g) : C
∞(S2M)� Cg0 (M,R)g, h 7→

1

n

(
Trg(h)−

1

Vol(g)

∫
M

Trg(h) vol(g)
)
g

π3(g) : C
∞(S2M)� C∞(S2

gM), h 7→ h−
1

n
Trg(h)g.
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and

πT (g) = π1 ⊕ π2 : C∞(S2M)→ C∞(M,R)g

(DEC) defines several smooth distributions of TM given by sums of πi’s. In each

case maximal integral manifolds through each g ∈M exist and are as follows:

Distribution: Maximal integral submanifold through g:

π1(TM) R+g

π2(TM) Confg0 = {fg : f > 0,

∫
M

f vol(g) = 0}

π3(TM) Mvol(g) = {b ∈ M : vol(b) = vol(g)}

π1(TM)⊕ π2(TM) Confg = {fg : f ∈ C∞(M,R), f > 0}

π2(TM)⊕ π3(TM) MVol(g) = {b ∈M : Vol(b) = Vol(g)}

1.5. Submanifold charts. There are obvious charts

R+ · g 3 rg → r ∈ R+

Confg 3 pg → p ∈ {f ∈ C∞(M,R) : f > 0}

Confg0 3 pg → p ∈ {f ∈ C∞(M,R) : f > 0,

∫
M

f vol(g) = 0}

For g0 ∈ Mvol(g) consider the map φg0 : g 7→ ln(g−1
0 g) ∈ C∞(End(TM)) on a

neighborhood U(g0) ∈ M of g0, where it is a homeomorphism. Its inverse is

lg0 ◦Exp, l denoting left multiplication. The chart changes are given by mappings

of the form E → ln(g−1
1 g0 Exp(E)) ∈ C∞(End(TM)) which are diffeomorphisms

of open sets in C∞(End(TM)). This chart is adapted to Mvol(g), since for g0 ∈
Mvol(g), g ∈ U(g0) is vol(g) = vol(g0) iff det(g) = det(g0), i.e. iff det(g−1

0 g) ≡ 1,

i.e. iff det(Exp(φg0(g))) = 1, i.e. iff eTr(φg0(g)) = 1, i.e. iff Tr(φg0(g)) = 0. Thus

φ(Mvol(g) ∩ U(g0)) = φ(U(g0)) ∩ {E ∈ C
∞(End(TM)): Tr(E) = 0}.

For g0 ∈ MVol(g) consider the map ψg0 : g 7→ ( g

Vol(g)
2
n
,Vol(g)− 1), which determi-

nes a global diffeomorphism M → MVol(g0) × (−1,∞). Obviously,

ψg0(MVol(g0)) =M1 × {0}.

1.6. Calculation of second fundamental forms. In the sequel I will not

use charts adapted to the submanifolds, since these charts are not easy to handle

with.

1.7. ωcMVol(g)
. In this case the orthogonal projection on the normal bundle is

πNMVol(g)
(∇ck̃(g)) =

1

nVol(g)

∫
M

(
Tr(g−1dk̃(g).h)− Tr(g−1Γcg(h, k))

)
vol(g)
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The extension k̃ satisfies
∫
M

(g−1k̃) vol(g̃) = 0 for g̃ ∈ MVol(g). Thus

∫
M

Tr(g−1dk̃(g).h) vol(g) =

∫
M

(
Tr(HK)−

1

2
Tr(K)Tr(H)

)
vol(g)g.

For the Christoffel symbol one obtains∫
M

−Tr(g−1Γcg(h, k)) vol(g)

=

∫
M

(
−

4c+ 1

4c
Tr(HK) +

cn+ 1

4cn
Tr(H)Tr(K)

)
vol(g).

Therefore

ωcMVol(g)
(h, k) =

1

nVol(g)

∫
M

(
1

4c
Tr(HK) +

1− 4cn

4cn
Tr(H)Tr(K)

)
vol(g)g.

In particularMVol(g) is geodesically closed iff n = 1 and c = 2. For n = 1:

ωcMVol(g)
(h, k) =

1

nVol(g)

∫
M

2− c

4c
hk vol(g)g.

1.8. ωcMvol(g)
. Since πNMvol(g)

= π1 ⊕π2 = πT the second fundamental form is
1
n

Tr(∇hk̃)g. For g̃ ∈ Mvol(g) is Tr(g̃−1k̃) = 0, hence Tr(g−1dk̃(g).h) = Tr(HK).

On the other hand

Tr(g−1Γcg(h, k)) =

(
Tr(HK)−

1

2
Tr(H)Tr(K)

+
1

4c
Tr(HK) +

cn− 1

4cn
Tr(H)Tr(K)

)
g

As Tr(H) = Tr(K) = 0,

−Tr(g−1Γcg(h, k)) =
1− 4c

4c
Tr(HK)g.

Finally,

ωc(h, k) =
1

4cn
Tr(HK).

Therefore,Mvol(g) is never geodesically closed.

1.9. Confg. It has followed implicitly from 1.7 that Confg is geodesically

closed. A direct proof using the geodesics onM will be given in 6.1.
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1.10. ωcConfg0
. Since πN Confg0

= π1 ⊕ π3 the second fundamental form is

(∗)

πConfg0
(∇hk̃)(g) =

(
1

nVol(g)

∫
M

Tr(g−1∇hk̃) vol(g)

)
g+

(
∇hk̃−

1

n
Tr(g−1∇hk̃)g

)
Here h = f1g, k = f2g for some f1, f2 ∈ C

g
0 (M,R). If g̃ ∈ Confg0 is∫

M

Tr(g̃−1k̃) vol(g̃) = 0.

Therefore for the first summand in (∗) one obtains the terms∫
M

Tr(g−1dk̃(g).h) vol(g) =

∫
M

(
Tr(HK)−

1

2
Tr(H)Tr(K)

)
vol(g)

=
n(n− 2)

2

∫
M

f1f2 vol(g)

and (see the calculation in 1.7)∫
M

−Γcg(h, k) vol(g) =

∫
M

−3cn− n+ 1

4c
f1f2 vol(g).

The second summand of (∗) vanishes (which reflects the fact that Confg is geode-

sically closed):

dk̃(g).h−
1

n
Tr(g−1dk̃(g).h)− Γcg(h, k)0.

At first note that k̃ − 1
n Tr(g−1k̃)g = 0 along Confg0 and therefore

dk̃(g).h−
1

n
Tr(g−1dk̃(g).h) = −

1

n
Tr(HK)g +

1

n
Tr(H)k

= −f1f2g + f1f2g = 0.

and finally from the expression of the Christoffel symbol it follows easily that

Γcg(h, k)0 = Γcg(f1g, f2g)0 = 0.

Therefore

ωc(h, k) =
cn− n2 − n+ 1

4cnVol(g)

∫
M

f1f2 vol(g)g.

In particular Confg0 is geodesically closed iff c = n2+n−1
n

. Note that for such a c

the metric Gc is positive definite.
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1.11. Covariant derivative on MVol(g). Put V = Vol(g) and let ∇̃c =

π3 ◦ ∇c be the Christoffel symbol on MV . Then for a vector field k along MV ,

the covariant derivative in direction h ∈ TgMV is given by

∇̃chk(g) =∇chk − ω(h, k(g))

=dk(g).h−
1

2
hg−1k −

1

2
kg−1h+

1

4
Tr(H)k +

1

4
Tr(K)h

−
1

4cn
Tr(HK)g +

cn− 1

4cn2
(Tr(H)Tr(K))g

−
1

nV

∫
M

(
1

4c
Tr(HK) +

1− 4cn

4cn
Tr(H)Tr(K)

)
vol(g).g

For c = 1
n :

∇̃chk(g) =dk(g).h−
1

2
hg−1k −

1

2
kg−1h

+
1

4
Tr(H)k +

1

4
Tr(K)h−

1

4
Tr(HK)g

−
1

nV

∫
M

(
n

4
Tr(HK)−

3

4
Tr(H)Tr(K)

)
vol(g).g

1.12. Geodesics on MVol(g). Thus the geodesic equation is

gtt =gtg
−1gt −

1

2
Tr(g−1gt) +

1

4
Tr(g−1gtg

−1gt)g

+
1

nV

∫
M

(
n

4
Tr(g−1gtg

−1gt)−
3

4
Tr2(g−1gt)

)
vol(g).g

The substitution J = g−1gt does not eliminate g, since then

Jt =−
1

2
Tr(J)J +

1

4
Tr(J2) Id

+
1

nV

∫
M

(
n

4
Tr(J2)−

3

4
Tr2(J)

)
vol(g). Id

Nevertheless J ′0 = − 1
2 Tr(J)J0. Assume that the solution is of the form g(t) =

g0 Exp(a(t) Id+b(t)H0). Then the volume element along the geodesic is

vol(g) = vol(g0)e
n2

2 a(t)

and the geodesic equation is
a′′ =−

n

4
a′

2
−

1

2V
n

∫
M

a′
2
e
n2

2 a vol(g0)

+
Tr(H2

0 )

4

(
b′

2
+

1

V

∫
M

b′
2
e
n2

2 a vol(g0)
)

b′′ = − 1
2na

′b′.
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Up to now I have not been able to solve it; even not if M is the 1-sphere or

the torus for the geodesic starting at the standard metric. In these cases I have

tried to use Fourier transformation. But the Fourier transform of e(a) has a very

complicated dependence on the Fourier coefficients of a.

2. Application to Teichmüller Theory

2.1. Riemannian Surfaces. In the following five paragraphs I will review

some basic results about Riemannian surfaces. For proofs see e.g. [FiT82]: Let

M be a compact, oriented manifold of dimension 2. Denote by C the set of com-

plex structures and by A the set of almost complex structures that respect the

orientation of M . Each complex structure yields an almost complex structure by

realification. A is a smooth manifold with tangent space

TJA = {L ∈ C∞(T 1
1 (M)): J ◦ L+ L ◦ J = 0}.

In dimension 2 the Nijenhuis tensor

N(J)(X,Y ) = 2

(
[JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ]

)
of every almost complex structure J vanishes: If Xx 6= 0, then {Xx, JXx} is a

basis of TxM ; N(J) is antisymmetric and N(Xx, JXx) = 0.

Thus by the Newlander-Nirenberg theorem the sets C and A are the same. The

diffeomorphism group acts on C by pullback of charts, on J ∈ A for φ ∈ Diff(M) by

the pullback φ∗(J) = (Tφ−1)◦(J ◦φ)◦Tφ. The identification is Diff(M)-invariant.

Hence one has the correspondences C/Diff(M)↔ A/Diff(M) and C/Diff0(M)↔
A/Diff0(M) for the connected component of the identity Diff0(M).

R = C/Diff(M) is called the Riemannian space of moduli of M and T =

C/Diff0(M) is called the Teichmüller space of M .

The modular group Γ = Diff(M)/Diff0(M) is discrete and T /Γ = R. For

genus(M) ≥ 2 T is a cell of dimension 6(genus(M)− 1), in particular it delivers a

stratification of R.

2.2. Let P = {f ∈ C∞(M,R) : f > 0} be the cone of strictly positive functions.

P acts onM by multiplication. Define the mapping

ψ : M→A, ψ(g) = −c11(g
−1 ⊗ vol(g)).

As vol(fg) = f
dim(M)

2 vol(g) = f vol(g) for f ∈ P , ψ is invariant under the action of

P onM. The mapping ψ̂ : M/P → A induced by ψ is a diffeomorphism. Denote

by M−1 the set of metrics g with scalar curvature scal(g) ≡ −1 (As the total

volume is always positive, the notation does not clash with the notation MVol).

Then πM/P �M−1 : M−1 →M/P is a diffeomorphism; the proof of that is based

on the existence of isothermal coordinates. Thus ψ �M−1 = ψ̂◦πM/P : M−1 → A

is a diffeomorphism. ψ̂ ◦ πM/P is moreover Diff(M)-invariant and thus induces a

diffeomorphism of the moduli spacesM−1/Diff(M) ∼= R, M−1/Diff0(M) ∼= A.
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2.3. The Weil-Peterson metric. There is a metric on A given by

HJ (L1, L2) =

∫
M

Tr(L1 ◦ L
∗
2) vol(ψ−1(J))

where L∗ is the ψ−1(J)-adjoint of L2: ψ−1(J)(L2(X), Y ) = ψ−1(J)(X,L∗2(Y ))

for all X,Y ∈ X(M). In normal coordinates for ψ−1(J) one sees that the adjoint

L 7→ L∗ on TJA is the identity. H is Diff(M)-invariant and factors to a metric Ĥ

on T and R. (T , Ĥ) is Kähler and is called the Weil-Peterson metric. A � T is

a Riemannian submersion.

2.4. Tangent space of M−1. The variation of the scalar curvature is

d scal(g).h = −g(h,Ric(g))− δgδgh+ ∆g(Trg h).

In dim(M) = 2 one has Ric(g) = 1
2 scal(g).g and thus

TgM−1 = {h ∈ C∞(S2M) : δgδgh+ ∆g(Trg h) =
1

2
Trg(h)}.

Remember that C∞(S2M) = ker(δg)⊕ im(δg∗), thus also

C∞(S2
gM) = (ker(δg) ∩ kerTrg)⊕ (im(δg∗) ∩ kerTrg)

is a Gg-orthogonal decomposition. Let πTD(g) : C∞(S2M)� ker(δg) ∩ kerTrg be

the projection. If h ∈ TgM−1∩ker(δg), then multiplication with Trg h and partial

integration yields

0 =〈Tr 2gh,Trg h〉g − 〈Trg h,∆
g(Trg h)〉g

=‖Trg h‖
2
g + ‖df‖2g = 0,

thus Trg h = 0 and Tg(M−1)∩ker(δg) = ker(δg)∩ker Trg. If h ∈ im(δg∗), then h is

given by h = d
dt

∣∣
0
(φt∗)g for some curve of diffeomorphisms φt. Since scal(φ∗t g) =

φ∗t (scal(g)) = scal(g)◦φt, d scal(g).h = d
dt

∣∣
0
scal(φ∗t g) = 0 and TgM−1∩ im(δg∗) =

im(δg∗). Summing up one gets

(2.4.1) TgM−1 = (ker(δg) ∩ kerTrg)⊕ im(δg∗).

From this one realizes, that

Tg(M−1/Diff(M)) = ker(δg) ∩ kerTrg .
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2.5. Geometry of M−1. The problem is that the tangent space is not easy

to describe and so is the geodesic equation. AsMvol(g) is diffeomorphic toM−1,

one might suspect that the geometry of M−1, which is well-known, is of some

help. But it is easy to see that this diffeomorphism is not an isometry. And even

worse,Mvol(g) is not Diff(M)-invariant.

On the other hand, the map ψ : M−1 → A is not an isometry either. The pullback

metric onM−1 is

ψ∗(H)g(h, k) =

∫
M

Tr(dψ(g).h ◦ dψ(g).k) vol(g).

Put I(h, k) = Tr(dψ(g).h ◦ dψ(g).k). The derivative of ψ is given by

dψ(g).h = c11(g
−1hg−1 ⊗ vol(g)) +

1

2
Trg(h)ψ(g).

Therefore, the integrand I(h, k) is given by

I(h, k) =Tr
(
c11
(
g−1hg−1 ⊗ vol(g)

)
◦ c11

(
g−1kg−1 ⊗ vol(g)

))
+

1

2
Trg(k)Tr

(
c11
(
g−1hg−1 ⊗ vol(g) ◦ ψ(g)

))
+

1

2
Trg(h)Tr

(
c11
(
g−1kg−1 ⊗ vol(g) ◦ ψ(g)

))
+

1

4
Trg(h)Trg(k)Tr(ψ(g) ◦ ψ(g)).

As Tr(L1 ◦ L2) = Tr(L1 ◦ L∗2) (see 2.3) and

vol(g)jlg
lr vol(g)nr = − vol(g)jlg

lr vol(g)rn = gjn,

one has

Tr
(
c11
(
g−1hg−1 ⊗ vol(g)

)
◦ c11

(
g−1kg−1 ⊗ vol(g)

))
=hil vol(g)lmk

mn vol(g)ni

=hij vol(g)jlk
mn vol(g)nrg

lrgim = Tr(g−1hg−1k).

Furthermore, as vol(g)mng
nr vol(g)ri = −gmi,

Tr
(
c11(g

−1hg−1 ⊗ vol(g) ◦ ψ(g))
)

= hij vol(g)mng
nr vol(g)ri = −Trg(h).

Finally, Tr(ψ(g) ◦ ψ(g)) = Tr(− Id) = −2. Summing up one obtains

(2.5.1) I = g(h, k)−
3

2
Trg(h)Trg(k).

As Tr(HK)+aTr(H)Tr(K) = Tr(H0K0)+ an+1
n

Tr(H)Tr(K) for a ∈ R, we have

just proved the following lemma.
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2.6. Proposition. The metric on M−1 that is induced by ψ : M−1 → A is

given by ψ∗(H) = G−1 �M−1 (see 1.2).

M−1 is not geodesically closed in M. Denote by Ĝ the metric on

M−1/Diff0(M) induced by G = G
1
n .

2.7. Corollary. (comp. [FiT82]) The diffeomorphism of moduli spaces

ψ ◦ πM/P : M−1/Diff0(M)→ A/Diff0(M)

induced by g 7→ −c11(g
−1⊗vol(g)) is an isometry between (M−1/Diff0(M), Ĝ) and

(A/Diff0(M), Ĥ).

Proof. Follows from 2.5.1 and the direct sum decomposition (2.4.1) of TM−1

in 2.4. �

2. Some Tensor Calculus

In the sequel the relation between contractions of ∇2, the second order Ricci

identity and the Lichnerowitz Laplacian is studied. This will give an alternative

formula for the derivation of the Ricci curvature and allows to compare to already

known formulas (e.g. [Bes88]).

3.1. Notation. Denote by T ∗pM the vector bundle of all (0, p)-tensors and

by SpM (resp. ΛpM) the vector bundle of all symmetric (resp. antisymmetric)

(p, 0)-tensors on M . Then for the Whitney sum S2M ⊕ Λ2M = T 2M . For the

smooth section write C∞(S2M) = C∞(S2M) and Ω2(M) = C∞(Λ2M) Let g be a

metric on M . The induced pseudo-metric on the vector bundle T pM is given by

g(X1 ⊗ · · · ⊗Xp, Y1 ⊗ · · · ⊗ Yp) = g(X1, Y1) · · · g(Xp, Yp)

and will be denoted also by g. Note that on T 2M there is also the pseudo-metric

g̃ given by g̃(h, k) = Tr(g−1hg−1k). Then g̃ � S2M = g, g̃ � Λ2M = −g. Let

∇ : C∞(TM) → C∞(TM) ⊗ C∞(TM) be the Levi-Civita connection of g. Its

extension to T pM will be denoted also by ∇:

∇ : C∞(SpM)→ Ω1M ⊕ C∞(SpM)

∇ : ΩpM → Ω1M ⊕ ΩpM

Let : C∞(T pM)→ C∞(SpM) be the symmetrisation

sym(T )(X1, . . . ,Xp) =
1

p!

∑
τ∈S(p)

T (Xσ(1), . . . ,Xσ(p))
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and alt : C∞(T pM)→ Ωp(M) be the antisymmetrisation

alt(T )(X1, . . . ,Xp) =
1

p!

∑
τ∈S(p)

sign(τ)T (Xσ(1), . . . ,Xσ(p))

Covariant derivatives of tensors in C∞(S2M) and Ωp(M) are symmetric (resp.

antisymmetric) in all factors but the first. Define the symmetric (resp. anti-

symmetric) covariant derivative by

δ∗ : C∞(T pM)→ C∞(SpM), δ∗ = sym ◦ ∇

d : C∞(T pM)→ Ωp(M), d = alt ◦ ∇.

d is an extension of the usual exterior differential on Ωp(M).

3.2. The (3, 1) curvature tensor Riem(g) acts on C∞(S2M) by

Riem(g).h = c1212
(
g ⊗ c11(h⊗Riem(g))

)
= c123123(g ⊗ h⊗Riem(g)).

In a local basis {∂i} of C∞(TM) this is the symmetric (2, 0)-tensor

(X,Y ) 7→
∑
ij

gijh(Riem(g)(X, ∂i)Y, ∂j)

3.3. For a metric g and for each p ≥ 1 there is the non degenerate pairing of

convenient vector spaces G̃g : C∞(T pM) ⊗ C∞c (T pM), (h, k) 7→
∫
M
g(h, k) vol(g).

If the metric g is somehow fixed, I will write G̃ instead of G̃g. For p = 0 and p = 1

the common notation is G̃(., .) = 〈., .〉g.

3.4. Contractions of ∇2. If the metric g is fixed, then contractions of T ∈
C∞(T pM)

c1...2li1...i2l
(g−1 ⊗ · · · ⊗ g−1︸ ︷︷ ︸

l times

⊗T )

will often be abbreviated by ci1...i2l(T ). For h ∈ C∞(S2M) put

M(h) = sym(c14∇
2h) = sym(c13∇

2)

∆(h) = −c12∇
2(h) = (δ ◦ ∇)(h)

Note that not even on C∞(S2M) or on Ω1(M), the operators ∆ = δ ◦∇ and δ ◦ δ∗

coincide.

The remaining two traces are

Hess(Trg h) = ∇d(Trg h) = ∇(c23∇h) = c34(∇
2h)

(δ∗ ◦ δ)(h) = −sym(∇(c12(∇h))) = −sym ◦ c23(∇
2h) = −sym ◦ c24(∇

2h)

The full contractions are

Trg(M(h)) = −Trg((δ
∗ ◦ δ)(h)) = δδh

Trg(∆h) = −Trg(Hess(Trg h)) = ∆(Trg h)

Furthermore there is the identity Gg((δδh)g, h) = Gg(h,Hess(Trg(h)).
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3.5. Let D be a connection on a vector bundle E over M . We will use the

curvature RD of (E,D), the 2-form on M with values in E∗⊗E with the following

sign:

RDX,Y (s) = D[X,Y ]s− [DX , DY ]s

for s ∈ C∞(E). Let furthermore ∇ be a connection on M with torsion T . The

second derivative D2s ∈ C∞(T ∗M ⊗ T ∗M ⊗E) of a section s ∈ C∞(E) is defined

by

D2
X,Y s = DX(DY s)−D∇XY s.

On natural bundles (such as (T pM,∇)) this coincides with the composition:

∇2h = ∇(∇h). We will make use of the second order Ricci Identity

(RId) D2
X,Y s−D

2
Y,X = −RDX,Y s−DT (X,Y ).

3.6. For h ∈ C∞(S2M) the second order Ricci Identity becomes

(∇2h)(X,Y,A,B) = (∇2h)(Y,X,A,B)− (Riem(g)(X,Y )h)(A,B)

= (∇2h)(Y,X,A,B)

+ h(Riem(g)(X,Y )A,B) + h(A,Riem(g)(X,Y )B)

For the traces of ∇2h it follows that

c14(∇
2h)(X,Y ) = c24(∇

2h)(X,Y )− (Riem(g).h)(X,Y ) + Ric(g)g−1h.

Thus there is the following relation between M(h) and δ∗δh:

(3.6.1) 2M(h) = −2δ∗δh− 2 Riem(g).h+ Ric(g)g−1h+ hg−1 Ric(g).

This equality will be used later to obtain alternative formulas for the Hessian of

the total scalar curvature.

3.7. This formula suggests the definition of the Lichnerowitz Laplacian (see

[Aub82])

∆L : C∞(T pM)→ C∞(T pM), ∆L = ∆ + Γ = δ ◦ ∇+ Γ,

where

(ΓT )i1...ip =

p∑
i=1

gij Ric(g)ikiTi1...j...ip

−
∑
k 6=l

gijgmnRiem(g)ikiilmTi1...j...n...ip
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In particular, for the restriction ∆L : C∞(S2M)→ C∞(S2M) note that the action

of Riem(g) on C∞(S2M) is given in coordinates by Riem(g).h = hkl Riem(g)iklj
and thus by the symmetries of h, of the Riemann curvature and of the Ricci

curvature one computes that

(Γh)ij = Ric(g)ikh
k
j + Ric(g)jkh

k
i −Riem(g)ikjlh

kl −Riem(g)jkilh
kl

=
(
Ric(g)g−1h+ hg−1 Ric(g)− 2 Riem(g).h

)
ij
.

This is exactly the part of equality (3.6) that does not contain derivatives of h.

Therefore, one obtains the equality

(3.7.1) 2M(h) + ∆(h) = ∆L − 2δ∗δh.

It will be used later to compare results of [Bes88] with our calculations.

4. The Hessian of the Total Scalar Curvature on (M, Gc)

The Hessian will be given in the form Hessc(h, h) = Gcg(L
ch, h) for some partial

differential operator Lc. This operator is elliptic only for (dim(M) = 1, c = 1
3 )

and its principal symbol depends on c.

4.1. At first I will present the calculation via the covariant derivative. Let

ζ̃ : M→M×C∞(S2M), ζ̃(g) = (g, ζ(g) with ζ(g) = gradc Scal(g). The differen-

tial of ζ̃ at g ∈M in direction h ∈ C∞(S2M) = TgM is

Tg ζ̃(h) = (g, gradc Scal(g), h, dζ(g).h) ∈ T 2M =M× (×3§2M).

4.2. A simple calculation yields ζ(g) = a1 scal(g)g−Ric(g) with a1(c) = cn−1
cn2 +

1
2cn = 2cn−2+n

2cn2 (a( 1
n ) = 1

2 ). Thus,

dζ(g).h = a1

(
(d scal(g).h)g + scal(g)h

)
− dRic(g).h

= a1

(
−(Ric(g), h) + ∆g(Trg h)g + (δδh)g + scal(g)h

)
+

1

2
Hess(Trg h)−

1

2
∆gh−M(h).

4.3. For the Christoffel symbols one computes that

Γcg(ζ(g), h) = a1 scal(g)h−
1

2
Ric(g)g−1h−

1

2
hg−1 Ric(g)

−
1

4

(
Trg(a1 scal(g)−Ric(g)

)
h−

1

4
(Trg h)

(
a1 scal(g)g −Ric(g))

+
1

4cn
(Trg(a1 scal(g)−Ric(g), h)g

+
cn− 1

4cn2
Trg hTrg Trg(a1 scal(g)−Ric(g))g
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Put a2(c) = − 1
4
cn−1
cn2 (a2(

1
n ) = 0) and a3(c) = a1(c) −

na1

4 + 1
4 = 1

8cn2 (cn − n2 −
8 + 8cn) (a3(

1
n ) = 6−n

8 ). Thus

Γcg(ζ(g), h) = a3 scal(g)h−
1

2
Ric(g)g−1h−

1

2
hg−1 Ric(g)

−
1

4cn
(Ric(g), h)gg +

1

4
(Trg h)Ric(g) + a2 scal(g)(Trg h)g.

4.4. Put a4(c) = −a1 + 1
4cn = 1

4cn2 (−4cn+ 4−n) (a4(
1
n
) = − 1

4 ) and note that

a1 − a3 = n−2
8cn . From the difference of the terms in 4.2 and in 4.3 one obtains

Hessc Scal(g)(h, h) = Gc
(
a1

(
∆g(Trg h)g + (δδh)

)
g

+
1

2
Hess(Trg h)−

1

2
∆gh−M(h)

+
1

2
Ric(g)g−1h+

1

2
hg−1 Ric(g)−

1

4
(Trg h)Ric(g)

+ a4(Ric(g), h)gg +
n− 2

8cn
scal(g)h− a2(Trg h) scal(g)g, h

)
.

By equality 3.6.1 one obtains the alternative formula

(4.4.1) Hessc Scal(g)(h, h) = Gc
(
a1

(
∆g(Trg h) + (δδh)

)
g

+
1

2
Hess(Trg h)−

1

2
∆gh+ δ∗δh

+ Riem(g).h−
1

4
(Trg h)Ric(g)

+ a4(Ric(g), h)g +
n− 2

8cn
scal(g)h

− a2(Trg h) scal(g)g, h
)
.

For c = 1
n

use the formula G((δδh)g, h) = G(h,Hess(Trg h)).

Hess Scal(g)(h, h) =G
(1
2
∆g(Trg h)g + (δδh)g

−
1

2
∆gh−M(h)

+
1

2
Ric(g)g−1h+

1

2
hg−1 Ric(g)

−
1

2
(Trg h)Ric(g) +

n− 2

8
scal(g)h, h

)
.

Or, alternatively, by 3.6.1

Hess Scal(g)(h, h) =G
(1
2
∆g(Trg h)g + (δδh)g

−
1

2
∆gh+ δ∗δh

+ Riem(g).h−
1

2
(Trg h)Ric(g) +

n− 2

8
scal(g)h, h

)
.
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4.5. Calculation via geodesics. The geodesics on (M, G) are of the form

g(t) = g0e
(a(t) Id+b(t)H0) with H = g−1

0 . Thus

g(t)−1g′(t) = g(t)
(
a′(t) Id+b′(t)H0

)
, g′(0) = h

The functions a(t) and b(t) satisfy:

a(0) = 0, a′(0) =
Trg h

n
, a′′(0) = −

1

2n
(TrH)2 +

1

4
Tr(H2)

b(0) = 0, b′(0) = 1, b′′(0) = −
TrH

2
.

Put ζ(t) = grad Scal(g(t)) = scal(g(t))
2 g(t) − Ric(g(t)). (Hess Scal)(g0)(h, h) =

∂2

∂t2

∣∣∣
0
(Scal◦g)(t).

α(t) : =
d

dt′
|t(Scal(g(t′)) = dS(g(t)).g′(t)

= Gg(t)(ζ(t), g
′(t))

d

dt

∣∣∣∣
0

α =
d

dt

∣∣∣∣
0

∫
M

β(t) vol(g(t))

with β(t) = Tr
(
g(t)−1ζ(t)g(t)−1g′(t)

)
. Putting into the special form of ζ(g) yields

β(t) =
n− 2

2
a′(t) scal(g(t))− b′(t)Tr(H0g(t)

−1 Ric(g))

β(0) = Tr(H)
scal(g0)

2
− (Ric(g0), h)g0 .

Thus,

d

dt

∣∣∣∣
0

β(t) =
1

2
Tr(H)d scal(g0).h+

n

2
a′′(t) scal(g0)

− Tr((a′′(t) Id+b′′(t)H0)g
−1
0 Ric(g0))− Tr(H2g−1

0 Ric(g0))

− Tr(Hg−1
0 dRic(g0).h).

Put the terms in appropriate forms:

n

2
a′′(t) scal(g) = (−

scal(g)

4
(TrH)g0 +

n

8
scal(g)h, h)g0

Tr((a′′(t) Id+b′′(t)H0)g
−1
0 Ric(g0)) = (

1

4
scal(g)h−

TrH

2
Ric(g0), h)g0

Tr(H2g−1
0 Ric(g0)) = (hg−1

0 Ric(g0), h)g0 .
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Using the formulas for the derivation of the scalar curvature and the Ricci curva-

ture one computes easily

d

dt

∣∣∣∣
0

β =
(1
2
(∆g0 TrH)g0 +

1

2
(δg0δg0h)g0 −

TrH

2
Ric(g0)

+
n− 2

8
scal(g0)h+

1

2
Ric(g0)g

−1
0 h+

1

2
hg−1

0 Ric(g0)

−
scal(g)

4
(TrH)g0 +

TrH

2
Ric(g0)

+
1

2
Hess(TrH)−

1

2
∆g0h−M(h), h

)
g0

The terms TrH
2 Ric(g) cancel and one has

(Hess Scal)(g0)(h, h) =
d

dt

∣∣∣∣
0

α(t)

=

∫
M

β(0)d vol(g).h+

∫
M

β′(0) vol(g0)

= Gg0(
scal(g)

4
(TrH)g0 −

1

2
(TrH)Ric(g0), h)

+

∫
M

β′(0) vol(g0).

Summing up one obtains

(Hess Scal)(g0)(h, h) = Gg0

(
1

2
(∆g0 TrH)g0 + (δg0δg0h)g0

−
1

2
∆g0h−M(h)

+
1

2
Ric(g0)g

−1
0 h+

1

2
hg−1

0 Ric(g0)

+
n− 2

8
scal(g0)h−

1

2
(TrH)Ric(g0), h

)
.

This is exactly the same expression for the Hessian as in 4.4.

4.6. Principal symbol. The formula of the Hessian computed in 4.4 is of the

form

Hessc Scal(g)(h, h) = Gc(Lcgh, h)

for some second order partial differential operator Lcg. By (4.4.1), the principal

part — i.e. the part of highest order — of Lcg is given by

h 7→ a1(c)
(
∆g(Trg h) + δδh

)
g −

1

2
∆gh+

1

2
HessTrg h+ δ∗δh

and depends on c.
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The principal symbol of a differential operator P : C∞(E) → C∞(F ) (E, F

vector finite dimensional real vector bundles over M) of order m at ξ ∈ T ∗xM

is given by σξ(P ).h = limt→∞ t
−me−tφP (etφh) where φ : M → R, φ(x) = 0 and

dφ(x) = ξ. The principal symbol of ∇2 is σξ(∇2).h = ξ ⊗ ξ ⊗ h. Thus

σξ(∆).h = −‖ξ‖2h,

σξ(δ
∗δ).h = −sym ◦ c13(ξ ⊗ ξ ⊗ h),

σξ(HessTrg).h = −(Trg h)ξ ⊗ ξ,

σξ(∆Trg).h = −‖ξ‖2 Trg h,

σξ(δδ).h = −h(g−1(ξ), g−1(ξ))

and the principal symbol of Lcg is

σξ(L
c
g).h = −a1(c)

(
‖ξ‖2 Trg(h) + h(g−1(ξ), g−1(ξ))

)
g

+
1

2
‖ξ‖2h−

1

2
(Trg h)ξ ⊗ ξ −

1

2
ξ ⊗ h(g−1(ξ), .) −

1

2
h(g−1(ξ), .)⊗ ξ

Lcg depends on c via a1(c). For dim(M) = n = 2, a1(c) ≡
1
2 is constant. In all

other dimensions dim(M) = n, the image of R \ {0} 3 c 7→ a1(c) is R \ { 1
n}:

n = 1, c 7→ a1(c) n > 2, c 7→ a1(c)

4.7. Theorem. If dim(M) = 1. then Lcg is elliptic iff c 6= 1
3 . If dim(M) = 2, 3

or 4 then for each c ∈ R \ {0}, the operator Lcg is not elliptic.

Proof. If dim(M) = 1, then in a g-normal basis at x

σξx(L
c
g).h = (−2a1(c) + 1)ξ2xh.
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Thus Lcg is elliptic iff c 6= 1
3 .

Now assume dim(M) = 2. Here a1(c) ≡
1
2 . Let x ∈M be an arbitrary point and

chose a normal chart of M centered at x for the metric g. Let (ξ1, ξ2) = ξ ∈ T ∗xM
be such that ξ21 + ξ22 = 1. The symmetric (2, 0)-tensors at x are identified with R3

by h 7→ (h11, h12, h22). With this identification the principal symbol at ξ is given

by the matrix

A2(ξ1, ξ2) =

 − 1
2 −ξ1ξ2 −1

0 0 −2ξ1ξ2
− 1

2 − ξ
2
1 −ξ1ξ2 −2ξ22


The determinant is det(A2(ξ1, ξ2)) = 2ξ41(ξ21 − 1). Thus at ξ = (1, 0) ξ = (0, 1),

A2(ξ1, ξ2) is singular.

For n = dim(M) > 2, c 7→ a1(c) maps R \ {0} onto R \ { 1
n
}. Put ξ3 = · · · =

ξn = 0, ‖ξ‖ = 1. Then In, the subspace of the space of symmetric matrices defined

by

In = {h ∈ R(n×n) : hT = h, hij = 0 if (i, j) /∈ {1, 2} × {1, 2} and i 6= j },

is invariant under the local expression of principal symbol. E.g. for n = 3:

σξ(L
c
g).h = −a1

(
(1 + ξ21)h11 + (1 + ξ22)h22 + h33 + 2h12ξ1ξ2

)
Id

+
1

2
h−

1

2
(h11 + h22 + h33)

 ξ21 ξ1ξ2 0

ξ1ξ2 ξ22 0

0 0 0


− sym

h11ξ
2
1 + h12ξ1ξ2, h11ξ1ξ2 + h12ξ

2
2 , 0

h12ξ
2
2 + h22ξ1ξ2, h12ξ1ξ2 + h22ξ

2
2 , 0

h13ξ
2
1 + h23ξ1ξ2, h13ξ1ξ2 + h23ξ

2
2 , 0


With the identification (h11, h12, h22, h33) 7→ R4 the principal symbol acts on R4

by the matrix

A3 =


−a1 + (1

2 − a1)ξ
2
1 −ξ1ξ2 −a1(1 + ξ21)− 1

2ξ
2
2 −a1(1 + ξ21)

(−2a1 + 1)ξ1ξ2 0 −(2a1 + 1)ξ1ξ2 −2a1ξ1ξ2
−a1 − (a1 + 1

2 )ξ21 −ξ1ξ2 −a1(1 + ξ22) + 1
2 −

3
2ξ

2
2 −a1(1 + ξ22)

−(a1 + 1
2ξ

2
1) − 1

2ξ1ξ2 −(a1 + 1
2ξ

2
2) 1

2 − a1


One computes that det(A3(a1, ξ)) =

(1+2a1)ξ
2
1(ξ21−1)(1−2a1+4a1ξ

2
1)

4 . Thus at ξ =

(1, 0, 0) and ξ = (0, 1, 0), σξ(L
c
g) maps I3 on a proper subspace of I3. Hence at ξ =

(1, 0, 0) and ξ = (0, 1, 0), σξ(L
c
g) : S

2(T ∗xM)→ S2(T ∗xM) is not an isomorphism.

For n = 4, the subspace I4 = {h ∈ R(4×4) : ht + h, h13 = h23 = h14 = h24 =

h34 = 0} is invariant and with the identification (h11, h12, h22, h33, h44) 7→ R5, the

relevant determinant is

det(A4(a1, ξ)) =
(1 + 2a1)ξ

2
1(ξ21 − 1)(1− 2a1 + 4a1ξ

2
1)

8

and A4(a1, ξ) is singular for ξ = (1, 0, 0, 0). �
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4.8. Conjecture. For n ≥ 3, the relevant determinant is

det(An(a1, ξ)) =
(1 + 2a1)ξ

2
1(ξ21 − 1)(1− 2a1 + 4a1ξ

2
1)

2n−1
.

Thus at ξ = (1, 0, . . . , 0), σξ(L
c
g) is not invertible, and Lcg is not elliptic.

5. The Hessian on Submanifolds

In 5.1 a method for computing the Hessian on splitting submanifolds is presen-

ted. In particular, it allows to compute the Hessian on critical points without any

knowledge of the Christoffel symbols of the metric.

This method is applied to Mvol(g) andMVol(g). For Mvol(g) a second proof is

given using geodesics.

5.1. Method. Consider a section of projections π which is some sum of se-

ctions π1, π2, π3 from 1.4. Let F : M → R be a smooth function the gradient

gradc F of which is smooth. Consider an integral submanifold S ofM correspon-

ding to π, the restriction G̃ = Gc � S with covariant derivative ∇̃ = π ◦ ∇, and

the restriction f = F � S. Then ζ̃ = (Id, ζ) = (Id, π ◦ gradc F ) is an extension of

grad f , the (thus smooth) gradient of f . This observation allows to compute the

Hessian of f using the global chart ofM. For g ∈ S, h ∈ TgS by the orthogonality

of the projection

(Hess f)(g)(h, h) =G̃g(∇̃h gradc f(g), h) = Gcg(π((∇hζ̃)(g)), h)

=Gcg((∇hζ̃)(g), h) =

=Gg
(
π
(
dζ(g).h− Γcg(ζ(g), h)

)
, h
)

In particular this method allows to derive the Hessian at critical points of such sub-

manifolds only out of the gradient and without explicit knowledge of the Christoffel

symbols. Nevertheless, in the literature often strange calculations are applied (e.g.

in [Bes88, Proposition 4.55]).

5.2. The Hessian of Scal on Mvol(g). As Gc � Mvol(g) = G � Mvol(g) for

all c 6= 0 I will consider c = 1
n . Let g ∈ Mvol(g) and h ∈ TgMvol(g) = C∞(S2

gM).

Then ζ(g) = π3((gradScal)(g)) = −Ric0(g). The necessary terms are very easy

to compute:

dζ(g).h = −dRic0(g).h = −dRic(g).h−
1

n
(h,Ric(g))gg +

1

n
scal(g)h

and

π3(Γg(ζ(g), h)) = −(
1

2
Ric(g)0g

−1h+
1

2
hg−1 Ric(g)0)0.
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Note that for H = g−1h

Tr(g−1 Ric(g)0H
2) = Tr(g−1 Ric(g)H2)−

1

n
scal(g)Tr(H2)

With the notation S̃cal = Scal �Mvol(g) one obtains

(Hessc S̃cal)(g)(h, h) =Gg(π3(dζ(g).h − Γg(ζ(g), h)), h) =

=Gg(−
1

2
∆gh−M(h) +

1

2
Ric(g)g−1h+

1

2
hg−1 Ric(g), h)

5.3. Calculation via geodesics. In [FrG89] the geodesics on Mvol(g) are

described. They are of the form g(t) = g0e
tH for H = g−1

0 h. Thus

g′(t) = g0e
tHH = g(t)H, g′′(t) = g(t)H2.

Now using that TrH = 0 one computes

d

ds

∣∣∣∣
t

Scal(g(s)) = dS(g(t))g′(t) = Gg(t)(gradS(g), g′(t)) =

=

∫
M

Tr
(
g(t)−1

(1
2

scal(g(t))g(t) −Ric(g)
)
H
)
vol(g(t)) =

= −

∫
M

Tr(g(t)−1 Ric(g(t))H) vol(g).

Therefore,

d2

dt2

∣∣∣∣
0

S(g(t)) =

∫
M

(
Tr(Hg−1

0 Ric(g0)H)− Tr(g−1
0 (dRic(g0).h)H)

)
vol(g).

As TrH = 0, the derivation of Ric in direction h is given by dRic(g0).h = 1
2∆g0h+

M(h). Thus

(Hess(S̃cal))(g)(h, h) = Gg0(−
1

2
∆g0h−M(h)+

1

2
Ric(g0)g

−1
0 h+

1

2
hg−1

0 Ric(g0), h),

which is exactly the same expression as in 5.2.

5.4. The Hessian of Scal on MVol(g). As the problems of the geodesics on

MVol(g) seems to be unsolved up to now (see 1.12), so far only the method from 5.1

applies. Put S̃cal = Scal �MVol(g) and

ζ(g) =(π2 ⊕ π3)(gradScal)

=
n− 2

2n
(scal(g)−

Scal(g)

Vol(g)
)g −Ric(g)0

=
1

2
(scal(g)−

Scal(g)

Vol(g)
)g +

1

n

Scal(g)

Vol(g)
g −Ric(g).
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It was already proved that dScal(g).h = Gg(
1
2 scal(g)g − Ric(g), h). For h ∈

TgMvol(g), dVol(g).h = 0

dζ(g).h =
1

2

(
−(Ric(g), h)gg + ∆g(Trg h)g + (δgδgh)g

)
+

1

2
scal(g)h

+
1

2
Hess(Trg h)−

1

2
∆gh−M(h)

−
n− 2

2n

1

Vol(g)
Gg(

1

2
scal(g)g −Ric(g), h)g −

n− 2

2n

Scal(g)

Vol(g)
h

and Trg(ζ(g)) = n−2
2 (scal(g)− Scal(g)

Vol(g) ).

Γg(ζ(g), h) =
1

2
(scal(g)−

Scal(g)

Vol(g)
)g +

1

n

Scal(g)

Vol(g)
g −

1

2
Ric(g)g−1h−

1

2
hg−1 Ric(g)

−
1

4
(h,Ric(g))gg −

n− 2

8
(scal(g)−

Scal(g)

Vol(g)
)h+

1

4
(Trg h)Ricg

Since Gg((δ
gδgh)g, h) = Gg(HessTrg h, h),

(Hess S̃cal)(g)(h, h) =Gg

(
1

2
(∆g(Trg h)g + 2 Hess(Trg h)−∆gh)−M(h)

+
1

2
Ric(g)g−1h+

1

2
hg−1 Ric(g)

−
1

2
(Ric(g), h)g +

1

2
(scal(g)−

Scal(g)

Vol(g)
)h

−
n− 2

2n
Gg(

1

2
scal(g)g −Ric(g), h)g

−
1

2
(scal(g)−

Scal(g)

Vol(g)
)g +

n+ 2

8
(scal(g)−

Scal(g)

Vol(g)
)h, h

)
If g is critical then Ric = 1

n
scal(g)g and G(1

2 scal(g)g −Ric(g), h) = 0.

Then in particular 1
2 (Ric(g), h)g = 1

2n scal(g)(Trg h)g and thus

(Hess S̃cal)(g)(h, h) =Gg

(
1

2
(∆g(Trg h)g + 2 Hess(Trg h)−∆gh)−M(h)

+
1

2
Ric(g)g−1h+

1

2
hg−1 Ric(g)

−
1

2n
scal(g)(Trg h)g, h

)
=Gg

(
1

2
(∆g(Trg h)g + 2 Hess(Trg h)−∆gh) + δ∗δh

+ Riem(g).h−
1

2n
scal(g)(Trg h)g, h

)
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where I have used equality 3.6.1 to obtain the last identity. Note the slight mistake

in the term in [Bes88, Proposition 4.55].

The principal part of the partial differential operator L̃g defined by

Gg(L̃gh, h) = (Hess S̃cal)(g)(h, h)

coincides with the principal part of the operator L
1
n
g for the Hessian of the total

scalar curvature onM.

6. The Conformal Class

If a metric g is fixed and as long as no confusion arises, I will write 〈, 〉 instead

of 〈, 〉g for the inner product on C∞c (M,R), Ω1
c(M) and Xc(M).

6.1. Geodesics. Let M be a compact finite dimensional manifold. From 1.3

it follows that the geodesic in M starting at g̃ ∈ Confg in direction h = f g̃ for

some f ∈ C∞(M,R) is

c(t) = g̃(1 +
nt

4
f)

4
n

since then H0 = 0 and a(t) = (1 + nt
4 f)

4
n . Thus Confg is geodesically closed in

M.

Confg is not geodesically complete, but any two metrics in Confg can be joined

by a unique geodesic segment in Confg. For existence assume g̃ = ψg with ψ ∈
C∞(M,R), ψ > 0 and put f = 4

n (ψ
n
4 − 1), the exponent being defined as ψ > 0.

Then for 0 ≤ t ≤ 1 holds (1− t) + tψ
n
4 > 0 and thus

c(t) = (1 +
nt

4
f)

4
n g = ((1− t) + tψ

n
4 )g

is a required geodesic segment.

On the other hand assume without restriction that c(0) = g, c(1) = ψg = g̃.

Then c(1) = (1 + n
4 f)

4
n = ψg which determines f uniquely.

6.2. Length of geodesics. Let c : [0, 1] → Confg be a geodesic segment

c(t) = (1 + nt
4 f)

4
n g. Thus c′(t) = c(t) f

1+nt
4 f

, vol(c(t)) = (1 + nt
4 f)2 vol(g) and

Gc(t)(c
′(t), c′(t)) = n

∫
M

f2

(1 + nt
4 f)2

(1 +
nt

4
f)2 vol(g)

= n

∫
M

f2 vol(g)

This yields the arclength of c as∫ 1

0

√
Gc(t)(c′(t), c′(t))dt =

√
n

∫
M

f2 vol(g).



74 M. NEUWIRTHER

6.3. The geodesic distance d(g, ψg) between two metrics g and ψg is

d(g, ψg) =

√
n

∫
M

( 4

n
(ψ

n
4 − 1)

)2
vol(g)

=
4
√
n

√
Vol(g) +

∫
M

(ψ
n
2 − 2ψ

n
4 ) vol(g)

=
4
√
n

√
Vol(g) + Vol(ψg)− 2 Vol(

√
ψg).

In general, for φ,ψ ∈ C∞(M,R), φ,ψ > 0:

d(φg, ψg) = d(φg, (ψφ−1)φg)

=
4
√
n

√
Vol(φg) + Vol(ψg)− 2 Vol(

√
φψg)

=
4
√
n

√∫
M

(
φ
n
4 − ψ

n
4

)2
vol(g).

6.4. Proposition. Denote the diagonal in Confg ×Confg by Diag(Confg).

The geodesic distance is given by

d(φg, ψg) =
4
√
n

√∫
M

(
φ
n
4 − ψ

n
4

)2
vol(g),

and it is smooth exactly on Confg ×Confg \Diag(Confg).

In particular, for ψ ≡ r ∈ R:

d(g, rg) =
4
√
n

∣∣(r n4 − 1)
∣∣√Vol(g).

The mapping R+ 3 r 7→ d(g, rg) is — depending on the dimension of the

manifold dim(M) — of the form with the singularity at r = 1. If r → 0 then

d(g, rg) → 4√
n

Vol(g) < ∞. If r → ∞ then d(g, rg) → ∞. For dim(M) = 4 the

mapping R+ 3 +r 7→ d(g, rg) is a straight line crushed at r = 1, similar to the

standard geodesic distance on R+.
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r 7→ d(rg, g) if dim(M) < 4 r 7→ d(rg, g) if dim(M) > 4

6.5. The functional Ñ . Put Ñ = N � Confg. The gradient of Ñ is

grad Ñ(g̃) =
n− 2

2n
Vol(g̃)

2−n
n (scal(g̃)−

Scal(g̃)

Vol(g̃)
)g̃

and grad(g̃) = 0 iff scal(g̃) = Scal(g̃)
Vol(g̃) , in particular iff scal(g̃) is constant. By a

result proved by Schoen [Sch84] in each conformal class is a metric of constant

scalar curvature, i.e. a critical point of Ñ . Einstein metrics are unique in their

conformal class with constant total volume.

A conformal class with Einstein metric admits a characteristic function as

follows: Assign to each metric g̃ the arclength of the unique geodesic segment

from g̃ to the Einstein metric with the same total volume.

6.6. Assume dim(M) = n ≥ 2. In the parameterization g̃ = f
4

n−2 g (f ∈
C∞(M,R), f > 0) one may compute that

4
n− 1

n− 2
∆gf + scal(g)f = scal(g̃)f

n+2
n−2(TS)

vol(g̃) = f
2n
n−2 vol(g)

Thus

Ñ(g̃) =

∫
M

(
4n−1
n−2 (∆gf)f + scal(g)f2

)
vol(g)(∫

M
f

2n
n−2 vol(g)

)n−2
n

and Ñ turns out to be the Yamabe-functional in the case q = 2n
n−2 of [Aub82,

p. 126].
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6.7. (n ≥ 2). Let g̃ = f
4

n−2 . The transformation formula for the scalar curva-

ture (TS) from 6.6 suggests the partial differential operator

Lg = −∆g −
n− 2

4(n− 1)
scal(g),

which is called the conformal Laplacian ([Sch84], [ScY88] — our sign coincides

with the sign there), and which satisfies for all ψ ∈ C∞(M,R) the identity

Lg(fψ) = f
n+2
n−2Lg̃(ψ)

One may express Ñ(g) with the conformal Laplacian:

Ñ(g̃) = −4
n− 1

n− 2

〈Lg(f), f〉g(∫
M
f

2n
n−2 vol(g)

)n−2
n

.

6.8. The Hessian. The Hessian of Ñ is by definition

Hess Ñ(g)(h, h) =
d

dt

∣∣∣∣
0

Gc(t)(grad Ñ(c(t)), c′(t))

for the geodesic c(t) with c(0) = g, c′(0) = fg = h. A geodesic c satisfies

c′(t) =
f

1 + nt
4

c(t), c′′(0) =
4− n

4
f2g.

Thus

Gc(t)(grad Ñ(c(t)), c′(t)) =

=
n− 2

2
Vol(c(t))

2−n
n

∫
M

(
scal(c(t))−

Scal(c(t))

Vol(c(t))

) f

1 + nt
4

vol(c(t)).

And an easy calculation using the identities δg(δg(h)) = −∆gf and (Ric(g), h)g =

f scal(g) yields

Hess Ñ(g)(h, h) =
n− 2

2
Vol(g)

2−n
n ×

×

(∫
M

(
(n− 1)∆f − scal(g)f

)
f vol(g)

+
1

Vol(g)

∫
M

f scal(g) vol(g)

∫
M

f vol(g)

+ (1− n)

∫
M

f vol(g)

∫
M

(
scal(g)−

Scal(g)

Vol(g)

)
f vol(g)

+
n

4

∫
M

(
scal(g)−

Scal(g)

Vol(g)

)
f2 vol(g)

)
.
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6.9. Symmetrisation. Put α = n−2
n

Vol(g)
2−n
n . Then α > 0. In the sequel

assume c, c1, c2 ∈ R and f, f1, f2 ∈ C
g
0 (M,R).

For the symmetrisation of the Hessian one computes using
∫
M

∆f vol(g) = 0

and
∫
M

scal(g) vol(g) = Scal(g) that

(6.9.1) Hess Ñ(g)(c1g, c2g) = 0

for all c1, c2 ∈ R and that

(6.9.2)
1

α
Hess Ñ(g)(cg, fg) = −

n

4
c

∫
M

scal(g)f vol(g)

for all c ∈ R and f ∈ Cg0 (M,R). Moreover one sees that

1

α
Hess Ñ(g)(f1g, f2g) =

∫
M

(
(n− 1)∆f1 − scal(g)f1

)
f2 vol(g)

+
n

4

∫
M

(
scal(g)−

Scal(g)

Vol(g)

)
f1f2 vol(g).

since these terms are already symmetric.

Summing up one gets for f̃i ∈ C∞(M,R) (i = 1, 2) and ci = πT (f̃i) ∈ R, fi =

π3(f̃i) ∈ C∞(M,R)

1

α
Hess Ñ(g)(f̃1g, f̃2g) =

= −
n

4

(
c1

∫
M

scal(g)f2 vol(g) + c2

∫
M

scal(g)f1 vol(g)
)

+

∫
M

(
(n− 1)∆f1 − scal(g)f1

)
f2 vol(g) +

n

4

∫
M

(scal(g)−
Scal(g)

Vol(g)
)f1f2 vol(g).

6.10. The symmetric form H(g), the quadratic form Q(g) and the

PDO P g. For g ∈M define the symmetric form H(g) on C∞(M,R)

H(g)(f̃1, f̃2) =
1

α(n− 1)
Hess Ñ(g)(f̃1g, f̃2g)

and the associated quadratic form Q(g) on C∞(M,R)

Q(g)(f̃) = H(g)(f̃ , f̃)

Define the elliptic partial differential operator P g : C∞(M,R)→ C∞(M,R)

P g = ∆g +
n− 4

4(n− 1)
scal(g)−

n

4(n− 1)

Scal(g)

Vol(g)
.
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In C∞(M,R) orthogonal complements are taken with respect to 〈, 〉g: e.g.

scal(g)⊥ = {f ∈ C∞(M,R) : 〈f, scal(g)〉g = 0}. One easily verifies that

P g : scal(g)⊥ ∩Cg0 (M,R)→ Cg0 (M,R)

and that for f1, f2 ∈ C
g
0 (M,R) and f̃1, f̃2 ∈ scal(g)⊥

H(g)(f1, f2) = 〈P g(f1), f2)〉g, H(g)(f̃1, f̃2) = 〈P g(f̃1), f̃2)〉g.

Furthermore, P g + Lg = 1
4(n−1)

(
−2 scal(g)− nScal(g)

Vol(g)

)
.

The subspace of degeneracy of H(g) will be denoted by D(g). The maximal

strictly positive (or strictly negative) subspace will be denoted by H(g)+ (resp.

H(g)−). They exist, since H(g) is symmetric and P g is elliptic, and thus there is

a maximal set of smoooth functions in C∞(M,R) that diagonalize H(g). Further-

more,

C∞(M,R) = H(g)+ ⊕D(g)⊕H(g)−.

f ∈ C∞(M,R) is called lightlike iff H(g)(f, f) = 0. If D(g) = {0} then the set of

lightlike vectors is called the lightcone.

From 6.9.1 and 6.9.2 follows that R is always lightlike for H(g) and

H(g)(R, Cg0 (M,R)) = 0 iff g is a critical point of Ñ .

In particular Rg ⊂ D(g) iff g critical.

6.11. Consider the trivial line bundle R→ C∞(M,R)→ Cg0 (M,R).

(1) (Q(g)) For every f ∈ Cg0 (M,R) with
∫
M
f scal(g) vol(g) 6= 0 exists exactly one

c ∈ R, in fact c =
(∫
M
f scal(g) vol(g)

)−1
Q(g)(f) such that Q(g)(f + c) = 0. In

other words: Above each function in Cg0 (M,R) which is not perpendicular to the

scalar curvature scal(g) lies exactly one lightlike vector.

(2) For f ∈ Cg0 (M,R) ∩ scal(g)⊥ is Q(g)(f) = 0 iff Q(f + c) = 0 for all c ∈ R. In

other words: For f ∈ Cg0 (M,R) ∩ scal(g)⊥ either the whole fiber through f or no

point in this fiber is lightlike.

If g is critical then scal(g)⊥ = Cg0 (M,R) and therefore only (2) applies.

6.12. Properties if g is critical. Some of them are well known — sometimes

in disguise. If g is critical

H(g)(c1 + f1, c2 + f2) =

∫
M

(
∆f1 −

scal(g)

n− 1
f1
)
f2 vol(g)

and P g = ∆g − scal(g)
n−1 .

Thus R ⊂ D(g) (in particular lightlike) and with f ∈ C∞(M,R) the whole fi-

ber through f is in D(g). Consider therefore H̃(g) = H(g) � Cg0 (M,R) and
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Q̃(g) = Q(g) � Cg0 (M,R).

Use the notation Spec+(∆) = Spec(∆ � Cg0 (M,R)) for the strictly positive spec-

trum of the Laplacian. For λ ∈ Spec+ denote by Eigλ(∆
g) the eigenspace of

∆ � Cg0 (M,R) corresponding to λ:

Eigλ(∆
g) = {f ∈ Cg0 (M,R) : ∆gf = λf}.

Take an complete orthonormal system {e1}i≥0 of eigenvectors of ∆. The {ei}i≥0

yield a diagonalization of H̃(g): Denote by λn(i) the eigenvalue corresponding to

ei. λ0 = 0, λn ≤ λn+1 and λn(i) →∞ (conf. [Aub82]). Then for i 6= j

H̃(g)(ei, ej) = λn(i)〈ei, ej〉 −
scal(g)

n− 1
〈ei, ej〉 = 0

and

H̃(g)(ei, ei) =
(
λn(i) −

scal(g)

n− 1

)
〈ei, ei〉.

Thus {λn(i) −
scal(g)
n−1 }i≥0 is the sequence of eigenvalues of P g.

6.13. (1) Q̃(g) has lightlike vectors iff λ1 ≤
scal(g)
n−1 . In particular, scal(g) ≥ 0.

(2) g is a minimum of Ñ � Confg0 iff λ1 ≤
scal(g)
n−1 .

g is a minimum of Ñ iff Scal(g) ≤ 0.

(3a) H̃(g) is degenerate iff scal(g)
n−1 ∈ Spec+(∆) and in this case D(g) is the eigen-

space to scal(g)
n−1 .

(3b) If g is Einstein then H̃(g) is degenerate iff λ1 = scal(g)
n−1 , which is by Obata’s

theorem equivalent to (M, g) being isometric to the standard sphere (comp. [Bes82,

remark 4.65]).

The Lichnerowitz equality for the lowest non-trivial eigenvalue of the Laplacian

says that λ1 ≥
n
n−1 Ricmin, where Ricmin is the smallest number r such that

Ric−rg ≥ 0. As g is Einstein, Ricmin = scal(g)
n

, and therefore λ1 ≥
scal(g)
n−1 . Thus

the assertion follows from (3a).

(4) The degree of degeneracy is finite compare (comp. [Bes82, remark 4.65]). For

the standard sphere the degree of degeneracy is 1.

This follows from (3a) and the fact that the multiplicity of the first eigenvalue of

an elliptic operator is 1.

(5) The number dim(H̃(g)−) of strictly negative eigenvalues counted with multip-

licities is finite. The number dim(H̃(g)+) of strictly positive eigenvalues counted

with multiplicities is infinite.

This is consequence of the ellipticity and positivity of ∆.

Since λi →∞ and their multiplicities m(λi) are finite, we are done. Explicitly,

dim(H̃(g)−) =
∑

λi<
scal(g)
n−1

m(λi) <∞.
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From this and since dimD(g) <∞, dimCg0 (M,R) =∞, follows that

dim(H̃(g)+) =
∑

λi>
scal(g)
n−1

m(λi) =∞.

(6) Ñ does not admit a local maximum.

Consequence of dim(H̃(g)+) =∞.

6.14. Q(g) for arbitrary g. Recall the operator

P g = ∆g +
n− 4

4(n− 1)
scal(g)−

n

4(n− 1)

Scal(g)

Vol(g)

from 6.10. We have three cases depending on the dimension of M .

dimM = 3: The coefficient of f scal(g) is negative.

dimM = 4: P gf = ∆gf − 1
3

Scal(g)
Vol(g) f .

dimM ≥ 5: The coefficient of f scal(g) is positive.

Accordingly, one has the following

6.15. Proposition. Assume that Q̃(g) has non-trivial lightlike vectors:

If dimM = 3, then not scal(g) ≤ 0

If dimM = 4, then λ1 ≤
1
3

Scal(g)
Vol(g)

If dimM ≥ 5 and scal(g) ≥ 0, then λ1 ≤
n

4(n−1)
Scal(g)
Vol(g) .

Proof. Assume f ∈ Cg0 (M,R) to be lightlike, f 6≡ 0.

λ1 is given by (conf. [Aub82, Theorem 4.2])

λ1 = inf
l∈Cg0 (M,R)

l6≡0

〈∇l,∇l〉

〈l, l〉
≤
〈∇f,∇f〉

〈f, f〉
.

If dimM = 3 and scal(g) ≤ 0, then −〈scal(g)f, f〉 ≥ 0 and

〈∇f,∇f〉 −
3

8

Scal(g)

Vol(g)
〈f, f〉 ≤ 0.

Hence λ1 ≤
3
8

Scal(g)
Vol(g) ≤ 0, a contradiction.

Analogously, if dimM ≥ 5.

If dimM = 4,

〈∇f,∇f〉 −
1

3

Scal(g)

Vol(g)
〈f, f〉 = 0.

Hence λ1 ≤
1
3

Scal(g)
Vol(g) ≤ 0. �
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6.16. One might attempt to get independent results under the conditions

scal(g)− Scal(g)
Vol(g) ≥ 0 and scal(g)− Scal(g)

Vol(g) ≤ 0. But then already scal(g) = Scal(g)
Vol(g) :

Assume in the first case scal(g) � U > Scal(g)
Vol(g) � U for some open U ⊂ M . Then

0 <
∫
M

(scal(g)− Scal(g)
Vol(g) ) vol(g) = Scal(g)−Scal(g) = 0, a contradiction. The other

case is analogous.

6.17. H(g) for arbitrary g. Let scal(g) =
∑
i≥0 scal(g)iei be the expansion

in an eigenbasis of ∆g. Note that scal(g) = 0 for all i ≥ 1 iff g critical.

Denote by π1 : C∞(M,R) → R, π2 : → Cg0 (M,R) the natural projections. In 6.9

it was shown that for f̃1, f̃2 ∈ C∞(M,R)

H(g)(f̃1, f̃2) =〈P gπ2(f̃1), π2(f̃2)〉

−
n

4(n− 1)

(
π1(f̃1)〈scal(g), π2(f̃2)〉+ π1(f̃2)〈scal(g), π2(f̃1)〉

)
.

Note that H(g)(f̃1, c2) = − n
4(n−1)c2〈π2(f̃1), scal(g)〉 for c2 ∈ R. Therefore a dege-

nerate f̃ has a Cg0 (M,R)-component orthogonal to scal(g):
∫
M
π2(f̃) scal(g) vol(g) =

0. In the ∆g-eigenbasis the hyperplane in Cg0 (M,R) which is orthogonal to scal(g)

is spanned by functions of the form ei for scal(g)i = 0 and
(
scal(g)kel− scal(g)lek

)
for scal(g)k 6= 0, scal(g)l 6= 0.

Now P g : Cg0 (M,R)∩scal(g)⊥ → Cg0 (M,R). Therefore for f ∈ Cg0 (M,R)∩scal(g)⊥

one has 〈P gf, f̃2〉g = 〈P gf, π3(f̃2)〉g. Since π(f̃2) = 1
Vol(g)

∫
M
f̃2 vol(g)

〈scal(g), f̃2〉g = 〈scal(g), π2(f̃2)〉g + 〈
Scal(g)

Vol(g)
, f̃2〉g.

Thus f̃ is degenerate iff f̃ satisfies the system of equations

P gπ2(f̃) = π1(f̃)
n

4(n− 1)

(
scal(g)−

Scal(g)

Vol(g)

)
(EQ)

〈π2(f̃), scal(g)〉g = 0

If f̃ ∈ C∞(M,R) is a solution of (EQ) and dimM 6= 4, then integration over

M yields (n − 4)〈π2(f̃), scal(g)〉 = 0. Thus for dimM 6= 4 f̃ ∈ C∞(M,R) is

degenerate iff it satisfies (EQ).

6.18. Case π1(f̃) = 0. If dimM 6= 4 then f ∈ Cg0 (M,R) is degenerate iff

Pf = 0.

If dimM = 4, then P gf = ∆gf − 1
3

Scal(g)
Vol(g) f .

6.19. Proposition. (1) Assume dimM 6= 4 and that H(g) has a degenerate

direction in Cg0 (M,R).

Then not scal(g) ≤ n
n−4

Scal(g)
Vol(g) .
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(1a) If dimM = 3, then not scal(g) ≤ −3Scal(g)
Vol(g) ; In particular: if scal(g) ≤ 0, then

H(g) does not admit a degenerate direction in Cg0 (M,R).

(2) If dimM = 4, then there is a degenerate direction in Cg0 (M,R) iff 1
3

Scal(g)
Vol(g) ∈

Spec+(∆g) and at least one of the corresponding eigenvectors is orthogonal to

scal(g). In this case the intersection of the degenerate subspace and Cg0 (M,R)

equals the intersection of the eigenspace to 1
3

Scal(g)
Vol(g) and the orthogonal complement

of scal(g): D(g) ∩Cg0 (M,R) = Eig 1
3

Scal(g)
Vol(g)

(∆g) ∩ scal(g)⊥

In particular: If Scal(g) ≤ 0, then H(g) does not admit a degenerate direction in

Cg0 (M,R).

Proof. (1) Let f ∈ Cg0 (M,R), f 6≡ 0 be degenerate.

0 = P gf = ∆gf + n−4
4(n−1) scal(g)f − n

4(n−1)
Scal(g)
Vol(g) f . ∆g is strictly positive on

Cg0 (M,R). Thus not scal(g) ≤ n
n−4

Scal(g)
Vol(g) .

(1a) follows from (1), since then if scal(g) ≤ 0 also scal(g) + 3Scal(g)
Vol(g) ≤ 0.

(2) follows directly from the special form of P g in this dimension. �
To illustrate the case dimM = 4 expand P gf = 0 in {ei}:

∑
i≥1(λif

i −
1
3

Scal(g)
Vol(g) f

i)ei = 0, which is equivalent to (λi −
1
3

Scal(g)
Vol(g) )f i = 0 for all i ≥ 1.

Hence, f i = 0 for λn(i) 6=
1
3

Scal(g)
Vol(g) and the remaining finitely many f i’s satisfy∑

λn(i)=
1
3

Scal(g)
Vol(g)

scal(g)if i = 0.

6.20. Case π1(f̃) 6= 0. Without loss of generality assume c = 4(n−1)
n

to obtain

from (EQ) the equation for f ∈ Cg0 (M,R):

(EQ’) P gf = scal(g)−
Scal(g)

Vol(g)
.

This allows to reduce the problem to an equation in Cg0 (M,R).

6.21. Proposition. If dimM 6= 4 then H(g) has a degenerate direction

outside Cg0 (M,R) iff EQ’ has a solution f1 in Cg0 (M,R).

If f1 is such a solution then f + 4(n−1)
n

points in a degenerate direction.

6.22. If dimM = 4 then f + 4(n−1)
n

(with f ∈ Cg0 (M,R)) is a degenerate

direction for H(g) iff

∆f −
1

3

Scal(g)

Vol(g)
f = scal(G) −

Scal(g)

Vol(g)
(EQ(4))

and 〈f, scal(g)〉 = 0

In the expansion in {ei} EQ(4) becomes:

(EQ(4)) f0 = 0,
∑
i≥1

(
λn(i)f

i.ei −
1

3

Scal(g)

Vol(g)
f i.ei

)
=
∑
i≥1

scal(g)i.ei.
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thus for all i ≥ 1:
(
λn(i) −

1
3

Scal(g)
Vol(g)

)
f i = scal(g)i.

There are two cases:

(1) 1
3

Scal(g)
Vol(g) ∈ Spec+(∆g) and one of the corresponding coefficients scal(g)i does

not vanish. Then (EQ(4)) cannot be solved.

(2) 1
3

Scal(g)
Vol(g) /∈ Spec+(∆g) or if 1

3
Scal(g)
Vol(g) ∈ Spec+(∆g) and all the corresponding

coefficients scal(g)i do vanish. Then (EQ(4)) can be solved by setting (for i ≥ 1)

f i =

{ scal(g)i

λn(i)−
1
3

Scal(g)
Vol(g)

if λn(i) −
1
3

Scal(g)
Vol(g) 6= 0

arbitrary else.

The thus defined sequence (f i)i>0) satisfies fi

scal(g)i → 0. Therefore with (scal(g)i)

also (f i) is a Schwartz sequence and
∑
i f

iei ∈ C
g
0 (M,R). In the expansion the

condition
∫
M

scal(g)f vol(g) = 0 reads

(6.22.1)
∑
i

scal(g)if i = 0.

If f ∈ Cg0 (M,R) is a solution of (EQ(4)) then this 6.22.1 becomes a condition only

on the scalar curvature:

(∗)
∑
i≥1

λn(i) 6=
1
3

Scal(g)
Vol(g)

(scal(g)i)2

λn(i) −
1
3

Scal(g)
Vol(g)

= 0

since scal(g)if i = 0 if λn(i) = 1
3

Scal(g)
Vol(g) .

6.23. Lemma. If dimM = 4, H(g) has a degenerate direction outside

Cg0 (M,R) iff the expansion scal(g) =
∑
i≥0 scal(g)iei of the scalar curvature in

the complete orthonormal system corresponding to ∆ satisfies the equation (∗) and

either 1
3

Scal(g)
Vol(g) /∈ Spec+(∆g) or 1

3
Scal(g)
Vol(g) ∈ Spec+(∆g) and all the corresponding

coefficients of scal(g) vanish.

6.24. Corollary. If Scal(g) ≤ 0 thenH(g) has no degenerate directions outside

of Cg0 (M,R) unless scal(g) ≡ Scal(g)
Vol(g) , i.e. unless g is critical.

Proof. In either case 1
3

Scal(g)
Vol(g) /∈ Spec+ and (∗) becomes

(∗’)
∑
i≥1

ci
(
scal(g)i

)2
= 0

for some strictly positive coefficients ci ∈ R. The left hand side of (∗’) is strictly

positive unless scal(g) ≡ Scal(g)
Vol(g) . �

Putting together 6.19, 6.23 and 6.24 one obtains for dimM = 4 the following

theorem.
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6.25. Theorem. Assume dimM = 4 and g not critical.

(1) If Scal(g) ≤ 0, then H(g) is not degenerate.

(2) If Scal(g) > 0, then the (possibly trivial) degenerate subspace D(g) is obtained

as follows: Assume the expansion scal(g) =
∑
i≥0 scal(g)iei of the scalar curvature

in the complete orthonormal system {ei} corresponding to ∆g and put

f =
∑
i≥1

λn(i) 6=
1
3

Scal(g)
Vol(g)

scal(g)i

λn(i) −
1
3

Scal(g)
Vol(g)

ei + 3 ∈ C∞(M,R) \ Cg0 (M,R).

(2a) If 1
3

Scal(g)
Vol(g) ∈ Spec+(∆) and one of the corresponding coefficients scal(g)i does

not vanish, then D(g) = Eig 1
3

Scal(g)
Vol(g)

(∆g) ∩ scal(g)⊥ ∩Cg0 (M,R) ⊂ Cg0 (M,R).

(2b) If 1
3

Scal(g)
Vol(g) ∈ Spec+(∆), all of the corresponding coefficients scal(g)i vanish

and (∗) is not satisfied, then D(g) = Eig 1
3

Scal(g)
Vol(g)

(∆g) ∩Cg0 (M,R) ⊂ Cg0 (M,R).

(2c) If 1
3

Scal(g)
Vol(g) ∈ Spec+(∆), all of the corresponding coefficients scal(g)i vanish

and (∗) is satisfied, then D(g) = Eig 1
3

Scal(g)
Vol(g)

(∆g) ∩ Cg0 (M,R)⊕ Rf * Cg0 (M,R).

(2d) If 1
3

Scal(g)
Vol(g) /∈ Spec+(∆) and (∗) is not satisfied, then D(g) = {0}.

(2e) If 1
3

Scal(g)
Vol(g) /∈ Spec+(∆) and (∗) is satisfied, then D(g) = Rf .

6.26. The conformal class with constant volume. Here the situation is

less complicated. Put Ŝcal = Scal � Confg0. Then a computation like in section 5

yields

Hess(Ŝcal)(g)(fg, fg) =
n− 2

2

∫
M

(
(n− 1)∆f −

Scal(g)

Vol(g)
f

+
n− 4

4
(scal(g)−

Scal(g)

Vol(g)
)f
)
f vol(g).

If g is a critical point of Ŝcal, scal(g)− Scal(g)
Vol(g) = 0 and thus

Hess(Ŝcal)(g)(fg, fg) =
n− 2

2

∫
M

(
(n− 1)∆f −

Scal(g)

Vol(g)
f
)
f vol(g).

The critical points of Ŝcal are exactly the critical points of Ñ that lie in Confg0.

At critical points the classification of light like and degenerate directions of Ŝcal

yields the same results as for Ñ � Cg0 (M,R)·g×Cg0 (M,R)·g. At non critical points

this classification is also similar, but much easier, since the constant direction is

lacking. Note that for f ∈ Cg0 (M,R)

Hess(Ŝcal)(g)(fg, fg) = Hess(Ñ)(g)(fg, fg)−

∫
M

(
scal(g)−

Scal(g)

Vol(g)

)
f2 vol(g).

In particular they do not coincide.
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